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Abstract

Down-regulation of the immune system facilitates tumor progression at different stages of 

cutaneous melanoma. Sentinel nodes, the first lymph nodes on lymphatics draining directly from a 

primary melanoma are immune down-regulated by tumor-generated immune-suppressive 

cytokines including interleukin-10. To better understand the kinetics of sentinel node suppression, 

we investigated interleukin-10 expression by melanoma cells and tumor-associated macrophages 

and lymphocytes at different stages of primary melanoma evolution. We used reverse transcriptase 

in situ polymerase chain reaction to identify cellular sources of interleukin-10 mRNA in 39 

melanomas. Interleukin-10 mRNA was identified in tumor cells of 2/6 melanomas in situ (33%), 

17/21 invasive melanomas (81%) and 11/12 metastatic melanomas (92%). Higher interleukin-10 

expression correlates with tumor progression, with differences between melanoma in situ, invasive 

melanoma and metastatic melanoma. In primary melanomas, the interleukin-10 mRNA content of 

tumor cells correlates with Clark level. There was significantly more interleukin-10 mRNA in 

vertical growth phase melanoma cells than in radial growth phase cells. In a logistic regression 

model, moderate to high interleukin-10 mRNA expression by tumor cells was significantly 

associated with vertical growth phase melanoma. Interleukin-10 mRNA was detected in 

melanoma-associated macrophages and lymphocytes. In invasive melanomas, the interleukin-10 

mRNA reactivity of macrophages declined as Clark level increased. Alterations of immunity by 

interleukin-10 derived from melanoma cells and melanoma-associated macrophages and 
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lymphocytes potentially facilitate evolution of the primary melanoma and render regional lymph 

nodes susceptible to metastases.

Keywords

cytokines; interleukin-10; immune suppression; melanoma; metastasis; tumor-associated 
macrophages/lymphocytes

Introduction

Immune suppression is closely related to the development of lymphatic metastases in 

melanoma patients. This is indicated by a reduction in the frequency of paracortical 

dendritic cells, activated T cells and activated endothelia in high endothelial venules in 

lymph nodes regional to melanoma (1-4). The sentinel node, the first lymph node to directly 

receive lymph from a primary melanoma and thus the node most influenced by the primary 

tumor is immune suppressed even before nodal metastases are detectable (3). In the absence 

of tumor cells in the sentinel node, immune-modulation is likely to be mediated by soluble 

immune suppressive factors released by melanoma cells and leukocytes at the primary tumor 

site (4). Interleukin-10 (IL-10) is a prime candidate for this role. Several studies have 

demonstrated elevated levels of IL-10 in serum from patients with later stages of melanoma 

(5-7). This T helper type 2 (Th2) cytokine impedes immune functions, including T cell 

proliferation, Th1 cytokine production, antigen presentation, and lymphokine-activated 

killer cell cytotoxicity. IL-10 is secreted by melanoma cells, including metastatic melanoma 

cells (8-10) as in other cancers and tumor infiltrating lymphocytes and has been reported to 

reduce immune surveillance in patients with advanced melanomas (11). Monocyte/

macrophages, including tumor-associated macrophages, are a significant component of 

tumor-associated inflammatory infiltrates and having modulatory activities against the 

immune system can potentiate tumor progression (12). There is a need for further analysis of 

the tumor microenvironment and the extent that it is orchestrated by bioactive molecules 

from melanoma cells and their associated inflammatory cells.

Detection of gene expression at the mRNA level is critical for identification of cells that 

synthesize soluble and secretable proteins, such as cytokines. Immunohistochemistry can 

detect such proteins in cells that passively acquire them by endocytosis as well as in cells 

that synthesize them. The coexistence of specific mRNA and protein delineates cells that 

synthesize particular proteins (13). As previously described, the reverse transcriptase in situ 

polymerase chain reaction (RT in situ PCR) technique amplifies small amounts of specific 

mRNA sequences within cells (14-17). In this study, we evaluated expression of the gene for 

IL-10 (IL10) in surgically resected melanomas in situ, invasive primary melanomas, 

metastatic melanomas and melanocytic nevi using the RT in situ PCR technique. This report 

is part of a series of studies of immunosuppressive networks in the tumor environment and 

their correlation with tumor progression and susceptibility to metastases. Identification of 

the cells that express genes for immune modulatory cytokines contributes to our 

understanding of the molecular basis of biological responses within the microenvironment of 

primary and metastatic melanomas.
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Materials and methods

Archival tissues from melanomas and melanocytic nevi

Forty-five formalin-fixed, paraffin-embedded tissue specimens were retrieved from the 

Surgical Pathology archives at UCLA (Los Angeles, CA) and the Klinikum Nürnberg Nord 

(Nürnberg, Germany) with Institutional Review Board permission from both institutions. 

