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Despite recent advances in therapies, cardiovascular diseases ( CVDs ) are still the leading
cause of mortality worldwide. Previous studies have shown that metabolic perturbations in
cardiac energy metabolism are closely associated with the progression of CVDs. As
expected, metabolic interventions can be applied to alleviate metabolic impairments and,
therefore, can be used to develop therapeutic strategies for CVDs. β-hydroxybutyrate (β-
HB) was once known to be a harmful and toxic metabolite leading to ketoacidosis in
diabetes. However, the minor metabolite is increasingly recognized as a multifunctional
molecular marker in CVDs. Although the protective role of β-HB in cardiovascular disease
is controversial, increasing evidence from experimental and clinical research has shown
that β-HB can be a “super fuel” and a signaling metabolite with beneficial effects on
vascular and cardiac dysfunction. The tremendous potential of β-HB in the treatment of
CVDs has attracted many interests of researchers. This study reviews the research
progress of β-HB in CVDs and aims to provide a theoretical basis for exploiting the
potential of β-HB in cardiovascular therapies.
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INTRODUCTION

Cardiovascular diseases (CVDs) include a group of heart and blood vessel disorders, ranging from
the peripheral artery, coronary artery, cardiac valve, cardiac muscle, and congenital heart diseases to
arrhythmias and, ultimately, heart failure (Kalayinia et al., 2018) (Hajar, 2016). Despite the recent
advances in clinical therapy, CVDs are still the leading cause of mortality worldwide (Kalayinia et al.,
2021) (Chen et al., 2020). Hence, an in-depth molecular mechanistic understanding of CVDs is of
great significance.
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Recent studies reported that the primary mechanisms
underlying the pathology of CVDs are closely relevant to
metabolic perturbations (Yurista et al., 2021) (Ussher et al.,
2016). As it is well-known, chronic obesity was a pathogenic
factor of metabolic imbalance leading to CVDs (Lopaschuk et al.,
2007). Obesity causes remarkable changes in cardiac energy
metabolism, and the prominent effect is increasing the fatty
acid uptake and oxidation by the heart (Lopaschuk et al.,
2007). Moreover, fat accumulation can directly contribute to
CVDs through reduced insulin sensitivity, impaired insulin
production, and decreased glucose uptake in various tissues
(Peters et al., 2017) (Wang et al., 2019) (Becker et al., 2017).
Reactive oxygen species (ROS) were another potential pathogenic
factor for CVDs, and the pathogenic mechanism is associated
with metabolic disorders (Roth et al., 2017) (Geesala et al., 2020).
As a by-product of cell respiration, ROS result from the
metabolism of oxygen and are continuously produced in all
aerobic organisms (Wang et al., 2020a). Increased ROS levels
can lead to decreased availability of nitric oxide and
vasoconstriction, subsequently promoting arterial hypertension
(Senoner and Dichtl, 2019). ROS also negatively affect myocardial
calcium treatment (Wang et al., 2020a), inducing arrhythmias
and cardiac remodeling by facilitating hypertrophic signal
transduction and apoptosis (Senoner and Dichtl, 2019). ROS
also promote atherosclerotic plaque formation (Bertero and
Maack, 2018). Even in the absence of obesity and dynamics of
ROS, alterations in substrate metabolism of numerous organs
resulting from the onset of CVDs can contribute to metabolic
impairments in patients (Ussher et al., 2016). At the same time,
CVDs can change the body and myocardial metabolism, usually
accompanying the worsening of cardiac function and health
outcomes (Ussher et al., 2016). From another perspective, the
heart is the organ with the highest energy expenditure and
oxidative demand (Bertero and Maack, 2018). The
perturbations in cardiac energy metabolism, hence, could be
significant contributors to CVDs.

As described earlier, exploring the effects of metabolic
interventions on the improvement of cardiac dysfunction will
provide a new direction for the treatments of CVDs. β-
hydroxybutyrate, the most prominent ketone body, was once
deemed to be a harmful and toxic substance, leading to
ketoacidosis in patients with diabetes (Møller, 2020). Until
now, increasing experimental and clinical research evidences
have revealed the therapeutic potentials of β-HB in CVDs
(Han et al., 2020). Traditionally, the concept of β-HB is the
energy metabolic substrate, representing an alternative fuel
source, for oxidative tissues, including the brain, heart, and
skeletal muscle, in starvation and carbohydrate shortage
(Evans et al., 2017; Monsalves-Alvarez et al., 2020; Wang
et al., 2021). Moreover, β-HB is widely linked to various
cellular processes by regulating gene transcription (Han et al.,
2018), inflammation and oxidative stress (Wang et al., 2020a),
cardiac remodeling (Sultan, 1990), and cardiovascular risk factors
(Cotter et al., 2013). The roles played by both the metabolic
substrate and signal molecule potentially allow β-HB to be used to
treat cardiac dysfunctions and other vascular diseases. This study
reviews the research progress of the metabolic and signaling

effects of β-HB and provides a theoretical basis for exploiting
the potentials of β-HB in CVDs therapies.

