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Abstract: Intratumor therapeutic DNA electroporation or electrotransfer is in clinical trials in the
United States and is under development in many other countries. Acute changes in endogenous gene
expression in response to DNA or to pulse application may significantly modulate the therapeutic
efficacy of the expressed proteins. Oligonucleotide arrays were used in this study to quantify changes
in mRNA expression in B16-F10 mouse melanoma tumors four hours after DNA electrotransfer. The
data were subjected to the DAVID v6.8 web server for functional annotation to reveal regulated
genes and genetic pathways. Gene ontology analysis revealed several molecular functions related
to cytoskeletal remodeling and inflammatory signaling. In B16-F10 cells, F-actin remodeling was
confirmed by phalloidin staining in cells that received pulse application alone or in the presence
of DNA. Chemokine secretion was confirmed in cells receiving DNA electrotransfer. These results
indicate that pulse application alone or in the presence of DNA may modulate the therapeutic efficacy
of therapeutic DNA electrotransfer.

Keywords: DNA electroporation or electrotransfer; molecular functions; cytoskeletal remodeling;
inflammatory signaling

1. Introduction

In vivo DNA electroporation or electrotransfer increases plasmid DNA (pDNA) de-
livery and expression in a wide variety of tissues types, including solid tumors [1]. The
concept of intratumor therapeutic plasmid delivery in preclinical testing began with her-
pes simplex virus thymidine kinase gene and ganciclovir [2], but moved primarily into
immune modulators [3]. Clinically, intratumor electrotransfer of plasmid DNA encoding
IL-2 [4] and antiangiogenic metargidin peptide [5] has been tested. However, in both
preclinical and clinical trials, interleukin 12 (IL-12) plasmid delivery has had great success
therapeutically in many solid tumor types. Intratumor IL-12 plasmid electrotransfer is in
Phase II clinical trials for metastatic melanoma alone or in combination with anti-PD-1
immunotherapy [6–9]. This combination therapy is also being tested with other solid tumor
types such as Merkel cell carcinoma [10], triple negative and HER2+ breast cancers, and
squamous cell head and neck cancer (clinicaltrials.gov (accessed on 2 September 2022)).

Non-coding control plasmid DNA can act as an immunotherapeutic adjuvant, increasing
the expression of a variety of cytokines and chemokines. Control plasmid delivery induces
independent antitumor effects, including tumor growth delay and complete regression as de-
scribed in preclinical models of melanoma [11–19], lung carcinoma [20,21], fibrosarcoma [22],
pancreatic carcinoma [23], breast cancer [24] and colorectal carcinoma [25–28]. This effect
may be due to the activation of DNA-specific pattern recognition receptors (PRRs) following
intracellular plasmid DNA detection. CpG motifs encoded in the plasmid DNA may bind and
activate the endosomal PRR Toll-like receptor 9 (TLR9) [29]. Activation of germline encoded
cytosolic or nuclear PRRs such as cyclic GMP–AMP synthase and an assortment of additional
putative DNA-specific PRRs may induce the expression of proinflammatory cytokines and
chemokines [30–32]. This expression may attract several types of immune cells to the tumor
microenvironment.
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The purpose of this study was to determine the acute global gene expression responses
to intratumor electrotransfer of non-coding control pDNA in a syngeneic mouse model
commonly used to simulate human melanoma [33]. We then confirmed the primary
significant changes in vitro using B16-F10 mouse melanoma cells. This would enable a
better understanding of the source of these antitumor effects.

2. Materials and Methods
2.1. Cell Line

B16-F10 mouse melanoma cells (CR6475, American Type Culture Collection, Manassas,
VA, USA) were cultured in McCoy’s medium (Corning, Thermo Fisher Scientific, Waltham,
MA, USA) and supplemented with 5% fetal bovine serum (FBS, Gibco, Waltham, MA,
USA) in a 5% CO2 humidified incubator at 37 ◦C. The cells regularly tested negative for
mycoplasma infection using the Myco-Sniff PCR Detection Kit (MP Biochemicals, Irvine,
CA, USA).

