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Changes in the maternal autonomic nervous system are essential in facilitating the
physiological changes that pregnancy necessitates. Insufficient autonomic adaptation
is linked to complications such as hypertensive diseases of pregnancy. Consequently,
tracking autonomic modulation during progressing pregnancy could allow for the early
detection of emerging deteriorations in maternal health. Autonomic modulation can be
longitudinally and unobtrusively monitored by assessing heart rate variability (HRV). Yet,
changes in maternal HRV (mHRV) throughout pregnancy remain poorly understood. In
previous studies, mHRV is typically assessed only once per trimester with standard HRV
features. However, since gestational changes are complex and dynamic, assessingmHRV
comprehensively and more frequently may better showcase the changing autonomic
modulation over pregnancy. Subsequently, we longitudinally (median sessions = 8) assess
mHRV in 29 healthy pregnancies with features that assess sympathetic and
parasympathetic activity, as well as heart rate (HR) complexity, HR responsiveness and
HR fragmentation. We find that vagal activity, HR complexity, HR responsiveness, and HR
fragmentation significantly decrease. Their associated effect sizes are small, suggesting
that the increasing demands of advancing gestation are well tolerated. Furthermore, we
find a notable change in autonomic activity during the transition from the second to third
trimester, highlighting the dynamic nature of changes in pregnancy. Lastly, while we saw
the expected rise in mean HRwith gestational age, we also observed increased autonomic
deceleration activity, seemingly to counter this rising mean HR. These results are an
important step towards gaining insights into gestational physiology as well as tracking
maternal health via mHRV.
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1 INTRODUCTION

The period of pregnancy necessitates major physiological changes
to sustain the growing fetus while maintaining maternal health
(Khlybova et al., 2008; Moors et al., 2020). Some changes are
apparent and can be readily monitored, such as the mother’s
growing abdomen. Abdominal measurements (i.e., symphysial
fundal height) are typically taken at prenatal checkups to track the
progressing pregnancy and the growing fetus (Yousif et al., 2019).
Other changes are internal, such as the substantial adaptations in
the maternal cardiovascular system, which are largely regulated
by the autonomic nervous system (ANS) (Khlybova et al., 2008;
Cui et al., 2018; Shanmugalingam et al., 2019). Similar to tracking
the symphysial fundal height, longitudinal assessment of
autonomic modulation throughout pregnancy may offer
insights into gestational health (Khan et al., 2006).

In fact, several pregnancy complications are linked to the
insufficient adaptation of the ANS to advancing gestation.
Complications such as preeclampsia (a hypertensive disorder
of pregnancy) and preterm birth have been associated with
dysfunctional maternal autonomic regulation (Khlybova et al.,
2008; Yousif et al., 2019; Moors et al., 2020). These complications
are challenging to detect in early gestation when available
interventional options (such as aspirin for mitigating
preeclampsia) would be most effective (Cui et al., 2018;
Shanmugalingam et al., 2019). As a result, such pregnancy
complications remain major causes of perinatal morbidity and
mortality (Khan et al., 2006; Saleem et al., 2014; Frey and
Klebanoff, 2016; Umesawa and Kobashi, 2017).

Alleviating the burden of pregnancy complications partly
depends on developing screening methods for their early
detection (Kleinrouweler et al., 2016; De Kat et al., 2019).
Owing to the association between pregnancy complications
and autonomic dysfunction, tracking autonomic changes
throughout pregnancy may allow for detecting deteriorations
in maternal health (Antonazzo et al., 2004; Pal et al., 2009).
However, the normative values of autonomic activity and the
trajectory thereof during pregnancy remains insufficiently
explored (Brooks et al., 2020; Garg et al., 2020).

Autonomic activity can be assessed by tracking heart rate
variability (HRV) since autonomic regulation modulates the
time-intervals between heartbeats (Task Force of The Europea,
1996; Shaffer and Ginsberg, 2017). Tracking HRV is attractive
due the pervasiveness of unobtrusive, wearable technologies that
can monitor heart rate (HR) (Grym et al., 2019). However,
limited research has longitudinally assessed maternal HRV
(mHRV) in healthy pregnancy (Schlembach et al., 2012).
Moreover, existing research has offered conflicting results
(Yousif et al., 2019; Garg et al., 2020; Moors et al., 2020). On
the one hand, some researchers have found that mHRV – and by
proxy, autonomic activity—is unaffected by gestational age (GA)
(Voss et al., 2000; Moertl et al., 2009). On the other hand, the
findings of other researchers suggest an increased activity of the
parasympathetic branch of the ANS in early gestation with a shift
towards sympathetic dominance by the end of pregnancy
(Balajewicz-Nowak et al., 2016; Kolovetsiou-Kreiner et al.,
2018; Garg et al., 2020).

Changes in maternal physiology during pregnancy are
complex and dynamic (Brooks et al., 2020). Consequently,
regular prenatal checkups, initially monthly and culminating
in weekly appointments, are necessary to capture possible
changes (American Academy of Pedia, 2017). Although
measuring the abdomen’s symphysial fundal height during
these checkups provides valuable information on the health of
the pregnancy, it is not the only information considered.
Maternal blood pressure, fetal HR and fetal growth are also
assessed to generate a more comprehensive overview of
gestational health (Basis Prenatale Zor, 2015).

Similarly, assessing mHRV with more regularity by employing
multiple measures of HRV may better showcase the progression
of autonomic modulation in normal pregnancy. In literature,
mHRV is typically assessed only three times (i.e., once per
trimester) with a methodological focus on standard time and
frequency domain features (Schlembach et al., 2012). These
features inform on the relative activity of the sympathetic and
parasympathetic branches of the ANS, which has been the focus
of mHRV research in pregnancy. However, further information
can be obtained fromHRV. The variability observed in HR results
from the interaction of a network of non-linear physiological
systems over different time scales (Shaffer et al., 2014; Bakhchina
et al., 2018). Calculating HRV features that exploit characteristics
of these interactions—such as complexity, responsiveness, and
fragmentation—may allow for a more comprehensive overview of
maternal autonomic modulation during pregnancy (Silva et al.,
2017).

While features that capture these characteristics have rarely
been employed in assessing mHRV, they have been used
elsewhere. For instance, sample entropy and detrended
fluctuation analysis, which assess the complexity in the HR
time series, have been used in research on sepsis, heart failure,
sleep staging, and stress (Peng et al., 1995; Ahmad et al., 2009;
Vigo et al., 2010; Bakhchina et al., 2018). Diseased states and
stress typically result in reduced HR complexity. Pregnancy is
often described as a stress-test for the mother owing to the
increasing physiological strain accompanying advancing
gestation (Williams, 2003; Bilhartz et al., 2011; Chasan-Taber,
2016). Consequently, measures of HR complexity may be
particularly sensitive to progressing pregnancy.