Thirty-nine tissue blocks from melanomas and 6 from melanocytic nevi were evaluated: 21 

from invasive primary melanomas, 6 from melanomas in situ and 12 from metastatic 

melanomas (9 lymph nodes [7 sentinel nodes], 1 skin, and 2 lung). Original slides from all 

tissues were reviewed (by AJC and/or PHW) and the diagnosis confirmed. Slides from 

primary melanomas were assessed for tumor invasiveness, growth pattern and the presence 

of radial growth phase and vertical growth phase. Primary melanomas showing both radial 

growth phase and vertical growth phase were categorized as vertical growth phase 

melanoma. Clark level of invasion (18) and the micrometer-measured thickness of invasive 

primary melanomas (19) were assessed.

Immunohistochemistry

Formalin-fixed, paraffin-embedded tissue sections (4μm thick) were deparaffinized in 

xylene and dehydrated in a series of graded ethanols. Endogenous peroxidase activity was 

blocked by 3% hydrogen peroxide for 30 min. Epitope retrieval was performed by boiling in 

0.01M citrate buffer, pH 6.0 for 30 min. Sections were incubated with a 1:200 polyclonal 

goat anti-human IL-10 antibody (R&D Systems, Minneapolis, MN) overnight at 4°C. The 

subsequent development of antibody-bridge labeling used the streptavidin-biotin-peroxidase 

method with biotinylated anti-goat antibodies (Dako, Glostrup, Denmark) and streptavidin 

horseradish peroxidase (Zymed Laboratories, South San Francisco, CA). The sections were 

then reacted with the chromogen aminoethyl carbazole (AEC; Zymed Laboratories) and 

counterstained with hematoxylin and mounted.

One step RT in situ PCR

Pretreatment—Formalin-fixed, paraffin-embedded tissue sections were cut at 4μm 

thickness and placed on silane-coated glass slides, de-paraffinized and hydrated through 

xylene and a graded alcohol series. To determine the optimal duration of protease digestion, 

the slide-mounted tissue sections were digested with trypsin (0.2 or 0.4 mg/ml) in 

phosphate-buffered saline (PBS) for periods that ranged from 30 to 60 min at 37°C (Roche 

Diagnostics, Mannheim, Germany) and then treated with RNase-free DNase I (EPICENTRE 

Biotechnologies, Madison, WI) in PBS at 37°C overnight.

Oligonucleotide primer—The oligonucleotide primer sequences for IL-10 mRNA (20) 

are shown as follows: the forward primer, 5′-AGCTCAGCACTGCTCTGTTG-3′ and the 

reverse primer, 5′-GCATTCTTCACCTGCTCCAC-3′. The RT-PCR cDNA product was 

428 bp.

One step RT-PCR—The one step RT in situ PCR approach used a technique based on 

descriptions in recent articles (17, 21, 22). The Gene Amp EZ rTth (recombinant Thermus 

thermophilus) RNA PCR Kit (Applied Biosystems, Foster City, CA) was employed. Each 
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slide was loaded with the following mixture: 15μl of 5× EZ rTth buffer, 9μl of Mn(OAc)2, 

2.4μl each of dATP/dCTT/dGTT/dTTP, 3μl of rTth DNA polymerase (Applied Biosystems), 

0.9μl digoxigenin-11-dUTP, 2.4μl of 2% bovine serum albumin (BSA), 1.3μl of RNase 

inhibitor (Roche), 2.3μl of each primer, and 30.7μl diethylpyrocarbonate (DEPC)-treated 

water. The slides were covered with HybriWell sealing covers (Research Products 

International, Mount Prospect, IL) and placed on the Gene Amp In Situ PCR System 1000 

thermal cycler (PerkinElmer, Foster City, CA). cDNA syntheses were performed at 60°C for 

30 min. After initial denaturation at 94°C for 3 min, the cDNA was amplified by 30 cycles 

of annealing at 55°C for 1 min and denaturation at 94°C for 30 sec. After RT-PCR, the 

slides were washed in 0.1× saline-sodium citrate with 2% BSA at 60°C for 15 min and 

rinsed in Tris-buffered saline (TBS) three times for 5 min.

Immunodetection of RT-PCR products—Following incubation with an alkaline 

phosphatase-conjugated anti-digoxigenin antibody (Roche; 1:200) for 30 min, the 

digoxigenin-labeled RT-PCR products were visualized with nitro blue tetrazolium and 5-

bromo-4-chloro-3-indolyl phosphate (NBT/BCIP; Zymed Laboratories) for 3 to 15 min. The 

number of immune reactive cells was estimated semi quantitatively, as follows: grade 3+ 

(high), >50% positive cells; grade 2+ (moderate), 10-50% positive cells; grade 1+ (low), 

<10% positive cells; –, negative staining.