2.2. Plasmid DNA (pDNA)

gWizBlank, an empty vector, was commercially prepared (Aldevron, Fargo, ND, USA)
and diluted to a concentration of 2 mg/mL in physiological saline. Endotoxin levels were
confirmed to be <100 EU/mg.

2.3. Mice and Intratumor Delivery

All procedures were approved by the University of South Florida Institutional Animal
Care and Use Committee (protocol R2736, 2005). One million melanoma cells in 50 µL
phosphate-buffered saline were injected subcutaneously in the left flank of female 7-to-
8-week-old C57Bl/6J mice (Jackson Laboratories, Bar Harbor, ME, USA). Tumors were
allowed to grow for eight days to a diameter of approximately 4 mm. Mice with tumors
were randomized into groups then anesthetized using a mixture of 2.5% isoflurane and
97.5% O2. Four groups of four included mice with control untreated tumors, tumors injected
with 50 µg plasmid DNA in 25 µL sterile physiological saline, tumors injected with 25 µL
saline followed by pulse application, and tumors injected with plasmid DNA followed by
pulse application. A 6-needle array controlled by an autoswitcher was fitted around the
tumor, and delivery was immediately performed by the application of six 100 µs pulses
with a voltage-to-distance ratio of 1300 V/cm and a frequency of 4 hertz using a legacy
model ECM 830 Square Wave Electroporation System (BTX Harvard Apparatus, Holliston,
MA, USA). Each mouse was monitored continuously until recovered from anesthesia, as
indicated by their ability to maintain sternal recumbency and exhibit purposeful movement.
Mice were humanely euthanized after four hours. Then, tumors were removed and snap
frozen on dry ice.

2.4. Gene Expression Analysis

RNA was extracted from tumors disrupted in Trizol (Invitrogen, Carlsbad, CA, USA)
using a rotor stator homogenizer then purified using RNeasy columns (Qiagen, Valencia,
CA, USA). Quantified RNA from four tumors per group was pooled. Complementary
DNA was generated using GeneChip IVT Express kits (Applied Biosystems, Waltham, MA,
USA) and analyzed by a commercial service (SeqWright, Inc., Houston, TX, USA) using
GeneChip Mouse Genome 430 2.0 arrays (Applied Biosystems).

2.5. Data Processing and Statistical Analysis

The data from the Expression Console software were processed per the supplied in-
structions (Affymetrix, Santa Clara, CA, USA). Briefly, every treatment group mas5-signal
and mas5-detection was compared to the mas5-signal and mas5-detection from the control
tumor samples. Signals < 100, as well as genes with AA (absent) mas5-detection in both
treatment and control groups were disregarded. The fold change in the experimental
groups was calculated by comparison with the control group, then sorted in descending or-
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der to allow for gene expression to be displayed. Downregulated genes were expressed by
PA (present–absent, turn off) and PP (present–present, decrease), while upregulated genes
were expressed by AP (absent-present, turn on) and PP (increase). The selection conditions
of a significantly changed gene expression were based on a fold difference higher than
absolute 2 and p-value after false discovery rate (FDR) correction <0.05. The differentially
expressed genes (DEGs) with the highest fold change and q < 0.05 were analyzed using the
DAVID (Database for Annotation, Visualization and Integrated Discovery) bioinformatics
tool [34–36]. This database was used to perform the gene ontology (GO) functional annota-
tion analysis, which classified the DEGs into molecular function. In the output given by
DAVID, an FDR of < 0.05 was considered to be statistically significant. The p-values of se-
lected GO terms were corrected using Benjamini–Hochberg correction described as adjusted
p-values [37]. Relevant GO groups with adjusted p-values below 0.05 and N per group
>5 were visualized using bar dot plot. Detailed analysis of genes belonging to selected
ontological groups, with their expression Log fold changes (LogFC) are presented as chord
plots using “GOplot” library packages and SRplot (http://www.bioinformatics.com.cn/,
(accessed on 3 June 2022)) [38,39]. Gene symbols in the text are per the Mouse Genome
Database [40]. Raw data and DAVID output files are available in Table S1.