Furthermore, the increased stress of pregnancy might affect
the responsiveness of the ANS. Autonomic responsivity can be
probed with phase rectified signal averaging (PRSA) (Bauer et al.,
2006a), a method that quantifies how the tachogram responds to
accelerations and deceleration in HR as a proxy measure for
autonomic responsiveness. PRSA-based features not only
independently predict mortality in cardiac disease (Bauer
et al., 2006b; Eick et al., 2015) but are also sensitive to aging
and fitness levels (Campana et al., 2010). This method is
increasingly being employed to assess fetal health (Graatsma
et al., 2012; Georgieva et al., 2014) but has rarely been used to
assess maternal autonomic modulation (Tejera et al., 2012; Casati
et al., 2016).

Lastly, physiologically stressful conditions (such as aging or
cardiovascular disease) are associated with a breakdown in the
neuroautonomic-electrophysiological control systems that
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regulate HR, resulting in increased short-term HRV (Costa et al.,
2017). This high short-term variability can be misleading, since it
indicates healthy autonomic modulation, which is not typically
present in aging populations or those with cardiac disease.
However, in cases of such breakdown the variation is
fragmented—i.e., with HR quickly alternating between
acceleration and deceleration—rather than gradual, as is
inherent to vagally regulated variation. A recent class of HRV
features, namely heart rate fragmentation (HRF), exploits this
phenomenon to probe the integrity of the physiological systems
controlling the heartbeats. HRF features outperform traditional
HRV features in capturing the degenerative impact of conditions
such as aging and heart disease (Costa et al., 2017). Assessing
these features in pregnancy for the first time could indicate
whether advancing gestation affects the physiological systems
that control the heartbeat.

Subsequently, in this study, we will implement a variety of
HRV methods and apply these repeatedly in a healthy pregnant
population to investigate the progression of maternal autonomic
modulation under the stress-test of advancing gestation. This
investigation will not only strengthen our understanding of
gestational physiology but also serve towards providing
evidence for the trajectory of mHRV during healthy pregnancy
that may, in turn, be used as a guideline for obstetric screening.

2 METHODS AND MATERIALS

This research is a secondary analysis of a prospective
observational study carried out from 2007 to 2009. Healthy
women (18 years and older) with uneventful, singleton
pregnancies were recruited before 12 weeks of gestation for
participation (n = 40). Pregnancy duration was determined
from the last menstrual period and then confirmed at
10–12 weeks of gestation by the crown-rump length.
Participants took no medication apart from iron supplements
or vitamins (van Laar et al., 2014). Women who developed
pregnancy complications during the study were excluded from
the final analysis (hypertension, n = 4; preterm birth, n = 3). Four
participants were further excluded due to dropout from the study
of datafiles that were missing. The data from the remaining 29
participants were included. These participants had a mean age of
31 (±4) years and a mean pre-pregnancy body mass index of 23.9
(±4) kg/m2, as seen in Table 1.

All participants provided written informed consent. The
institutional review board at the Máxima Medical Center,
Veldhoven, the Netherlands, approved the study (reference

number 0650) and granted a waiver for this secondary analysis
in 2021 (reference number N21.008). The study design and
original analyses are detailed in a previous article (van Laar
et al., 2014).

2.1 Data Acquisition
Fetal ECG measurements—which also capture maternal
ECG—were acquired at 1000 Hz from the maternal abdomen
with a non-invasive electrophysiologic monitor (the NEMO
device, Maastricht Instruments, Netherlands) (van Laar et al.,
2014). Repeated measurements were performed at approximately
14, 18, 22, 24, 26, 30, 34, 36, 38, and 40 weeks of gestation while
the participant was lying in a semi-recumbent position. 45-min
long measurements were performed between 08:00 and 18:00 h.
Included participants had a median of eight measurement
sessions (IQR: 7–9). Relevant patient metadata was also
collected (van Laar et al., 2014).

2.2 Preprocessing
A 4th-order Butterworth bandpass filter (1–70 Hz) and a notch
filter (50 Hz) were applied to the ECG recordings, as proposed in
a previous publication (Rooijakkers et al., 2014). Next, maternal
ECG data were isolated from fetal recordings by applying a fixed
linear combination to enhance the maternal QRS complexes
(Rooijakkers et al., 2014). Thereafter, a peak detection
algorithm was employed as detailed by Rooijakkers et al.
(2011) to determine the RR series, or tachogram. As this
algorithm was originally designed for fetal ECG, relevant
parameters were adapted as appropriate for maternal ECG by
the original authors of the algorithm: the relative characteristic
frequency of the wavelet was set to 19 and the HR limits to 30 and
210 beats per minute. Processing of maternal RR intervals from
fetal ECG measurements was done in MATLAB (MathWorks,
United States), with all further processing done in Python (PSF,
United States). To further eliminate possible ectopic beats or
motion artifacts and improve the accuracy of HRV features, RR
intervals which fell outside a specified range (0.4–2 s) or differed
from the preceding interval by 20% were removed (Peters et al.,
2008; Campana et al., 2010; Peters et al., 2011). RR intervals for
which both preceding and following value were excluded based
on above criteria, were also excluded. In cases where more than
25% of RR intervals needed to be removed, the measurement was
excluded from the analysis. For HRV features where beat-to-beat
changes were highly important (i.e., time-domain features, PRSA,
HRF and Poincaré analysis), beats were replaced with NaN
values. Where signal continuity was of higher importance
(i.e., sample entropy, detrended fluctuation analysis, and
frequency-domain analyses), missing values were linearly
interpolated.

2.3 Heart Rate Variability
A range of HRV features were calculated on the entire RR series
for each measurement session: standard time and frequency
domain features (Task Force of The Europea, 1996; Shaffer
and Ginsberg, 2017), non-linear (i.e., geometrical and
complexity) features (Peng et al., 1995; Richman and
Moorman, 2000; Khandoker et al., 2013; Shaffer and Ginsberg,

TABLE 1 | Patient characteristics.

Characteristics % Or Mean
(Standard Deviation)

Maternal body mass index before pregnancy 23.9 (4) kg/m2
Nulliparous 66%
Maternal age at birth 31 (4) years
Gestational age at birth 40 weeks (10 days)
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2017), phase rectified signal averaging (PRSA) (Bauer et al.,
2006a), and heart rate fragmentation (HRF) (Costa et al.,
2017). The standard features and complexity features were
calculated using pyHRV (Gomes et al., 2019), a Python signal
processing toolbox shown to be reliable (Shaqiri and Gusev,
2020). For the frequency domain analysis, each RR series was
divided into shorter, overlapping segments (5 min in length, 50%
overlap) during computation, where it was assumed that during
these shorter segments the RR series is stationary. The mean of
the values computed per segment was taken as the result for the
corresponding RR series. All HRV features, further detailed in
the following sections, were calculated for each measurement
session.