THE BIOLOGICAL SYNTHESIS AND
UTILIZATION OF β-HYDROXYBUTYRATE

β-HB, a chiral molecule with two enantiomers (R/D and S/L), is
the most abundant ketone body in mammals, significantly
contributing to the dynamic range of ketone body levels
(Evans et al., 2017) (Takahashi et al., 2019). The synthesis of
β-HB occurs mainly in the liver mitochondrial matrix with a
series of enzymes (Mierziak et al., 2021). BDH1, a core enzyme,
which catalyzes the final step in the β-HB synthesis, can introduce
chiral specificity (Lincoln et al., 1987). Due to the BDH-induced
chiral specificity, only R-3-β-HB is produced by normal
metabolism and then is readily catabolized into acetyl-CoA
and ATP (Newman and Verdin, 2017). Fasting, exercise,
caloric restriction, ketogenic diet, and other approaches
resulting in endogenous production of β-HB can produce R-3-
β-HB rather than S-3-β-HB (Mierziak et al., 2021) (Newman and
Verdin, 2017). Thus, β-HB in this review article is mainly
referring to R-3-β-HB.

As is well known, the synthesis of β-HB (Figure 1A) begins
with the condensation of two acetyl-CoA molecules to form
acetoacetyl-CoA in a reaction catalyzed by beta-ketothiolase
(Mierziak et al., 2021). The well-established regulation of β-
HB synthesis primarily depends on the substrate availability in
the form of fatty acids and the expression and activity of the
enzyme HMG-CoA synthase (HMGCS2; EC 2.3.3.10) (Newman
and Verdin, 2017) (Garber et al., 1974). Robust expression of
HMGCS2 is restricted to hepatocytes and colonic epithelium
(Chen et al., 2017). The HMGCS2 enzyme catalyzes a fate-
committing ketogenic reaction: condensation of β-
oxidation–derived acetoacetyl-CoA (AcAc-CoA) and acetyl-
CoA to generate HMG-CoA, which is then cleaved by
HMGCL to generate acetoacetic acid (AcAc) (Puchalska and
Crawford, 2017). AcAc is reduced to β-HB in an NAD-/NADH-
coupled near-equilibrium reaction, which is catalyzed by
phosphatidylcholine-dependent mitochondrial BDH1 (Cotter
et al., 2013). BDH1 modulates mitochondrial redox in the
liver and extrahepatic tissues, in which the ratio of AcAc to β-
HB is directly proportional to that of mitochondrial NAD + to
NADH (Williamson et al., 1967). However, molecular
mechanisms precisely controlling the ketogenic rate remain to
be addressed in detail (Puchalska and Crawford, 2017).

Although the synthesis of β-HB occurs mainly in the liver, its
utilization occurs mainly in extrahepatic tissues (Cotter et al.,
2014a) (Cotter et al., 2014b). That is because liver cells have a
strong enzyme system for synthesizing β-HB but lack the enzyme
systems for utilizing β-HB (Puchalska and Crawford, 2017).
Nonetheless, the extrahepatic tissues, such as the brain,
myocardium, and skeletal muscle have abundant and efficient
ketone body–decomposing enzymes, which can break down
ketone bodies to regenerate acetyl CoA. Thereafter, acetyl CoA
is oxidized for supplying energy (Williamson et al., 1967). In
addition, as a polar molecule, β-HB is readily soluble in water and
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blood. In the blood, β-HB can be transported to extrahepatic
tissues, where they primarily undergo terminal oxidation to
contribute to the TCA cycle (Cotter et al., 2013). The
circulating β-HB level is always related to physiological and
pathological conditions. In general, the β-HB level greater than
0.5 mM has been considered a cut-off point for entry into ketosis

(Chu et al., 2021). In pathological conditions, such as diabetes, the
serum β-HB level can be elevated to as high as 20 mM. In
neonates, however, upon fasting, prolonged exercise, or
following a ketogenic diet, the serum β-HB level can be
increased up to 1–8 mM (Adal et al., 2006) (Harvey et al.,
2019). It was previously reported that the β-HB levels in