2.6. Cytoskeletal Staining of B16-F10 Melanoma Cells

Cells were seeded into glass bottom 96-well plates and incubated for 4 h to allow
attachment. The medium was replaced with 200 µL complete medium or medium con-
taining 0.4 mg/mL pDNA. An electrode consisting of 2 parallel plates with a 2 mm gap
(ACC-B15002, Leroy Biotech, Saint-Orens-de-Gameville, France) was inserted into the wells.
Six 100 µs pulses at a voltage to distance ratio of 1300 V/cm and a frequency of 4 hertz were
applied. After 30 min of incubation, cells were stained with 4′,6-diamidino-2-phenylindole
(DAPI, Akoya Biosciences, Marlborough, MA) and Phalloidin iFluor 488 Reagent (Abcam,
Cambridge, UK) per manufacturer’s instructions. Images were captured with a fluores-
cence microscope (BZ-X700E, Keyence Corp., Itasca, IL, USA). Fluorescence was quantified
using the Hybrid cell count analysis application.

2.7. Chemokine Quantification by Bead Array

B16-F10 cells were suspended to a concentration of 2.0 × 107/mL in 0.4 mg/mL
pDNA. Six 100 µs pulses with a voltage-to-distance ratio of 1300 volts per centimeter
and a frequency of 4 hertz were applied in cuvettes. Cells were incubated in complete
culture medium for 4 h. One ml medium from 2 × 106 cells was analyzed using a premixed
multiplex panel (Mouse Cytokine/Chemokine Magnetic Luminex Assay, Millipore, Burling-
ton, MA, USA) on a MAGPIX System (Luminex, Austin, TX, USA) per manufacturer’s
instructions. All protein identifiers are per Uniprot [41].

2.8. Statistics

Statistical evaluation of the differences between groups and graph preparation was
carried out using GraphPad Prism 9.1.0 (San Diego, CA, USA). Since the data were normally
distributed, significance was determined by a one-way ANOVA test followed by a Tukey–
Kramer post-test. A p < 0.05 was considered statistically significant. For the data obtained
from microarray, differences were evaluated by statistical programs included in particular
bioinformatic analyses.

3. Results
3.1. Tumor Electroporation Induces Gene Expression Changes Primarily Related to the
Cytoskeleton

GO analysis indicated five molecular functions were significantly (p < 0.05) enriched
four hours after pulse application alone. Four of the five functions related to cytoskeleton
protein binding and structural integrity, including filamin-, actinin- and telethonin-binding

http://www.bioinformatics.com.cn/
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protein of the Z-disc of skeletal muscle (FATZ) binding, structural constituent of cytoskele-
ton, actin filament binding, and actin binding (Figure 1A).
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Figure 1. Enriched GO molecular function terms in electroporated tumors when compared to controls.
(A) The bar dot plot shows the GO molecular function terms plotted in order of significance. (B) The
chord plot shows the overlap of the DEGs contributing to these terms arranged in order of their
fold change.

The DAVID Knowledgebase used in this study pulls from a variety of public
databases [35,36]. Gene ontology terms are created using literature or data reviews or
by automated methods [42] and are inherently incomplete and undergoing constant modi-
fication [43]. Related and overlapping DEGs may be represented in multiple GO terms. A
chord plot shows the interrelation of specific DEGs (Figure 1B). Krt16 (keratin 6A), Myoz3
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(myozenin 3), Serpina3c (serine peptidase inhibitor, clade A, member 3C), Serpina3m (ser-
ine peptidase inhibitor, clade A, member 3M), Spink5 (serine peptidase inhibitor, Kazal
type 5) and Dst (dystonin) were upregulated more than 5-fold.