2.3.1 Standard Time and Frequency Domain Features
• SDNN: standard deviation of all RR intervals
• RMSSD: root mean squared successive differences of RR
intervals

• pNN50: percentage of pairs of consecutive RR intervals
differing by more than 50 ms

• LF: the power in the low frequency band (0.04–0.15 Hz)
• HF: the power in the high frequency band (0.15–0.40 Hz)
• TP: the total power in the frequency bands
• LF/HF: the ratio between low and high frequency power

While SDNN represents overall variability, other features
inform on the relative contributions of the sympathetic and
parasympathetic branches of the ANS. RMSSD, pNN50 and
HF reflect the vagal modulation of HR. Both sympathetic and
parasympathetic activity contribute to LF while LF/HF is typically
attributed to sympathovagal balance (Task Force of The Europea,
1996; Shaffer and Ginsberg, 2017).

2.3.2 Non-Linear Features
In addition to standard time- and frequency-domain features, we
evaluated methods designed to better capture the non-stationary
and non-linear characteristics of the HR time series. We
employed a Poincaré plot analysis, which is a popular
geometrical method to evaluate HRV dynamics. Each NN
interval is plotted against its predecessor, resulting in a scatter
plot. SD1 denotes the standard deviation of the short-term NN
interval variability. Similarly, SD2 represents the standard
deviation of the long-term NN interval variability. The ratio
between these two features is noted as SD1/SD2 (Khandoker
et al., 2013).

Furthermore, we employ two measures that address the
complexity within the HR time series: sample entropy
(SampEn) and detrended fluctuation analysis (DFA) (Peng
et al., 1995; Richman and Moorman, 2000). The first, SampEn,
calculates the conditional probability that two epochs which are
similar within a tolerance r for a window length m, will remain
similar if the next data point (i.e., the next NN value) is included
(Richman and Moorman, 2000; Bakhchina et al., 2018). It can be
defined as follows:

SampEn � −logA
B
, (1)

A is defined as the number of pairs of vector (x) for m points
which satisfy the condition d[xm(i), xm(j)] ≤ r, while B is the
number of pairs of vectors for (m+1) points that satisfies the same
condition (Bakhchina et al., 2018). The values form and rwere set
to 2 and 0.2 times the standard deviation of the RR intervals, as is
typically reported in the literature (Richman and Moorman,
2000). Smaller values of SampEn indicate more regular and
predictable time series (Shaffer and Ginsberg, 2017).

The second method, DFA, also gives an estimate of the long-
range correlations of the time series by quantifying its fractal
scaling properties follows (Peng et al., 1995). In short, the total
time series is integrated (Xt) and then divided into segments of
length n. Each segment is then detrended by subtracting the best
linear fit (Yt). The fluctuation function is calculated as shown in
Eq. 2.

F(n) �
��
1
N

√ ∑N
t�1
(Xt − Yt)2, (2)

Thereafter, the scaling exponent α (which represent the
correlation properties of the time series) is estimated from the
log-log plot of F(n) vs. n. Typically, both α₁, and α₂ are
determined, which represent short-term and long-term fractal
scaling exponents. In our case, only α₁ (which calculates
correlation over n = 4–16 beats) is calculated, as α₂ requires
several hours of data to achieve sufficient accuracy. When there is
no correlation present (i.e., white noise) or the signal resembles a
random walk process (i.e., Brownian noise), α = 0.5 and α = 1.5,
respectively. Positive correlations exist when 0.5< α < 1.5, with α
≈ 1 suggesting a high level of complexity. When values start
exceeding 1, it suggests that the system becomes increasingly
regular (Peng et al., 1995; Yeh et al., 2009).

2.3.3 Phase Rectified Signal Averaging
PRSA is a technique that can identify and elucidate quasi-
periodicities in time-series data that are often obscured by
noise and non-stationarities, as is typical for physiological
signals (Bauer et al., 2006a). In PRSA, signal segments are
aligned corresponding to a predetermined shared phase and
then averaged, cancelling out the noise and isolating the
underlying composite trend. These isolated quasi-periodicities
are representative of the underlying physiological processes that
regulate HR.

Isolating these quasi-periodicities is achieved in a few steps.
Firstly, anchor points (APs) are defined on the RR series in
relation to the phases that are of interest. Here, two sets of APs are
identified, namely HR accelerations and decelerations. If the
PRSA parameter of T is set to one, each acceleration and
deceleration are marked as an AP. A higher value of T evokes
a low pass filtering effect since then an AP would be identified as
an acceleration or deceleration averaged over T points.

After the APs have been identified, a signal segment is defined
around each AP with a length of L both preceding and following
the AP (resulting in a total segment length of 2L + 1). This signal
segment should be sufficiently long to capture the slowest
anticipated oscillation of relevance in the time-series. We
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define L as 50 RR values, as is also done in the literature (Joshi
et al., 2019). All signal segments are then aligned corresponding
to their APs and averaged across segments, resulting in the PRSA
waveform. This waveform (also of length 2L + 1 and consisting of
averaged RR values) visualizes the behavior of HR in response to
accelerations and decelerations, which is associated with
sympathetic and vagal activity, respectively (Bauer et al.,
2006b). In essence, the magnitude and speed of this response
in HR gives an estimate of the robustness of the autonomic
response (Bauer et al., 2006a).

To quantify this response, several features are calculated from
the PRSA waveform, represented as X. Note that the PRSA
waveform’s relationship to the time domain is units of RR
values (specified here as RRi) and not in seconds. Firstly,
deceleration capacity (DC) and acceleration (AC) are
calculated to capture the magnitude of the response. The
calculation of DC is shown in Eq. 3. AC is similarly calculated.

DC � [X(0) + X(1) − X(−1) − X(−2)]/4, (3)
Here X(0) represents the AP, X(1) is value following the AP,

andX(−1) andX(−2) precede the AP (Bauer et al., 2006a). AC is
similarly calculated. Furthermore, the immediate deceleration
response (IDR) and immediate acceleration response (IAR) are
calculated as the difference between the maximum and minimum
RRi within the neighborhood of five RRi preceding the AP and
five after, including the AP. This captures the maximum response
in HR in the immediate neighborhood of the AP. The rate of this
maximum response is captured in the slope of the deceleration
and acceleration responses (SDR and SAR), which notes the slope
of the line joining the maximum and minimum RRi

corresponding to IDR and IAR. Lastly, the average HR
response to accelerations (AAR) and deceleration (ADR) is
calculated by taking the difference between the mean of the 50
RRi following the AP, which is included, and the mean the 50
preceding RRi (Joshi et al., 2019).

