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1  | INTRODUC TION

Parkinson's disease (PD) is the second most common neurode‐
generative disease (Calabrese, 2007). With technological ad‐
vancement, a growing list of genes have been confirmed to cause 
familial PD (Deng, Wang, & Jankovic, 2018; Lill, 2016; Puschmann, 
2017). Next‐generation sequencing technology has been applied 

worldwide to identify the causative genes for various neurologi‐
cal disorders (Bahassi & Stambrook, 2014). The glucocerebrosi‐
dase gene (GBA) has been a candidate gene for PD for a decade 
(Deng et al., 2018). It is involved in lysosomal sphingolipid degra‐
dation. The heterozygous GBA L444P mutation is a high‐risk mu‐
tation for PD (O'Regan, deSouza, Balestrino, & Schapira, 2017). 
Moreover, polymerase gamma (POLG) is an enzyme responsible for 
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Abstract
Polymerase gamma (POLG) is an enzyme responsible for the replication and repair of 
mitochondrial DNA. Mutations in POLG may cause variable clinical manifestations, 
including parkinsonism, epilepsy, cerebellar ataxia, neuropathy, and progressive ex‐
ternal ophthalmoplegia. However, mutations of this gene are rare in patients with 
typical Parkinson's disease (PD). We report a man (current age: 59 years) without any 
underlying disease presenting with right‐hand tremor at the age of 39 years, followed 
by slow movement, rigidity, and postural instability. He developed motor fluctuation 
and levodopa‐induced dyskinesia 8 years later. At the age of 58 years, cognitive de‐
cline and visual hallucination ensued; he was institutionalized thereafter. We used 
multiplex ligation‐dependent probe amplification, which demonstrated no large dele‐
tions or duplications of relevant PD genes. Next, targeted sequencing panel covering 
51 genes causative for PD was applied for the proband; it revealed a heterozygous 
missense substitution R964C in POLG and a heterozygous missense substitution 
L444P in GBA. The patient's father, who had been diagnosed as having PD and type 
2 diabetes mellitus at the age of 70 years, demonstrated identical mutations. This is 
the first report of familial PD combined with POLG R964C and GBA L444P mutations. 
Two pathogenic gene mutations potentially cause double hit in pathological neurode‐
generation. This finding extends our understanding of the PD genotype–phenotype 
correlation.
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the replication and repair of mitochondrial DNA (Chan & Copeland, 
2009) and mutation in the POLG may cause various clinical man‐
ifestations, including parkinsonism (Miguel et al., 2014), epilepsy 
(Stricker et al., 2009; Stumpf, Saneto, & Copeland, 2013), cerebel‐
lar ataxia (Stricker et al., 2009; Stumpf et al., 2013), and progres‐
sive external ophthalmoplegia (Luoma et al., 2004; Miguel et al., 
2014). R964C, a missense substitution POLG mutation, was consid‐
ered to be related to manifestations of the central nervous system 
other than typical PD. Herein, we report the first case of a patient 
with young‐onset PD (YOPD) carrying both POLG R964C and GBA 
L444P mutations.

2  | C A SE PRESENTATION

A man (current age: 59 years), without any underlying disease, pre‐
sented with a right‐hand tremor at the age of 39 years, followed by 
loss of facial expression, slow movement, rigidity, and postural insta‐
bility. He also had rapid eye movement sleep behavior disorder (RBD), 
but no hyposmia or orthostatic dizziness. At the age of 45 years, 
his neurological examination revealed free ocular movement, no 
ptosis, and normal deep tendon reflex. He had right‐side predomi‐
nant rigidity, bradykinesia, mild neck dystonia, and festinating gait. 
He generally responded well to levodopa. His Unified Parkinson 
Disease Rating Scale (UPDRS) III scores revealed more than 50% im‐
provement under a levodopa equivalent dose of 790 mg. He then 
developed motor fluctuation and levodopa‐induced dyskinesia after 
7 years of symptom onset. At the age of 58 years, he demonstrated 
progressive cognitive decline, visual hallucination, and was required 
to live in a nursing home. His Mini Mental State Examination score 
was 10 and his Clinical Dementia Rating was 2. We obtained patient's 
serum lactate and pyruvate level and all revealed normal. Nerve con‐
duction study showed right deep peroneal motor axonal neuropathy 
and right ulnar nerve neuropathy cross elbow, which suggested an 
entrapment neuropathy. Eletroencephalogram revealed no epilepti‐
form discharge. His father was diagnosed as having PD, along with 
type 2 diabetes mellitus, at the age of 70 years; his neurological ex‐
amination revealed resting tremor, rigidity, and bradykinesia on the 
left side, all of which diminished after levodopa treatment. He had 

F I G U R E  1   Family pedigree. Squares and circles represent males 
and females, respectively. Filled and slashed symbols indicate 
affected and symbols indicate deceased individuals

F I G U R E  2   Sequence chromatograms 
showing the single nucleotide change in 
GBA and POLG1. The patient's (A and B) 
and his father's (C) and (D) chromatograms
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symptom of chronic insomnia, bilateral lower limbs pain, and anxiety 
but no RBD. Both patient and his family had no symptom of ataxia, 
proximal weakness, epilepsy, or ophthalmoparesis.