3.2. Cytoskeletal Changes

Given the significant regulation of gene expression in GO terms related to cytoskeletal
molecular functions, we investigated cytoskeletal changes 30 min after delivery using
fluorescent microscopy. Control B16-F10 cells showed their typical morphology with
intact actin filaments (Figure 2A). Actin fibers were observed across the cells and over the
nuclei as seen in the overlaid images. This cell morphology did not change with exposure
to pDNA. Conversely, cytoskeleton changes were clearly observable in cells that were
subjected electric pulses in the absence or presence of plasmid DNA. The actin fibers in
both electroporation groups were visible mostly in the cell periphery and did not overlay
the nuclei. Significantly reduced levels of actin per cell were detected in the electroporated
groups (Figure 2B).
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Figure 2. Cytoskeleton staining of B16-F10 cells pulsed in the absence or presence of plasmid
DNA. Cells were pulsed in the presence of saline or pDNA (gWizBlank). (A) Phalloidin labeled
F-actin (green) and DAPI nuclear staining (blue). Scale bar = 100 µm. (B) F-actin area per cell. EP,
electroporation. n = 3 per group. **** p < 0.0001; * p < 0.05.

3.3. Plasmid DNA Injection of Tumor Induces Significant but Minimal Gene Expression Changes

Figure 3 shows the ten most significant gene ontology terms regulated 4 h after pDNA
injection. Several GO terms related to nucleic acid pathways were enriched, including
DNA-directed 5′-3′ RNA polymerase activity, telomeric DNA binding, RNA polymerase
II core binding, histone deacetylase activity, and telomerase RNA binding in order of
significance. However, this regulation was modest (<2 fold).



Pharmaceutics 2022, 14, 2097 6 of 12Pharmaceutics 2022, 14, 2097 6 of 13 
 

 

 

Figure 3. Enriched GO molecular function terms in tumors injected with pDNA when compared to 

controls. The plot shows the GO molecular function terms plotted in order of significance. 

3.4. pDNA Electrotransfer Is Associated with the Upregulation of Inflammatory Molecules 

As with pDNA injection (Figure 3), many terms related to nucleic acid binding and 

detection were regulated by pDNA electrotransfer (Figure 4A). However, the specific 

pathways differed. In order of significance, double stranded RNA binding, caspase re-

cruitment (CARD) domain binding, PRR activity, 2′-5′- oligoadenylate synthetase activity, 

and double stranded DNA binding were regulated. However, in this group, several terms 

related to chemokine signaling were regulated, including C-X-C motif chemokine recep-

tor (CXCR) binding, C-C motif chemokine receptor (CCR) binding, CXCR3 chemokine 

receptor binding, and CCR1 chemokine receptor binding (Figure 4B). To confirm these 

RNA expression data, we quantified chemokine secretion from B16-F10 cells 4 h after 

pDNA electrotransfer. 

Figure 3. Enriched GO molecular function terms in tumors injected with pDNA when compared to
controls. The plot shows the GO molecular function terms plotted in order of significance.

3.4. pDNA Electrotransfer Is Associated with the Upregulation of Inflammatory Molecules

As with pDNA injection (Figure 3), many terms related to nucleic acid binding and
detection were regulated by pDNA electrotransfer (Figure 4A). However, the specific path-
ways differed. In order of significance, double stranded RNA binding, caspase recruitment
(CARD) domain binding, PRR activity, 2′-5′- oligoadenylate synthetase activity, and double
stranded DNA binding were regulated. However, in this group, several terms related to
chemokine signaling were regulated, including C-X-C motif chemokine receptor (CXCR)
binding, C-C motif chemokine receptor (CCR) binding, CXCR3 chemokine receptor bind-
ing, and CCR1 chemokine receptor binding (Figure 4B). To confirm these RNA expression
data, we quantified chemokine secretion from B16-F10 cells 4 h after pDNA electrotransfer.