Lastly, the PRSA waveform is also studied in the frequency
domain. The power spectral density (PSD) plots are calculated for
all PRSA waveforms, with the frequency content measured in
time units of 1/RRi. Calculating the PSD of these rectified
waveforms have been shown to perform better than traditional
spectral analysis (Bauer et al., 2006a; Bauer et al., 2006b; Joshi
et al., 2019). PRSA allows for separating the acceleration and
deceleration response; subsequently, we calculate features to
capture the ratio between the two responses to better
understand autonomic control of the maternal HR. To this
end, we firstly determine the power and peaks in the LF and
HF frequency bands in the PSDs, as well as the TP for both the
acceleration and deceleration response. Thereafter, we determine
the ratio between the features (for example, HFacc:HFdec).

2.3.4 Heart Rate Fragmentation
HRF aims to capture variability resulting from a breakdown in
physiological control over HR rather than healthy autonomic
modulation. Costa et al. (2017) first developed these indices to
address the phenomenon of increased HR variability in older
populations and populations with heart disease where vagal
modulation is known to be decreased. Closer investigation

revealed the variability to be jagged rather than smooth as
would be expected from vagal control. Subsequently, a set of
indices were developed to capture this jagged variation, referred
to as fragmentation. These indices are: PIP (percentage inflection
points); PAS (percentage alternating segments); PSS (percentage
short segments); and IALS (inverse of accelerating or decelerating
long segments). Increases in these indices indicate increased
fragmentation in HR (Costa et al., 2017).

2.4 Data Analysis
Data were analyzed with two aims in mind. Firstly, we aimed to
explore the possibly dynamic relationship between the HRV features
and GA. To this end, we grouped HRV features into bins of 4 weeks.
The mean and standard error of the mean of the HRV features for all
participants per bin is plotted against GA to show the evolution of the
features over time. The mean and standard error of the mean are
preferred over the median and interquartile range since we are
interested in the trajectory of the features and the support in each
bin (i.e., the number of measurements) varies. However, due to the
possibly non-normal distribution of the data, we also plot the median
and interquartile range to confirm the trends observed. The data are
grouped into the followingGAbins, with the lower limit excluded and
upper limit included: 12–16 weeks (19 measurements); 16–20 weeks
(24 measurements); 20–24 weeks (31 measurements); 24–28 weeks
(46 measurements); 28–32 weeks (28 measurements); 32–36 weeks
(30 measurements); and above 36 weeks (52 measurements).

Secondly, we aimed to capture the significance and magnitude of
changes observed. To this end, the data were divided into three groups
based to facilitate comparison: less than 23 weeks (GA₁), between 23
and 32weeks (GA₂), and over 32 weeks of gestation (GA₃). The groups
span a comparative number of weeks and allow most participants to
have at least one measurement per group. The upper limit is included
and the lower excluded in each group. Participants typically had
multiple measurements in each group; subsequently, the mean of
these values was taken per participant per gestational group. One
participant did not have ameasurement in each of the three gestational
groups and was subsequently excluded from this second part of the
analysis, resulting in total of 28 participants.

2.5 Statistical Analysis
Physiological data is typically not normally distributed and
therefore non-parametric analyses were done. We also
confirmed the nature of the distribution by using a
Kolmogorov-Smirnov test (only three out of 28 features were
normally distributed). Subsequently, a Friedman’s test with a
Dunn’s post hoc test was applied to determine whether
statistically significant differences occurred across the three
GA groups (i.e., GA₁, GA₂, and GA₃) as well as between
individual groups (e.g., GA₁ vs. GA₂), with Bonferroni
correction to control for family-wise error. This analysis test
whether A value of p < 0.05 was considered statistically
significant.

Corresponding effect sizes were calculatedwithCohen’sU1, which
provides a measure of the overlap between the distributions of two
groups. A Cohen’s U1 of 1 indicates two entirely separate groups,
while complete overlap results in a U1 of 0. While the standards for
what constitutes a large effect are more clearly defined for Cohen’s d
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(used in parametric data), this is not the case for Cohen’s U1. A
Cohen’s d of 0.2 (small effect) is similar to U1 = 0.15, while a d = 0.5
(medium effect) corresponds to U1 = 0.33 (Fritz et al., 2012).

3 RESULTS

3.1 Time and Frequency Domain Features
Similar trends can be observed (Figure 1) across the temporal
evolution of most standard time and frequency domain features.
Mean HR and LF/HF increased significantly over pregnancy,
RMSSD, pNN50, TP, LF and HF showed significant decreases

with GA (Figure 1; Table 2). The change in pNN50 from GA₁
and GA₃ had the largest effect size (U₁ = 0.196, Table 2), although
this remains a small effect. The trend in overall variability (SDNN)
was less distinct, showing first a decrease and thereafter an increase
in values (Figure 1B; Table 2). Interestingly, the most notable
changes in most features occur approximately between 24 and
32 weeks of gestation (Figure 1). All features except SDNN show
sharp increases or decreases during this period.

3.2 Non-Linear Features
From Figures 2A,C gradual decrease can be seen in both SD1 and
SD1/SD2 (calculated from the Poincaré analysis) over GA.

FIGURE 1 | Temporal evolution of standard time and frequency domain measures over GA bins. HRV features for all participants were grouped into bins of
4 weeks. The mean and standard error of the mean (full line) as well as the median and interquartile range (dotted line) of the HRV features per bin is plotted against GA.
(A) Mean HR; (B) SDNN; (C) RMSSD; (D) pNN50; (E) Total power; (F) LF/HF; (G) LF power; and (H) HF power.
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Similar to the standard features discussed in the previous section,
the sharpest change is seen around 24–32 weeks of gestation. A
decrease in this ratio indicates a reduction in short-term
variability (typically associated with vagal activity). This is
confirmed by the significant changes reported in Table 3.

A decrease and increase are seen in SampEn and α₁,
respectively (Figures 2D,E; Table 3). The decrease in SampEn
points to a time series that becomes more regular and predictable.
Changes in SampEn are accompanied with an effect size of U1 =
0.214 between GA1 and GA3, which is the largest effect observed
across all HRV features. Increases in α₁ ranging across 1 and 1.5
indicate stronger correlations within the time series, pointing to a
less complex signal. Again, both features display sharp changes
over 24–32 weeks of gestation (Figures 2B,C). Note that the
changes for all non-linear features are highly significant (p <
0.0001, Table 3). Furthermore, the changes from GA1→GA3 are
all highly significant (p < 0.0001), while this is not the case for the
standard features (Table 2).

3.3 Heart Rate Fragmentation
Most HRF (IALS, PSS and PAS) showed a downward trend with
progressing GA (Figures 3B–D), with IALS, PSS and PAS
decreasing significantly (Table 4). Although not significant,
PIP does decrease steadily from 20 weeks onward (Figure 3A).
All features decrease noticeably between 24 and 32 weeks of GA,
although this is particularly evident for IALS and PSS.