FIGURE 1 | Perturbations of cardiac energy metabolism in CVDs and β-HB utilization in cardiomyocytes. (A). Biological synthesis of β-HB mainly occurs in hepatic
mitochondria, where the fate-committing enzyme HMGCS2 is expressed. β-HB is synthesized from acetyl-CoA that is derived from β-oxidation. β-HB is transported
through the circulatory system. After being transported, β-HB can be oxidized in extrahepatic organs, including the heart and vascular smoothmuscle. Most extrahepatic
mitochondria lack HMGCS2, while they have abundant enzymes for β-HB utilization, including BDH1, SCOT, and ACAT. In cardiomyocytes, β-HB can generate
acetyl-CoA to enter the TCA cycle and electron transport chain (ETC), finally producing ATP. (B). In healthy conditions, fatty acids, glucose, lactate, ketone bodies
(principally, β-HB), and other metabolites are substrates for cardiac energy metabolism. The perturbations in cardiac energy metabolism are significant contributors to
cardiovascular pathologies, including heart failure, ischemic heart disease (IHD), atherosclerosis, and arrhythmogenic cardiomyopathy. In the case of CVDs, the
myocardial fatty acid oxidation rates and glucose oxidation alterations are decreased. On the opposite, the level of myocardial glycolysis, ketone bodies, and ROS is
observably increased.
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patients with congestive heart failure (CHF) were increased to
about 2.67 mM, and the increase of β-HB was in proportion to the
severity of cardiac dysfunction (Lommi et al., 1996). Although the
increased circulating β-hydroxybutyrate has been reported in a
variety of CVDs since the 1990s (Lommi et al., 1996), it took a
long time to clarify the mechanism behind this phenomenon.

Previous studies have shown that monocarboxylic acid
transporters (MCTs) can transport β-HB out of the
mitochondrial membrane and liver cell plasma membrane
(Puchalska and Crawford, 2017) (Abdul Kadir et al., 2020).
However, the transport of β-HB is less understood, relative to
the synthesis and utilization of β-HB. The monocarboxylate
transporter SLC16A6 has been identified to be a key
transporter for exporting β-HB from the liver (Hugo et al.,
2012). Many transporters are present in the cells; however, a
small number of them have been characterized. Whether other
transporters facilitate either the uptake of β-HB into target tissues
or its intracellular movement needs further research. β-HB can
also be transported into cardiomyocytes via monocarboxylate
transporter 1 (MCT1) and MCT2 and then enter the
mitochondria (Puchalska and Crawford, 2017). The uptake
and utilization of ketone bodies by cardiomyocytes is a
complex process of synergistic action of multiple enzymes
(Abdul Kadir et al., 2020), and we will cover this in detail in
the following sections.

β-HYDROXYBUTYRATE IN CARDIAC
ENERGY METABOLISM AND ITS
METABOLIC EFFECTS ON
CARDIOVASCULAR DISEASE

Given that the heart is the organ with the highest energy
expenditure and oxidative demand (Chandler et al., 2004), it
can be expected that perturbations in cardiac energy metabolism
are significant contributors to the progression of CVDs (Ussher
et al., 2016) (Song et al., 2020). In addition to glucose and fatty
acids, the heart also oxidizes various substrates, including β-HB,
lactate, and amino acids (Kolwicz et al., 2016). Moreover, it has
been demonstrated that β-HB can serve as an energy source in the
absence of sufficient blood glucose, which is of particular
importance during starvation or illness (Puchalska and
Crawford, 2017). Thus, the effects of β-hydroxybutyrate on
cardiac energy metabolism and cardiovascular disease have
interested many researchers.

Cardiac energy metabolism has been well-documented
(Lopaschuk et al., 2007) (Abdul Kadir et al., 2020) (Abozguia
et al., 2009) (Figure 1B). In healthy conditions, metabolic
flexibility is a crucial feature of cardiac energy metabolism
(Maack et al., 2018). A healthy heart can derive energy from
various circulating substrates, including fatty acids, glucose,
amino acids, ketone bodies, and lactate. Fatty acid metabolites
contribute to the main ATP production of the heart (>60%)
(Qian and Wang, 2020). Interestingly, compared to fatty acids,
glucose is less consumed (Lopaschuk et al., 2007) (Murashige
et al., 2020). Glycolysis is responsible for only about 5% of the