We could not obtain his mother's DNA sample because the pa‐
tient had not been in contact with his mother and sister for many 
years. His younger brother died in a traffic accident without any 
history of parkinsonian symptoms. The rest of his family members 
did not have any extrapyramidal symptom, epilepsy, myopathy, or 
ataxia. Figure 1 presents the family pedigree of the patient's family.

Genomic DNA was extracted from peripheral venous blood 
lymphocytes of the patient and his father. Next, multiplex ligation‐
dependent probe amplification was used to detect large deletions 
or duplication in the DNA (Jeuken, Cornelissen, Boots‐Sprenger, 
Gijsen, & Wesseling, 2006). We then used target exome sequencing 
with a TruSeq Custom Amplicon Low Input panel (Illumina) to deter‐
mine the 51 PD‐causative genes mutation sites in patients (Deng et 
al., 2018; Lill, 2016; Puschmann, 2017). Target regions of patients' 
blood genomic DNA were amplified with specific primers, ligated of 
adaptors to the amplified PCR products, and finally generated the 
libraries. Paired‐end 150‐bp NGS were performed on an Illumina 
MiSeq system at the Genomic Medicine Core Laboratory, Chang 
Gung Memorial Hospital. The validation of NGS results was per‐
formed with automatic sequencer ABI 3730 (Thermo Fisher, USA).

Nonsynonymous single‐nucleotide polymorphisms, insertions–
deletions, stop–gain, and frameshift variants were picked up. Next, 
Sorting Intolerant from Tolerant, Mutation Taster (http://www.
mutationtaster.org/), and Polymorphism Phenotyping (version 2) 
were performed to detect amino acid substitutions affecting pro‐
tein function. In addition, to determine potential candidate genes, 
we assessed the frequency of the variants in the general population 
(Exome Aggregation Consortium, dbSNP, 1000 Genomes Project). 
We considered variants with a minor allele frequency of ≤0.1% (rare 
variants). The mutation was classified as a pathogenic mutation if 
previous literature reported it as causative.

We confirmed the presence of heterozygous missense substitu‐
tions in POLG [c.2890G > A (p.R964C)] as well as GBA [c.1187A > G 
(p.L444P)] in the patient and his father (Figure 2). POLG R964C sig‐
nifies alteration in a highly conserved site (Figure 3). According to 
the American College of Medical Genetics guidelines, POLG R964C 
meets the pathogenic criteria as one strong pathogenic evidence, 
(PS3, well‐established in vitro functional studies supportive of a 
damaging effect on the R964C mutation), and two moderate patho‐
genic evidence (PM1, located in a mutational hotspot and functional 
domain without benign variation, and PM2, absent from controls 
(or at extremely low frequency if recessive) in Exome Sequencing 
Project, 1000 Genomes or ExAC. Combing the two criteria, this 

F I G U R E  3   Mutant residues in POLG1 
and amino acid alignment showing 
evolutionary conservation of altered 
residues

F I G U R E  4   Mutation site in POLG1 that potentially causes Parkinsonism

http://www.mutationtaster.org/
http://www.mutationtaster.org/
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mutation is categorized as a likely pathogenic variant for PD accord‐
ing to the scoring rule (Richards et al., 2015). Moreover, GBA L444P 
is categorized as a pathogenic gene in the ClinVar database.

3  | DISCUSSION

Thus, our patient and his father demonstrated a typical presenta‐
tion of idiopathic PD, with two mutation sites in GBA and POLG. 
GBA L444P is a known risk factor for PD; in a study, it was shown 
to increase PD risk by 10 times (Sidransky et al., 2009). POLG muta‐
tions are linked to a wide range of systemic or neurological diseases 
(Stumpf et al., 2013). Although this gene mutation could rarely lead 
to parkinsonism, R964C has never been reported in association with 
parkinsonism thus far.