The largest effect size between GA1 and GA3 for a significant
change occurred for IALS (U1 = 0.179, from Table 4), yet this is
still a small effect. While an increase in HRF would have
suggested a breakdown in the physiological systems regulating
HR, these findings instead suggest that there is a decrease in
fragmentation with the increasing demands of pregnancy.

3.4 Phase Rectified Signal Averaging
The temporal evolution of the PRSA features (Figure 4) shows a
downward trend across features, with an uptick at the end of
pregnancy. Note that SAR is inherently negative but is also
decreasing in absolute terms. Also note that AC (4a), IAR
(4b), IDR (4e), SAR (4c), and SDR (4f) already start

decreasing before 20 weeks GA. (The average responses,
i.e., AAR and ADR, displayed no discernable trends and are
not shown here).

This dampened response in later gestation, which is also
reflected in the PRSA waveforms (Figure 5) and the decreased
PRSA features (Table 5), indicates reduced responsiveness in HR.
All features except AAR and ADR (the average responses) show
significant reductions across GA groups (Table 5). The largest
changes are seen in the slopes of the instant responses (SAR and
SDR, both with U1 = 0.125 between GA1 and GA3) and the IAR
(U1 = 0.143), although their effect sizes are still small.

Moving to the frequency domain, in the PSDs in Figure 6 a
similar response is observed for both accelerations and
decelerations (T = 5). However, for the LF band in Figure 5
(0.035/RRi Hz to 0.15/RRi Hz, translating to approximately
0.04–0.2 Hz) the behavior is markedly different. For
accelerations (Figure 5C), activity in the LF band remains
similar throughout. However, when decelerations serve as APs,
the LF activity increases substantially with progressing
pregnancy. (Note that the shifting peaks that can be observed
are a result of an increase in mean HR since the frequency is a
function of the RR intervals.)

The observation that the LF power in the deceleration
response increases relative to that of the acceleration response
is also confirmed in Table 6, which reports the ratio between
frequency domain values in the acceleration and deceleration
response. In fact, although it may not be visually evident from
Figure 5, we see that the deceleration values significantly increase
relative to the acceleration values for all features. Overall, we also
see the largest effect sizes of our analysis. LFacc:LFdec and
HFpeakacc:HFpeakdec both have U1 > 0.3, while TPacc:TPdec has
an effect size of 0.607 between GA1 and GA3. These changes
suggest that increasing activity goes into decelerating the HR
towards the end of pregnancy.

Lastly, Table 7 lists the number of accelerations, decelerations,
and constant points (i.e., with no change from one RR to the next)
that were detected for T = 1 and T = 5, respectively. In both cases
the number of constant points remains relatively stable, while
decelerations decrease relative to accelerations. This shift is more
pronounced for T = 1.

TABLE 2 | Results from the grouped analysis for standard time- and frequency-domain features.

Features GA1 median (IQR) GA2 median (IQR) GA3 median (IQR) Friedman p-value GA1→GA2 GA2→GA3 GA1→GA3

p U1 p U1 p U1

GA (weeks) 18.4 (18.2–20.3) 27.1 (26.7–27.7) 36.8 (36.1–37.4)
HR (beats per minute) 74.6 (68.2–81.7) 79.8 (76.1–87.1) 85.5 (77.8–90.8) <0.0001 0.056 0.161 0.577 0.036 <0.001 0.196
SDNN (ms) 53.2 (39.3–65.7) 47.0 (34.6–62.0) 48.6 (40.4–60.8) 0.039 0.750 0.054 1 0 1 0.054
RMSSD (ms) 32.9 (21.7–44.8) 25.4 (15.7–33.1) 20.7 (15.4–26.2) <0.0001 0.103 0.125 1 0 0.006 0.125
pNN50 (%) 0.12 (0.03–0.20) 0.05 (0.01–0.12) 0.03 (0.01–0.06) <0.0001 0.110 0.161 0.834 0 0.004 0.196
Total power (ms2) 2080 (1302–3220) 1632 (732–2484) 1557 (876–2188) <0.001 0.533 0.054 1 0.034 0.322 0.072
LF (ms2) 738 (568–1376) 650 (304–1119) 635 (349–920) <0.001 0.417 0.034 1 0.018 0.253 0.071
HF (ms2) 398 (193–757) 195 (98–433) 168 (83–289) <0.0001 0.128 0.089 1 0.018 0.019 0.125
LF/HF 2.29 (1.77–2.89) 3.32 (2.30–3.91) 4.05 (2.7–5.38) <0.0001 0.064 0.071 0.566 0.018 <0.001 0.107

All continuous data are presented as median (IQR). First, the Friedman’s p-value is calculated to determine whether significant changes occur over all groups. Thereafter, the Dunn’s post-
hoc test with Bonferroni correction is applied to determine the p-value between groups. Cohen’s U1 is calculated to determine effect size. Values of approximately 0.15 and 0.33 represent
small and medium effects, respectively.

The bold type indicates that they values are statistically significant.

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 8746847

Bester et al. Maternal Autonomic Modulation During Pregnancy

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


FIGURE 2 | Temporal evolution of non-linear features over GA bins. HRV features for all participants were grouped into bins of 4 weeks. The mean and standard
error of the mean (full line) as well as the median and interquartile range (dotted line) of the HRV features per bin is plotted against GA for (A) SD1; (B); SD2; (C) SD1/SD2;
(D) SampEn; and (E) DFA α₁.

TABLE 3 | Results from the grouped analysis for non-linear HRV features.

Features GA1 median (IQR) GA2 median (IQR) GA3 median (IQR) Friedman p-value GA1→GA2 GA2→GA3 GA1→GA3

p U1 p U1 p U1

SD1 (ms) 23.2 (15.4–31.6) 18.0 (11.1–23.4) 14.7 (10.9–18.5) <0.0001 0.101 0.125 1 0 0.006 0.125
SD2 (ms) 68.0 (52.9–85.9) 61.6 (46.2–82.9) 65.8 (55.4–81.4) 0.131 1 0.054 1 0.054 1 0.036
SD1/SD2 0.34 (0.27–0.38) 0.26 (0.22–0.35) 0.21 (0.17–0.26) <0.0001 0.093 0.107 0.051 0.089 <0.0001 0.196
SampEn (a.u.) 1.40 (1.27–1.53) 1.19 (1.01–1.38) 0.94 (0.83–1.24) <0.0001 0.050 0.071 0.061 0.071 <0.0001 0.214
DFA α₁ (a.u.) 1.19 (1.07–1.27) 1.29 (1.19–1.44) 1.41 (1.29–1.50) <0.0001 0.042 0.107 0.177 0.071 <0.0001 0.125

All continuous data are presented as median (IQR). First, the Friedman’s p-value is calculated to determine whether significant changes occur over all groups. Thereafter, the Dunn’s post-
hoc test with Bonferroni correction is applied to determine the p-value between groups. Cohen’s U1 is calculated to determine effect size. Values of approximately 0.15 and 0.33 represent
small and medium effects, respectively.