ATP production in the normal oxygenated heart (Abozguia et al.,
2009), although low availability, lactate, ketone bodies
(prominent, β-HB), and amino acids also contribute to the
ATP production of the heart (Abozguia et al., 2009). As
indicated by the previous works, the myocardium displays the
highest β-HB consumption and oxidizes ketone bodies in
proportion to prevailing concentrations at the cost of glucose
and fatty acids (Veech, 2004). Furthermore, the metabolic
flexibility of a healthy heart is highly dynamic, as
demonstrated by its ability to rapidly change the pattern of
fuel utilization to adapt to the substrate and hormonal
environment (Ussher et al., 2016).

On the contrary, the progression of CVDs is associated with
loss of metabolic flexibility of cardiomyocytes (Yurista et al.,
2021). The energy deficit is common in cardiomyocytes, and
these metabolic alterations depend on the stages of disease
pathophysiology (Chandler et al., 2004). Even in the early
stages, the transition of energy substrate utilization from fatty
acids to glucose also occurs in the structural heart disease (Sack
et al., 1996). Moreover, the altered utilization of the energy
substrate also plays a key role in the progression of heart
failure (HF) (Maack et al., 2018) (Stanley et al., 2005).
Intriguingly, in the context of reduced fatty acid oxidation, the
failing heart appears to reprogram metabolism to increase
reliance on ketone bodies acting as a fuel source (Aubert et al.,
2016; Bedi et al., 2016; Horton et al., 2019). In the pathologically
remodeled heart (e.g., hypertension or myocardial infarction) and
the diabetic heart, the O2 consumed for ATP production during
ketone metabolism is more efficient than FAO (Bertero and
Maack, 2018). Compared to FAO, ketone body oxidation is
energetically efficient, yielding more energy for ATP synthesis
per molecule of oxygen invested (the ratio of phosphate/oxygen
[P/O]) (Sato et al., 1995) (Kashiwaya et al., 2010) (Veech, 2004).
As is known, ischemic heart disease (IHD) remains the leading
cause of cardiovascular death globally (GBD 2017 Causes of
Death Collaborators, 2015). The myocardial intermediary
energy metabolism is significantly altered in IHD (Ussher
et al., 2016). In response to the downregulated oxidative
metabolism, glycogen breakdown and glycolysis rates are
increased, as glycolysis can produce ATP anerobically rapidly
(Taegtmeyer et al., 2016). Glucose oxidation rates are also
markedly decreased in the ischemic myocardium, whereas
glycolytic rates are significantly increased due to the
stimulation of glycogenolysis (Wisneski et al., 1987) (Vary
et al., 1981). On the other hand, several works reported
minimal reliance of a healthy heart on amino acids acting as a
source of ATP (Monsalves-Alvarez et al., 2020). Regardless of
this, it has been suggested that amino acid metabolism in the
heart may also be vital during ischemia (Drake et al., 2012).
Atherosclerosis also represents another common form of CVDs.
The presence of atherosclerotic plaques in the coronary vessels
can trigger a vast majority of IHD. However, whether
atherosclerosis can cause changes in myocardial energy
metabolism, in general, remains poorly understood (Ussher
et al., 2016).

The ketogenic shift seems to be a universal cardiac response to
stress. β-HB acting as a fuel is particularly significant in the
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hypertrophied and failing heart (Birkenfeld et al., 2019).
Moreover, in the context of ischemia or reperfusion injury,
β-HB also confers potential cardioprotective effects (Wang
et al., 2008) (Al-Zaid et al., 2007), possibly due to either the
increased mitochondrial abundance in the heart or the
upregulation of crucial oxidative phosphorylation
mediators (Snorek et al., 2012). It is reported that plasma
β-HB and its cardiac utilization increased in patients with
arrhythmogenic cardiomyopathy (Song et al., 2020). A series
of CVDs with heart failure increase the reliance on ketone
bodies for cardiac ATP production and are accompanied by
increased circulating β-HB levels in the blood (Lommi et al.,
1996) (Abdul Kadir et al., 2020). Previous studies reveal that
β-HB competes with other substrates in the heart as the fuel
when the availability of fatty acid and carbohydrate is limited
(Kolwicz et al., 2016; Abdul Kadir et al., 2020). In the animal
model, studies indicate that fatty acid utilization is
downregulated and ketone body utilization is upregulated
in failing hearts of mice (Aubert et al., 2016). Thus, the shift
of energy metabolism to ketone body metabolism is an
efficient alternative avenue for oxidative ATP production
in CVDs.