3.5. Validation of Chemokine Gene Regulation by Protein Production

Fourteen chemokine or chemokine receptors mRNAs within this expression signature
were upregulated more than 10-fold: Il6 (interleukin 6), Ccl5 (chemokine (C-C motif) ligand
5), Cxcl3, Cxcl1, Ccl4 (chemokine (C-C motif) ligand 4), Cxcl11, Tnfsf10 (tumor necrosis
factor (ligand) superfamily, member 10), Ccl3 (chemokine (C-C motif) ligand 3), Cxcl2
(chemokine (C-X-C motif) ligand 2), Cxcl10 (chemokine (C-X-C motif) ligand 10), Ccl7 and
Il10 (Figure 4B). We therefore quantified a subset of chemokine proteins secreted from B16-
F10 cells 4 h after pDNA electrotransfer (Figure 5). Significant increases in CXCL1, CCL3,
and CCL4 production were detected after pDNA electrotransfer. CCL5 was secreted after
any DNA exposure. These results confirmed the observed mRNA regulation. Although
RNA expression was increased, the CCL2, CXCL2, and CXCL10 proteins were not regulated
at this time point.
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Figure 4. Enriched GO molecular function terms in tumors subjected to pDNA electrotransfer when
compared to controls. (A) The bar dot plot shows the GO molecular function terms plotted in order
of significance. (B) The chord plot shows the overlap of the DEGs contributing to chemokine terms
arranged in order of their fold change.
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4. Discussion

Microarray analysis was performed to evaluate the differences in gene expression
between mouse melanoma tumors receiving electric pulses, backbone plasmid DNA in-



Pharmaceutics 2022, 14, 2097 8 of 12

jection, or pDNA electrotransfer when compared to control tumors. We found that two
groups were highly regulated and enriched several gene ontology molecular functions
that were statistically significant (p < 0.05). Pulse application alone dysregulated pathways
related to cytoskeleton remodeling. We confirmed cytoskeletal changes microscopically in
melanoma cells in both pulsed groups. Plasmid DNA electrotransfer induced dysregulation
of a number of gene ontology terms related to immune signaling. Since several of these
terms were related to chemokine signaling, we confirmed chemokine protein secretion by
melanoma cells.

Four hours after pulse delivery, several molecular functions associated with cytoskele-
tal binding were regulated. This may consist of cell recovery to short-term pulse-driven
actin rearrangements. Changes in cell morphology induced by several pulse types have
been documented previously [44]. Using similar but less intense pulses to those used in
this study, an early study demonstrated that cytoskeletal effects are observed within 5 min
in endothelial cells. Actin staining is observed at the cell periphery, but the cells regained
their original appearance within two hours [45]. Using pulses similar to those used in this
study, the endothelial cell cytoskeleton transiently reorganized into fibers confined to the
outer membrane within 2 h [46]. These cells recovered by 24 h after pulse delivery. Our
observation that the cytoskeleton reorganized to the cell periphery after pulsing confirmed
these observations in melanoma cells.

The application of other pulse types causes similar transient cytoskeletal effects. An
early study in nanosecond pulse application demonstrated transient actin cytoskeletal
rearrangement within one hour; the cell cytoskeleton recovered by 5 h [47]. These pulses
induced intense cytoskeletal damage, as indicated by a speckled appearance [48]. Mil-
lisecond pulses induce actin changes in B16-F10 cells [49]. Transient cytoskeletal changes
were observed in breast cancer cells after delivery of an 8 min constant current pulse [50].
The changes were reduced in fibroblasts, which demonstrates cell-type-specific aspects of
this effect. The actin cytoskeleton is a major barrier to intracellular plasmid DNA move-
ment [51]. Pulse-driven cytoskeletal rearrangements may participate in intracellular DNA
movement [52].