The bold type indicates that they values are statistically significant.
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4 DISCUSSION

In this paper, we comprehensively analyzed HRV at a high
temporal granularity to track the dynamic progression of
maternal autonomic modulation over normal pregnancy. We
generated a holistic overview of autonomic changes by
incorporating non-linear, HRF, and PRSA features to the
standard time and frequency domain analysis. These features
have rarely or, in the case of HRF, never been assessed in a
pregnant population. We found that some of these features are
more sensitive to GA than standard time and frequency features.
Furthermore, contrary to previous research in this field, we also
calculated the effect sizes of the changes in mHRV. Overall, our
findings indicate that decreased vagal modulation, dampened
autonomic response, reduced complexity and decreased HR

fragmentation accompany advancing gestation. Our results
show that even though changes in HRV features are often
statistically significant, their effect sizes are small—indicating
that the increasing physiological demands of progressing
pregnancy are well tolerated by the maternal ANS.
Interestingly, while overall autonomic activity remained fairly
stable, we found a burst of autonomic activity occurring between
approximately 24 and 32 weeks of gestation.

This burst of autonomic activity, which coincides
approximately with the transition from the second to the third
trimester, is reflected in the temporal analyses of almost all HRV
features (Figures 1–4). To our knowledge, this change has not
been reported in literature and demonstrates the value of
assessing autonomic modulation at regular intervals
throughout pregnancy. Physiological changes during gestation

FIGURE 3 | Temporal evolution of HRF features over GA bins. HRV features for all participants were grouped into bins of 4 weeks. The mean and standard error of
the mean (full line) as well as the median and interquartile range (dotted line) of the HRV features per bin is plotted against GA: (A) PIP; (B) IALS; (C) PSS; and (D) PAS.

TABLE 4 | Results from the grouped analysis for HRF features.

Features GA1 median (IQR) GA2 median (IQR) GA3 median (IQR) Friedman p-value GA1→GA2 GA2→GA3 GA1→GA3

p U1 p U1 p U1

PIP (%) 47.5 (42.3–52.5) 45.7 (40.4–48.9) 45.4 (40.3–46.5) 0.074 1 0.018 0.909 0.036 0.144 0.196
IALS (a.u.) 0.62 (0.55–0.66) 0.54 (0.48–0.59) 0.49 (0.42–0.55) <0.0001 0.014 0.107 0.291 0.054 <0.0001 0.179
PSS (%) 86.6 (80.1–88.7) 77.4 (71.8–83.8) 73.4 (65.9–77.8) <0.0001 0.011 0.054 0.409 0.018 <0.0001 0.089
PAS (%) 17.5 (12.7–20.0) 16.8 (11.8–18.8) 13.9 (11.2–16.2) 0.031 1 0.054 0.653 0 0.146 0.071

All continuous data are presented as median (IQR). First, the Friedman’s p-value is calculated to determine whether significant changes occur over all groups. Thereafter, the Dunn’s post-
hoc test with Bonferroni correction is applied to determine the p-value between groups. Cohen’s U1 is calculated to determine effect size. Values of approximately 0.15 and 0.33 represent
small and medium effects, respectively.

The bold type indicates that they values are statistically significant.
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are non-linear for bothmother and fetus (Tan and Tan, 2013; Tan
and Lewandowski, 2020). Therefore, it seems unlikely that
changes in autonomic modulation would be linear. We
speculate that this burst in maternal autonomic activity could
be attributed to fetal autonomic modulation. The transition from
late-second to early third-trimester is associated with an
acceleration in fetal autonomic maturation (Schneider et al.,
2018). Since autonomic modulation is mirrored in
cardiovascular regulation and there is evidence for maternal-
fetal cardiac coupling (Khandoker et al., 2016; Avci et al., 2018), it
may be that the maternal autonomic activity is reflecting that of
the fetus.

Current literature on maternal autonomic modulation
typically investigates the interplay of the autonomic branches
by assessing standard HRV features from both time and
frequency domain. Concurrent with most research, we find
that vagal modulation reduces as reflected in pNN50, RMSSD
and HF (Table 2 and Figure 1). An upward trend was also noted

in LF/HF, indicating a shift in sympathovagal ratio, aligning with
this decrease in vagal activity. Additionally, even though mean
HR increased over pregnancy as expected (Green et al., 2020),
SDNN—a measure of overall variability – decreased until about
32 weeks of gestation before increasing again. This may suggest
that while vagal activity decreases, compensatory processes
stabilize the overall variation in HR in the third trimester.

Our findings that parasympathetic activity reduces towards
the end of gestation are in agreement with the results of some
investigators (Balajewicz-Nowak et al., 2016; Kolovetsiou-Kreiner
et al., 2018; Garg et al., 2020), but contrast the work of others who
found that no significant autonomic changes occur across
gestation (Voss et al., 2000; Moertl et al., 2009). It should be
noted that in the studies contrasting ours, one only compares
between two GA groups (Voss et al., 2000) and the other focused
on early pregnancy (Moertl et al., 2009). Concerning sympathetic
activity, we found a decrease in LF (Table 2 and Figure 1). This
contradicts the findings of most researchers that there is an

FIGURE 4 | Temporal evolution of PRSA features over GA bins. HRV features for all participants were grouped into bins of 4 weeks. Themean and standard error of
the mean (full line) as well as the median and interquartile range (dotted line) of the HRV features per bin is plotted against GA. (A) AC; (B) DC; (C) IAR; (D) IDR; (E) SAR;
and (F) SDR.
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increase (Kolovetsiou-Kreiner et al., 2018; Garg et al., 2020) or no
significant changes in LF during pregnancy (Voss et al., 2000;
Balajewicz-Nowak et al., 2016). It should be noted that the
validity of LF as a measure of sympathetic activity is often
disputed (Heathers, 2014). However, findings from
microneurography studies—which more directly assess
sympathetic activity—indicate that there is increased
sympathetic activity in pregnancy accompanied by decreased
sympathetic signaling to end-organs, such as the heart
(Usselman et al., 2015; Steinback et al., 2019). Subsequently,
the decrease in LF may be a result of reduced sympathetic

influence on HR and decreased parasympathetic activity,
which overlaps with the sympathetic activity in the LF band.

Poincaré plots and associated features are commonly used
in HRV analyses (Khandoker et al., 2013), yet (to our
knowledge) this method has not been calculated
longitudinally over normal pregnancy. We found that the
ratio obtained from this plot (SD1/SD2) is sensitive to
progressing pregnancy (Table 3 and Figure 2C). The
decrease is mainly driven by a decrease in SD1 which
signals reduced vagal activity, which aligns with the results
of pNN50, RMSSD and HF (Figure 1).