Controls—Negative control preparations were prepared by: 1) omission of the primer pair 

for IL-10; 2) omission of the rTth DNA polymerase. Cytocentrifuge slides of Raji human B-

lymphoblastic cells, expressing IL-10 (23) (kindly provided by Dr. Jian-Yu Rao, UCLA, 

Los Angeles, CA), served as a positive control.

Statistical Analysis

Differences in frequencies of positively staining cells in the different disease groups were 

analyzed by Fisher’s exact test. Nonparametric data analysis for semi quantitative scores of 

IL-10 mRNA reactivity was performed using the Mann-Whitney U test if comparisons 

involved two groups and the Kruskal-Wallis test if comparisons involved three groups 

(melanoma in situ, invasive primary melanoma and metastatic melanoma). When 

significance was found, the Kruskal-Wallis test was followed post hoc by the Holm- 

Bonferroni test for multiple comparisons.

The distribution of cases of IL-10 mRNA-positive expression in melanocytic nevi, 

melanomas in situ, primary invasive melanomas and metastatic melanomas was evaluated 

using the Cochran-Armitage trend test. In primary melanomas (melanomas in situ and 

invasive primary melanomas), correlations between melanoma invasiveness (Clark level), 

micrometer-measured tumor thickness (Breslow thickness) and semi quantitative scores of 

IL-10 mRNA expression by tumor cells, lymphocytes and macrophages were evaluated by 

Spearman’s rank correlation test. In evaluating Breslow thickness melanomas in situ (Clark 

level 1) were ranked lowest (considered as zero in the micrometer-measurement) because 

the micrometer-measurement is only applicable for invasive primary melanoma (Clark level 

2-5). Partial and multiple correlation coefficients were calculated, correlating Clark level 

and the reactivity of IL-10 mRNA expression by tumor cells, lymphocytes and 
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macrophages. The model fit was represented by adjusted coefficient of determination (R2) 

that determines the reliability of variables to explain variation in the dependent variable 

(Clark level).

A multiple logistic regression model was built to predict vertical growth phase in primary 

melanomas, using dummy variables for the IL-10 mRNA reactivity data. The model fit was 

represented by Nagelkerke R2 that determines the reliability of variables in the logistic 

regression model to explain the phenomenon (vertical growth phase) (24).

Statistical significance was considered to be P<0.05. Two-tailed P-values are quoted 

throughout. All data were analyzed using the statistical package R: A language and 

environment for statistical computing (http://www.R-project.org/) (25).

Results

IL-10 expression in tumor cells

A positive reaction was indicated by the presence of specific RT-PCR purple to blue-colored 

products detectable by microscopic examination. Table 1 summarizes IL-10 mRNA and 

protein expression by lesional cells of nevi and primary and metastatic melanomas. 

Melanocytic nevi (0/6) expressed neither IL-10 mRNA (Figure 1A) nor IL-10 protein. IL-10 

mRNA was detected in 30/39 melanomas (77%) and IL-10 protein in 30/36 (83%) 

melanomas. IL-10 mRNA and protein were present in epidermis-associated tumor cells of 

2/6 melanomas in situ (33%) (The example of melanoma in situ shown in Figure 1B is 

negative for IL-10 mRNA and protein). IL-10 mRNA was detected in 17/21 invasive 

primary melanomas (81%) (Figure 1C) and IL-10 protein in 17/19 invasive primary 

melanomas (89%). IL-10 mRNA was present in 11/12 metastatic melanomas (92%) (Figure 

1D) and IL-10 protein in 11/11 metastatic melanomas (100%). RT-PCR amplified IL-10 

mRNA and immunohistochemistry detected protein were located most concentrated in the 

cytoplasm of tumor cells, though there was minor nuclear staining for mRNA. The Fisher 

exact test revealed significant differences in IL-10 mRNA and protein expression between 

melanocytic nevi and primary melanomas (P<0.01) and between melanocytic nevi and 

metastatic melanomas (P<0.0001). IL-10 mRNA and protein were detected at a significantly 

higher frequency in the lesional cells of invasive primary melanomas (Fisher’s exact test-

P<0.05) and metastatic melanomas (Fisher’s exact test-P<0.01) relative to melanomas in 

situ (Table 1). Reactivity scores were recorded in an attempt to quantify the amount of IL-10 

mRNA present in melanoma cells at different stages of tumor evolution. These reactivity 

scores showed statistically significant differences between melanomas in situ, invasive 

melanomas and metastatic melanomas (Kruskal-Wallis test-P <0.01). A post hoc Holm-

Bonferroni test revealed that IL-10 mRNA reactivity in invasive melanomas and metastatic 

melanomas was significantly higher than that in melanomas in situ (P<0.01, P<0.05, 

respectively) (Figure 2A).