Although preliminary interventional and observational
studies indicate potential benefits of the metabolic effects of β-
HB in the heart, an adverse viewpoint still exists. In
cardiomyocytes, an early study reported that β-HB causes
concurrent inhibition of glucose metabolism and FAO
metabolism, thereby impairing myocardial energy supply
(Taegtmeyer, 1994). Nevertheless, recent studies directly
measured cardiac β-HB, glucose, and FAO metabolism in

mouse models, and the findings are not consistent with those
of the previous study (McCommis et al., 2020) (Brahma et al.,
2020). Furthermore, increased β-HB levels do not always
correlate with positive clinical outcomes in humans.
Arrhythmogenic cardiomyopathy (AC) is a severe disease
that may cause sudden death, lacking clinical biomarkers. A
recent study suggested that the elevated plasma level of β-
HB might be a potential predictor of major adverse
cardiovascular events (MACEs) and disease progression
in patients with AC and their clinically asymptomatic
relatives (Song et al., 2020). It was also reported that
compared with normal controls, the atrial samples from
patients with atrial fibrillation exhibited increased levels of
ketone bodies (Xie et al., 2016). The metabolic effects of the
increased level of circulating β-HB are not fully understood
yet, and more research needs to be performed.

SIGNALING EFFECTS OF
β-HYDROXYBUTYRATE ON
CARDIOVASCULAR DISEASE
In addition to the metabolic effects, β-HB is also a signaling
metabolite that regulates cellular signals by targeting diverse
biomolecules (Newman and Verdin, 2017) (Puchalska and
Crawford, 2017). The primary signaling actions of β-HB
(Figure 2) are closely related to cardiovascular diseases,
including binding to cell-surface receptors; inhibiting histone
deacetylases (HADCs); acting as a substrate for protein
posttranslational modification; and modulating potassium flux

FIGURE 2 | Summary of regulation of β-HB levels and its multi-effects on CVDs. Fasting, exercise, ketogenic diet, drugs, and some disease conditions change the
endogenous β-HB levels. Beyond their contribution to energy generation, β-HB may exert signaling effects on inflammation, oxidative stress, cell death, and cardiac
remodeling that may induce either the prospective cardiovascular protection or harmful effect on CVDs.
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across the plasma membrane (Mierziak et al., 2021) (Newman
and Verdin, 2017).

As is known, β-HB serves as an endogenous ligand for G
protein–coupled receptors (GPRs) (Chu et al., 2021). β-HB can
specifically bind to HCAR2 and activate HCAR2 to inhibit
lipolysis of adipocytes, which might represent a feedback
mechanism for regulating the availability of the fatty acid
precursors of ketone body metabolism (Offermanns et al.,
2011) (Taggart et al., 2005). To be more specific, HCAR2
activation in neurons can potentiate glutaminergic signaling
that helps regulate blood pressure and heart rate (Rezq and
Abdel-Rahman, 2016). In addition, β-HB also functions as a
ligand for FFAR3 (also known as GPR41) which is another G
protein–coupled receptor highly expressed in sympathetic
ganglions throughout the body of mice (Nøhr et al., 2015)
(Kimura et al., 2011). It was reported that β-HB can suppress
sympathetic tone and heart rate through antagonistic action
against FFAR3 during fasting (Oshima et al., 2019).
Interestingly, it was also reported that β-HB acts as an agonist
of FFAR3 and regulates voltage-dependent calcium channels
(Won et al., 2013). Further works are required to confirm the
regulatory effects of β-HB on FFAR3 functions. Furthermore, it is
noteworthy that heterogeneous nuclear ribonucleoprotein A1
(hnRNP A1) was a new direct binding target of β-HB.
Through hnRNP A1–mediated upregulation of Oct4, β-HB
can prevent vascular senescence (Han et al., 2018).