FIGURE 5 | PRSA curves for each GA group with (A) accelerations as AP and (B) decelerations as AP, and T = 1. In all cases, the mean values have been
subtracted from the graphs to enable comparison. Furthermore, (C,D) show the power spectral densities (PSD) of the PRSA graphswith accelerations and decelerations
as AP, respectively.

TABLE 5 | Results from the grouped analysis for PRSA features.

Features GA1 median (IQR) GA2 median (IQR) GA3 median (IQR) Friedman p-value GA1→GA2 GA2→GA3 GA1→GA3

p U1 p U1 p U1

AC (ms) 12.5 (8.3–17.3) 9.7 (5.9–13.0) 8.2 (6.1–11.2) <0.0001 0.245 0.054 1 0.036 0.033 0.107
IAR (ms) 28.9 (19.7–43.2) 24.0 (15.8–30.3) 19.6 (16.5–26.7) <0.0001 0.329 0.089 0.989 0.071 0.030 0.143
SAR (ms/RRi) −17.3 (−27.1–−12.3) −11.7 (−16.0–−6.8) −7.2 (−10.1–−4.4) <0.0001 0.032 0.054 0.348 0.018 0.0001 0.125
AAR (ms/RRi) −1.3 (−3.3–0.1) −2.1 (−2.8–−1.5) −2.1 (−3.5–−1.4) 0.174 0.207 0.018 1 0.018 0.324 0.036
DC (ms) 11.7 (8.3–14.9) 9.5 (5.8–12.8) 8.4 (6.2–11.7) 0.001 0.553 0.054 1 0.018 0.217 0.036
IDR (ms) 27.1 (18.6–39.7) 23.3 (16.2–30.5) 20.8 (16.0–27.9) <0.001 0.678 0.054 1 0.018 0.228 0.071
SDR (ms/RRi) 15.8 (11.6–29.3) 11.9 (7.1–16.0) 7.2 (5.6–11.5) <0.0001 0.047 0.089 0.444 0.018 <0.001 0.125
ADR (ms/RRi) 2.6 (1.5–3.6) 2.0 (1.4–2.9) 3.2 (2.2–4.8) 0.091 1 0.018 0.034 0.018 0.058 0.089

All continuous data are presented as median (IQR). First, the Friedman’s p-value is calculated to determine whether significant changes occur over all groups. Thereafter, the Dunn’s post-
hoc test with Bonferroni correction is applied to determine the p-value between groups. Cohen’s U1 is calculated to determine effect size. Values of approximately 0.15 and 0.33 represent
small and medium effects, respectively.

The bold type indicates that they values are statistically significant.
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Furthermore, our research indicates that HR complexity
decreases throughout normal pregnancy as confirmed by both
SampEn and α1 (Table 3 and Figures 2D,E). While one study

found increasing complexity with progressing pregnancy (Peña
et al., 2011), others confirm our results that complexity decreases
towards the end of gestation (Baumert et al., 2012). Furthermore,

FIGURE 6 | PRSA curves for each GA group with (A) accelerations as AP and (B) decelerations as AP, and T = 5. In all cases, the mean values have been
subtracted from the graphs to enable comparison. Furthermore, (C,D) show the power spectral densities (PSD) of the PRSA graphswith accelerations and decelerations
as AP, respectively.

TABLE 6 | Results from the grouped analysis for the ratio between PRSA frequency features with accelerations and decelerations as APs, respectively (T = 1).

Features GA1 median (IQR) GA2 median (IQR) GA3 median (IQR) Friedman p-value GA1→GA2 GA2→GA3 GA1→GA3

p U1 p U1 p U1

LFacc:LFdec 1.17 (1.05–1.38) 0.98 (0.88–1.09) 0.93 (0.76–0.97) <0.0001 0.004 0.089 0.220 0.143 <0.0001 0.329
HFacc:HFdec 1.08 (0.99–1.27) 0.99 (0.89–1.10) 0.93 (0.80–1.02) <0.0001 0.040 0.125 0.507 0.018 <0.001 0.179
TPacc:TPdec 1.17 (0.99–1.26) 0.96 (0.86–1.09) 0.83 (0.70–0.94) <0.0001 0.018 0.089 0.015 0.161 <0.0001 0.607
LF peakacc:LF peakdec 1.16 (0.99–1.42) 0.95 (0.88–1.09) 0.89 (0.70–0.94) <0.0001 0.024 0.036 0.142 0.107 <0.0001 0.196
HF peakacc:HF peakdec 1.18 (0.99–1.42) 0.93 (0.86–1.14) 0.82 (0.62–0.94) <0.001 0.071 0.071 0.039 0.125 <0.0001 0.375

All continuous data are presented as median (IQR). First, the Friedman’s p-value is calculated to determine whether significant changes occur over all groups. Thereafter, the Dunn’s post-
hoc test with Bonferroni correction is applied to determine the p-value between groups. Cohen’s U1 is calculated to determine effect size. Values of approximately 0.15 and 0.33 represent
small and medium effects, respectively.

The bold type indicates that they values are statistically significant.

TABLE 7 | The number of accelerations, decelerations, and constant points (i.e., no change from one RR to the next) for T = 1 and T = 5, respectively.

T = 1 T = 5

Accelerations Decelerations Constants Ratio Accelerations Decelerations Constants Ratio

GA1 102,829 105,248 19,734 1:1.02:0.19 113,144 108,705 5402 1:0.96:0.05
GA2 127,584 123,119 21,074 1:0.97:0.17 136,696 128,779 5678 1:0.94:0.04
GA3 138,837 127,466 21,029 1:0.92:0.15 147,070 134,498 5108 1:0.91:0.03

Ratio refers to the ratio of accelerations, decelerations, and constants.
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complexity was found reduced in pregnant women compared to
non-pregnant controls (Yeh et al., 2009), likely due to the
increased demands on the maternal cardiac system during
pregnancy. It is also noticeable that changes in complexity
measures seemed more sensitive to advancing gestation than
most standard HRV features, with SampEn having a larger effect
size than standard features (U1 = 0.214, Table 3).

Since pregnancy is essentially an alteration in a normal
physiological system, complexity measures may indicate how
well the body is responding to this change. Subsequently,
reducing complexity could indicate that it becomes
increasingly difficult for the maternal ANS to quickly respond
under the increasing demands of gestation. Indeed, this
hypothesis is also supported by other findings. Note that for
most features—pNN50 and RMSSD in Figure 1 are good
examples—which decrease with advancing gestation, its
standard error of the mean also becomes narrower
(Figure 1D), indicating that large variations in beat-to-beat
HR are uncommon for most participants by the end of
pregnancy. Additionally, the PRSA analysis (Figures 4–6)
showed a dampened response towards the end of gestation.
This is further echoed in the significant reduction in almost all
PRSA features (Table 5). However, the accompanying effect sizes
are small and the dampening in HR responsiveness is not
comparable to that seen in diseased states (Bauer et al.,
2006b). Furthermore, the two other studies that have
calculated PRSA to study maternal HRV found no significant
correlations with GA (Casati et al., 2016; Carpenter), although
only DC was studied and assessing its correlation with GA was
not the primary aim of these studies.