Neither IL-10 mRNA expression nor IL-10 protein expression was observed in normal 

melanocytes in the epidermis adjacent to melanomas (data not shown). All negative 

controls, including omission of the primers and omission of the Tth DNA polymerase, gave 

negative results.
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IL-10 expression by macrophages and lymphocytes

IL-10 mRNA (Figure 3A) and protein (Figure 3B) were detected in macrophages and 

lymphocytes in tissues adjacent to primary melanomas. Many macrophages (including 

melanophages) located close to a melanoma expressed both IL-10 mRNA and protein and 

levels of expression were often high. IL-10 protein expression by lymphocytes was more 

limited, occurring in a few lymphocytes at less intense levels than observed in macrophages. 

IL-10 mRNA expression by macrophages and lymphocytes was similarly frequent in 

infiltrates adjacent to vertical and radial growth phase melanoma (Figure 2B).

In a melanoma metastatic to the lung, IL-10 mRNA expression was observed in melanoma 

cells (Figure 3C and D) and tumor-adjacent alveolar macrophages (Figure 3E).

Correlation between tumor invasiveness and IL-10 mRNA expression

The Cochran-Armitage trend test showed that IL-10 mRNA reactivity, absent in 

melanocytic nevi, occurred at progressively increasing frequency in melanomas in situ, 

invasive primary melanomas and metastatic melanomas (P<0.0001). In 27 primary 

melanomas, including melanomas in situ and invasive melanomas, Spearman correlation 

analysis (Table 2) showed a very significant direct correlation between IL-10 mRNA 

expression by tumor cells and increasing Clark level of invasion (r=0.53) and increasing 

Breslow thickness (r=0.41). There was a significant correlation between expression of IL-10 

mRNA in tumor-adjacent lymphocytes and expression in tumor-adjacent macrophages 

(r=0.47).

In a model where Clark level was a dependent variable, the multiple correlation coefficient 

(R) was 0.68, and the adjusted R2 was 0.40. By removing the effects of the reactivity of 

macrophages and lymphocytes, the partial correlation coefficient between Clark level and 

the reactivity of tumor cells was 0.62, slightly higher than the corresponding Spearman’s 

correlation coefficient (r=0.53). By removing the effects of Clark level and the reactivity of 

tumor cells, the partial correlation coefficient between reactivity of lymphocytes and 

macrophages was 0.52. The partial correlation coefficients between the reactivity of 

macrophages and tumor cells or Clark level were significant, while the corresponding 

Spearman’s correlation coefficients were not significant. By removing the effects of 

reactivity of tumor cells and of lymphocytes, the reactivity of macrophages inversely 

correlated to Clark level (r=−0.49). By removing the effects of Clark level and the reactivity 

of lymphocytes, the reactivity of tumor cells correlated to that of macrophages (r=0.51).

When we compared the IL-10 mRNA reactivity scores of radial growth phase and vertical 

growth phase melanoma, scores were significantly higher in vertical growth phase 

melanoma (P<0.01) (Figure 2B). To predict that a melanoma is in vertical growth phase, a 

multiple logistic regression model was built using dummy variables for the expression of 

IL-10 mRNA (Table 3). Nagelkerke R2 for the logistic regression model was 0.52 (P<0.05), 

indicating a good fit of the data to the model. In this model, moderate to high IL-10 mRNA 

expression by tumor cells was confirmed to be significantly associated with the vertical 

growth phase of melanoma (P<0.05).
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Discussion

Melanomas evolve through sequential steps as the capacities for local invasion and 

metastatic competence evolve. During the radial growth phase, melanoma cells proliferate 

within the epidermis with, at most, limited non-tumorigenic penetration of the dermis by 

single cells or very small groups of cells (invasive radial growth phase) in the later stages of 

radial growth phase evolution (26, 27). Radial growth phase melanoma treated by complete 

surgical excision has a very low risk of local regrowth or metastasis. When melanoma cells 

acquire the capacity to form a tumor (tumorigenicity) and infiltrate more extensively into the 

dermis and subcutaneous tissues, the melanoma is considered as being in the vertical growth 

phase and having acquired the capacity to metastasize (27-29). In line with a recent report 