β-HB also plays essential signaling roles in CVDs via
inhibiting histone deacetylases (HADCs). HDACs play
essential roles in regulating mitochondrial metabolism and
function by balancing the acetylation activities of histone
acetyltransferases (HATs) (Felisbino and McKinsey, 2018). It
was previously reported that in many cardiac pathological
conditions, such as heart failure, diabetic heart, and
myocardial I/R injury, HDAC activities are significantly
elevated (Granger et al., 2008; Aune et al., 2014). Inhibition of
HDAC activities, hence, is an effective treatment for cardiac I/R
injury and failing heart. As an endogenous inhibitor of Class I
HDACs, β-HB possesses significant cardioprotective effects
(Hasselbalch et al., 1996). By inhibiting HDAC activities, β-HB
upregulates expressions of the Foxo3a and MT2 genes to reduce
oxidative stress (Shimazu et al., 2013). In addition, β-HB also has
inhibitory activity against HDAC1, which may be related to
cardiomyocyte autophagy (Cao et al., 2011; Shimazu et al.,
2013). However, whether the cardioprotective effects of β-HB
are mediated by autophagy is still unclear. When β-HB was used
to inhibit HDAC6, it did not show positive benefit and was even
detrimental to cardiomyocytes during I/R injury (Aune et al.,
2014). Furthermore, β-HB accumulation induced by a long-term
ketogenic diet can inhibit HDAC2 and activate Sirt7
transcription, which is harmful to heart health by promoting
cardiac fibrosis (Xu et al., 2021). Given the controversial results in
cardio-protection, the complicated relationship between β-HB
and HDACs remains to be addressed in detail.

On the other hand , the signaling roles of β-HB in the CVDs is
linked to the inflammation. As is known, the inflammatory
mechanisms in CVDs are closely associated with NLRP3,
which has a vital role in innate immunity and inflammation

(Wang et al., 2020b). Significantly, β-HB can function as an
endogenous inhibitor of the NLRP3 inflammasome, attenuating
inflammatory responses (Yamanashi et al., 2017). It was revealed
that inhibition of potassium efflux contributes to the mechanism
of β-HB, inhibiting the activation of the NLRP3 inflammasome
(Kimura et al., 2011). Mice deficient in NLRP3 are protected from
obesity and insulin resistance when fed on a high-fat diet
(Yudkoff et al., 2007). The ablation of NLRP3 also has
attenuated diabetes and atherosclerosis (Youm et al., 2015)
(Duewell et al., 2010). Increasing the circulating β-HB levels
can reduce the activation of the cardiac NLRP3 inflammasome
in mice with heart failure (Byrne et al., 2020).

In addition, the signaling roles of β-HB in the CVDs also
involved antioxidative stress and epigenetic regulation. ROS has
negative effects on myocardial calcium treatment, inducing
arrhythmias and cardiac remodeling by facilitating
hypertrophic signal transduction and apoptosis (Senoner and
Dichtl, 2019) (Huynh andHeo, 2019). Oxidation of ketone bodies
may also curtail ROS production (Paoli, 2014). Administration of
β-HB in mice can prevent liver ROS (Michal et al., 2015).
Interestingly, under hypoxia conditions, reducing the serum
level of β-HB can improve the excitation–contraction of
cardiac cells (Klos et al., 2019). In addition, metabolism-
mediated epigenetic changes represent an adapted mechanism
for cellular signaling, which has been the historical focus of
interest. β-HB can dramatically increase lysine β-
hydroxybutyrylation of histone tails, which is an epigenetic
marker associated with fasting responses and muscle catabolic
states (Cavallucci and Pani, 2021). However, the regulatory
mechanism underlying the β-hydroxybutyrate–mediated
epigenetic pathway remains unclear, hindering its clinical
functional research. Further studies need to be performed. In
addition to the several signal roles of β-HBmentioned previously,
it is reported that increases in circulating β-HB can mediate
CVDs benefiting from the drugs of sodium-glucose cotransporter
inhibitors (SGLT2i) (Packer, 2020). However, the mechanisms
underlying the cardiovascular benefits of SGLT2i remain elusive,
which might be related to the signaling role of β-HB (Kaplan
et al., 2018).

Future Perspectives
As summarized earlier, both the roles of the β-HB metabolism
and the underlying mechanism are of great significance for the
mechanistic understanding of the occurrence and development of
pathological cardiac remodeling and for the guidance of
clinical treatment. The minor metabolite, β-HB, has both
advantages and disadvantages in CVDs. The current research
reveals that the advantages of β-HB far outweigh the
disadvantages (Sato et al., 1995) (Xu et al., 2021) (Nielsen
et al., 2019) (Gormsen et al., 2017). Even though evidence for
the beneficial effects of β-HB on cardiovascular disease is
rapidly emerging, it is still unclear whether the role of β-HB is
essentially adaptive or maladaptive in CVDS. In addition, it is
also unclear what makes β-HB a double-edged sword in
treating cardiovascular disease. Both the optimal timing
and application strategy of β-HB for CVDs treatments are
worthy of further exploration.
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