In this study, we demonstrate that morphological changes in response to pulse ap-
plication may not only occur in cells in vitro, they also may occur in the heterogenous
environment of tumor tissue. Several groups have demonstrated that this effect is transient,
and cells recover. In this study, we demonstrate that changes in gene expression may be
necessary for this recovery. A large number of actin-binding proteins control cytoskeletal
assembly and disassembly, which in turn controls processes such as intracellular transport,
endocytosis and cell survival [53]. The mRNAs of several of these actin-binding proteins
were upregulated in our study, implying that these proteins are necessary for cellular
recovery.

We observed that simple plasmid injection caused statistically significant but minimal
dysregulation of gene expression. Several of the regulated GO terms were related to
nucleic acid binding. These diverse but related pathways may have been induced by the
presence of plasmid DNA. The regulation of similar GO terms related to DNA binding was
amplified by electrotransfer. Intercellular plasmid DNA is bound by several DNA-specific
PRRs [54]. PRR activation has been implicated in B16-F10 cells [55], other types of cancer
cells [56], B16-F10 tumors [18,19], and several cell types in normal skin [57] in the induction
of inflammatory signaling.

Several GO terms related to chemokine signaling were highly regulated. Previously,
we determined that tumor cells in culture will secrete a subset of chemokines, confirming
the differential mRNA expression. In mouse melanoma tumors, non-coding control plas-
mid DNA electrotransfer induces the secretion of CCL3 after 4 and 24 h and CCL4 after
4 h [16]. This study confirms that, while many cells in the tumor microenvironment may
secrete these chemokines, they are secreted by B16-F10 cells. We also previously detected
mRNA upregulation and CXCL10 protein secretion by B16-F10 cells in several growth
environments 4 h after pDNA electrotransfer [55]. The expression of some chemokine pro-
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teins did not reflect the mRNA regulation. Secretion was measured at a single time point;
other chemokines may be secreted with different kinetic profiles. Although expression is
transient, the chemokine-receptor axes activated by pDNA electrotransfer may attract a
variety of both pro- and anti-tumorigenic immune cells into the tumor [58–60], altering
the tumor microenvironment. For example, CCL3, CCL4 and CCL5 [61] can directly or
indirectly attract immunosuppressive myeloid-derived suppressor cells [62] as well as
beneficial dendritic cells and effector T cells [63].

The stimulated immunological changes can clearly modulate the efficacy of an im-
munotherapy, potentially requiring pharmacological control strategies. Potentially, the
plasmid sequence can be modified to avoid these effects. Removal of CpG motifs, the TLR9
ligand, reduces but does not abolish inflammatory signaling [64,65]. This may be due to
the binding and activation of ubiquitously expressed cytosolic PRRs. Their DNA ligands
are incompletely described but are often related to structure rather than sequence. We have
shown that putative PRRs IFI204, ZBP1 and DHX9 directly and durably bind pDNA within
minutes of transfection [54]. These factors make plasmid modification to avoid immune
activation completely a difficult objective.

This study was performed in a single experimental model. Gene expression analysis
was performed on tumors in vivo, while the remaining analyses we performed on tumor
cells in vitro. The responses described here may vary in different tumor and tissue types
and in different mouse strains. Mouse and human immunology differs significantly [66].
Based on the universal expression of DNA-specific PRRs, we can predict that some response
will occur. However, we may not be capable of predicting these responses precisely.

5. Conclusions

It is well established that changes in cytoskeletal arrangement are induced by the
application of electric pulses in several cell types including tumor cells. We demonstrated
that the primary regulated gene expression pathways associated with pulse delivery related
to cytoskeleton protein binding and structural integrity. Therefore, regulation of these
pathways may be integral to cell recovery. We also demonstrated that these gene expression
changes occur in B16-F10 melanoma tumors, implying that previous in vitro observations
predict changes in vivo.

PRRS are germline encoded and ubiquitous receptors that may bind plasmid DNA
and induce the expression of pro-inflammatory cytokines and chemokines. This expression
may have a profound effect on the tumor microenvironment. It is important to under-
stand the positive or negative therapeutic impact of intrinsic DNA-directed responses to
gene therapies.
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