This dampened autonomic response does not necessarily
indicate a deterioration in autonomic function. On the
contrary, in our participant group, HRF indices decrease
during healthy pregnancy (Table 4 and Figure 3). While an
increase in HRF would suggest a breakdown in the hierarchy of
physiological systems controlling HR, these findings suggest
that the integration of systems controlling HR does not
fragment with the increasing physiological demands of
pregnancy. Rather, it seems that a smoother control of HR
is exhibited in later pregnancy. This could suggest that the
dampened autonomic response is not a sign of strain, but
rather indicative of a more stable autonomic system that is
tightly regulated to balance the complex demands of
pregnancy. However, the trade-off for this stability might be
that the mother is unable to optimally respond to
environmental perturbations such as stress in late pregnancy.

The exact mechanisms that promote stable ANS activity in this
situation are not known. However, the PSD of the PRSA graphs
(Figures 5C,D, 6C,D) offer some insight into how processes
mediating HR accelerations and decelerations change with
progressing gestation. In the low frequency range (0.035/RRi

Hz to 0.15/RRi Hz, i.e., approximately 0.04–0.2 Hz), similar
behavior is seen when T = 5 (Figure 6). However, for T = 1,
while the frequency response for accelerations (Figure 5C) is
stable across GA groups, there is a remarkable increase with
gestation for decelerations. This is also reflected in the significant
decrease in the ratio (acceleration: deceleration) of all PRSA

frequency parameters (Table 6), in particular for TP which
has an accompanying effect size of U1>0.6, by far the largest
of our analysis. Since pregnancy results in an increase in basal HR
(Green et al., 2020), we hypothesize that there is an increase in
activity in this LF frequency region (which is associated with both
branches of the ANS) of decelerations to ensure that the
increasing mean HR stays within a healthy range. This would
align with what is seen in Figure 1A, where the increase in mean
HR starts to plateau after 32 weeks GA. Additionally, when
studying the normal ranges for mean HR throughout the
pregnancies of over 1000 women, Green et al. (2020) found
not only a similar plateau, but also a slight decrease in mean
HR during the final weeks of pregnancy.

Furthermore, Figures 5C,D show the diminishing effect of
respiratory modulation in the HF band over time. As the
abdomen grows with advancing gestation, the depth of
breathing reduces. Subsequently, as can be explained through
the Frank-Starling, and lower HR modulation ensues. This is
reflected in the decreases in pNN50 and RMSSD (Figures 1C,D),
which have also been observed by others (Balajewicz-Nowak
et al., 2016; Garg et al., 2020).

Overall, while the changes in mHRV are significant, the effect
sizes of these changes are typically small. This stable autonomic
modulation offers good news for obstetric screening
opportunities as it suggests that there is a stable autonomic
baseline to track gestational changes against. As pregnancy
complications such as preeclampsia are associated with
insufficient autonomic regulation, detecting changes in HRV
features with larger effects than we observed in this study may
facilitate better screening for such complications. Furthermore,
PRSA features such as AC, IDR, IAR, SDR and SAR show
decreasing trends earlier than all other features and,
importantly, before 20 weeks of gestation. Currently,
hypertensive disorders of pregnancy can only be diagnosed
after 20 weeks of gestation. Subsequently, investigating these
features in populations who develop pregnancy complications
may contribute to the eventual early detection of such
complications. Additionally, an uptick can be seen in PRSA
features (Figure 4) just before the end of pregnancy. If this
sudden change is associated with the body preparing for
delivery, it could be of value to investigate whether such
findings are also observed in cases of preterm delivery.

It should be noted that autonomic activity is not the only
driving force behind the physiological changes in pregnancy.
Major hormonal changes occur throughout pregnancy. Yet, their
link to autonomic activity (as assessed by HRV) remains unclear
(von Holzen et al., 2016), likely in part due to the difficulty of
isolating the effect of a hormone in an already complex
physiological system. Some researchers conclude that estrogen
is linked to increased parasympathetic activity (Dart, 2002; Gökçe
et al., 2005), while others found a negative relationship between
progesterone and vagal activity (von Holzen et al., 2016;
Schmalenberger et al., 2020). A combination of estrogen and
progesterone (as is the case in pregnancy) seems to have no effect
on HRV (Fernandes et al., 2005; Gökçe et al., 2005), though it
should be noted that these studies were not performed in
pregnant populations.
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Finally, we note that while this study offers novel information
on gestational autonomic modulation, the results are limited by
the modest sample size. Similar assessments are necessary in
larger populations to confidently draw conclusions about
pregnant populations. Although our dataset does have a
uniquely high median number of measurements per
participant, some participants naturally have less than eight.
Moreover, the timings of participants’ measurements relative
to their GA do vary when compared to the protocol.
Subsequently, it was necessary to divide the data into three
GA groups to facilitate appropriate statistical testing, taking
the average per participant if they have multiple
measurements in a group. Additionally, the dataset is further
limited regarding participant information for the mother, in part
because the focus of the original analysis was on fetal HRV.
Subsequently, information on factors that may influence mHRV
during recording sessions (e.g., fasting, coffee consumption, and
smoking habits) are unavailable and cannot be accounted for in
our analysis.

Furthermore, during the preprocessing for frequency domain
and some complexity features, unreliable RR intervals were
interpolated. This interpolation is necessary for determining
these HRV features, but may affect their results and
subsequent interpretation, particularly regarding HF (Peters
et al., 2008). However, since the changes in HF in our analysis
are reflect those of pNN50 and RMSSD as is expected from
literature (Shaffer and Ginsberg, 2017), we believe the trend
observed in HF is reliable. Still, frequency domain features
should be interpreted with caution, since their calculation
relies on an assumption of stationarity which is not
guaranteed and involves averaging multiple segments which
may represent different physiological states. Lastly, our
measurements start at 14 weeks of gestation, while major
cardiovascular and autonomic changes are also known to
occur within the first few weeks of pregnancy. Ideally, future

work would incorporate measurements from as early in gestation
as possible.

In conclusion, this work offers a comprehensive look at
autonomic modulation in normally progressing pregnancy. By
assessing HRV at a high temporal granularity with a variety of
features, we find that although significant reductions in vagal
activity, complexity, HR responsiveness, and HRF do occur, these
changes are of small effect. Therefore, in a healthy pregnancy, the
increasing stress of advancing gestation is tolerated well.
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