POLG mutation damages mitochondrial DNA (mtDNA), which 
lead to complex I respiratory chain dysfunction and depletion of 
mtDNA (Reeve et al., 2008; Stricker et al., 2009). POLG contains 
three domains: exonuclease (exo), linker region, and polymerase (pol; 
Figure 4) (Luoma et al., 2007). Table 1 summarizes the clinical features 
of patients carrying POLG mutations who had parkinsonism without 
progressive external ophthalmoplegia (Davidzon et al., 2006; Luoma 
et al., 2007; Mehta et al., 2016; Ylönen et al., 2013). According to 
Luoma et al., the POLG pol domain mutation might specifically pres‐
ent as parkinsonism (Luoma et al., 2004); the authors reported that 
seven families exhibited the parkinsonism‐related mutations over the 
pol domain. Parkinsonism may present in case of a pol domain muta‐
tion, but there were few gene mutations in other regions (Davidzon 
et al., 2006; Delgado‐Alvarado et al., 2015; Luoma et al., 2004; Mehta 
et al., 2016; Miguel et al., 2014; Mukai et al., 2013; Wong et al., 2008; 
Ylönen et al., 2013). Most POLG mutations have been found to be 
compound heterozygous missense substitutions or homozygous 
mutations, some of which still engendered clinical symptoms under 
heterozygous mutations in the pol domain. According to Murgai et 
al., heterozygous mutations can exhibit subclinical or milder mani‐
festation, probably because of epigenetic regulation (Murgai & Jog, 
2018). The POLG pol domain mutation may lead to parkinsonism as 
it aggravates oxidative stress in the dopaminergic neurons (Schapira 
& Gegg, 2011). Several imaging studies have indicated that patients 
with POLG mutations may exhibit severe and progressive loss of the 
dopaminergic neurons of the substantia nigra (Delgado‐Alvarado 
et al., 2015; Luoma et al., 2004; Tzoulis et al., 2013).

The R964C mutation is located in the pol domain (Figure 4). 
Four studies have mentioned R964C mutation so far (Table 2). 
Homozygous R964C mutation can present as early ovarian fail‐
ure or nucleotide reverse transcriptase inhibitor toxicity when 
anti‐human immunodeficiency virus‐1 medication is taken (Bailey, 
Kasiviswanathan, Copeland, & Anderson, 2009; Chen et al., 2018; 
Yamanaka et al., 2007). In two other studies, both compound 
heterozygous mutations at R964C and A862T were identified 
and revealed to be associated with ataxia, epilepsy, and intellec‐
tual disability (Table 2) (Stricker et al., 2009; Wong et al., 2008). 
According to its biochemical effect, R964C missense mutation 

can significantly reduce the catalytic efficiency compared with its 
wild type (Bailey et al., 2009). The recombinant R964C Pol γ ac‐
tivity had only 14% polymerase activity compared to Wide type. 
In the presence of nucleoside reverse transcriptase inhibitor, both 
heterozygously and homozygously harboring mutant R964C Pol γ 
lymphoblastoid cell lines contained significantly reduced mtDNA 
levels, compared with those wild type Pol γ (Yamanaka et al., 2007).

On the other hand, GBA mutation is known as loss of lysosomal 
hydrolase glucocerebrosidase (GCase) activity causing impairment 
of the autophagy lysosome pathway. Dysfunction of the mitophagy 
can be caused by impairment of autophagy lysosome pathway (Gegg 
& Schapira, 2016; Kim, Rodriguez‐Enriquez, & Lemasters, 2007). In 
animal model, heterozygous GBA L444P mutation mice exhibited 
reduction in GCase activity and impairment autophagic delivery of 
mitochondria to lysosomes and mitochondrial priming dysfunction 
(de la Mata et al., 2015; Li et al., 2019).

Moreover, accumulating evidence has indicated that harboring 
more than two mutational loci in two alleles may cause a synergetic 
effect, leading to early neurodegeneration (Cady et al., 2015; Giri, 
Zhang, & Lü, 2016). Also, polygenic factors contribute to the impair‐
ment of mitochondrial replication and repair may result in PD (Gaare 
et al., 2018). We suspect that these two gene mutations could both 
influence repairing mitochondria and increase oxidative stress caus‐
ing early neurodegeneration.

In our patient's family, only one patient developed YOPD, 
whereas his father developed late‐onset PD. No literature has re‐
ported PD in POLG R964C mutation. Furthermore, the same muta‐
tions could reveal variable presentations, suggesting that epigenetic 
or environmental factors, as well as other modifiers may influence 
the clinical manifestation.

4  | CONCLUSION

We reported a first familial PD of combined POLG R964C and GBA 
L444P mutations. This finding extends our understanding of the PD 
genotype–phenotype correlation.
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