(30), our results indicate that IL-10 production by melanoma cells increases as melanomas 

progress through these evolutionary steps, paralleling the development of metastatic 

competence. This alteration in the capacity to generate and secrete IL-10 is associated with 

the increasing prognostic implications of transition from radial to vertical growth phase and 

the developing risk of regional and visceral metastases. In primary melanomas, the presence 

of detectable IL-10 mRNA in tumor cells correlated with increasing Clark level, an index of 

progression of the vertical growth phase to involvement of the deeper dermis and subcutis 

and a direct correlate of increasing metastatic potential. The frequency of melanoma cells 

with detectable IL-10 mRNA also increased with increasing Breslow thickness, but the 

correlation was less strong than with Clark level. These data indicate the frequency of 

melanoma cells that express detectable IL-10 and do not indicate the actual amounts of 

IL-10 expressed by tumor cells. The mechanisms that drive IL-10 over expression in 

melanoma cells are not fully known. Over expression of IL-10 may be due to chromosomal 

aberrations that are known to occur in melanomas. A gain of chromosome 1q (on which the 

human IL-10 gene is cytogenetically located) has been reported in melanomas (31-33) and 

could induce IL-10 overexpression.

Melanoma-derived IL-10 may suppress the differentiation and function of dendritic cells 

(10) and levels of IL-10 are reportedly higher in sentinel nodes than in non-sentinel nodes in 

patients with residual primary melanoma or metastatic melanoma in the sentinel node (34, 

35). Thus the suppression of immunological functions in melanoma-draining sentinel node 

may be down-regulated by immunosuppressive cytokines derived from melanoma (and 

other) cells located outside the lymph node. IL-10 produced by melanoma cells, acting as an 

autocrine growth factor, can auto-stimulate proliferation of the cells that produce it leading 

to even higher levels of IL-10 (36). In the present study, IL-10 expression by melanoma 

cells correlated with the extent of primary tumor invasion. Expression of IL-10 mRNA was 

moderate to high in the tumor cells of vertical growth phase melanoma and metastatic 

melanoma. This suggests that IL-10 production by melanoma cells may be related to the 

primary tumor’s capacity to proliferate, expand and invade adjacent tissues and acquire 

critical competence for metastasis. IL-10 expression is more significantly correlated to 

increasing invasion of the deeper layers of the skin (Clark level), than to micrometer-

measured tumor thickness (Breslow). This suggests that once the cellular characteristics of 

the vertical growth phase are established, increasing tumor cell numbers, as evidenced by 

increasing Breslow thickness (a surrogate for tumor volume), does not change the relative 
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frequency of IL-10-expressing tumor cells. It is also noteworthy that individual tumor cells 

of some melanomas in situ may produce IL-10, suggesting that even before transgression of 

the basement membrane, melanoma cells may generate releasable molecules capable of 

inducing immune suppression. This is in line with the view that melanomas can modulate 

the local microenvironment and that such modulation is part of the mechanisms that 

facilitate tumor growth and invasion.

Melanocytic nevi are benign, focal proliferations of melanocyte-derived cells that can 

remain stable for many years, but may infrequently act as precursors of melanoma. In this 

study, IL-10 expression was absent from nevus cells and normal melanocytes in sections of 

ostensibly normal skin adjacent to nevi and melanomas. IL-10 can be detected in cultured 

melanocytes in vitro, but the level of IL-10 expression in such cultures is extremely low 

compared to that in melanomas (37).

Peritumoral inflammatory cells play a key role in the promotion or subversion of adaptive 

immunity and in inflammatory circuits that may promote tumor growth and progression 

(38-40). Tumor-associated macrophages have dual roles in relation to neoplasms. While 

tumor-associated macrophages can kill neoplastic cells, following activation by IL-2, 

interferon and IL-12, tumor-associated macrophages “educated” by the tumor 

microenvironment can produce potent angiogenic and lymphangiogenic growth factors, as 

well as cytokines and protease mediators that can promote tumor progression and metastasis 

(12, 39, 41, 42). This study shows that IL-10 is produced by tumor-associated macrophages 

and tumor-related lymphocytes associated with early stages of tumor evolution, including 

melanoma in situ. Macrophages associated with thin primary melanomas contained more 

IL-10 mRNA than macrophages associated with deeper and thicker primary melanomas, 

suggesting that peak generation of IL-10 by tumor-associated macrophages may be 

selectively associated with the earliest phases of tumor invasion. The presence of detectable 

IL-10 mRNA in macrophages correlated directly with detectable IL-10 mRNA in melanoma 

cells, making it likely that both types of cells contribute to IL-10-induced immune 

suppression. We also demonstrated IL-10 production by alveolar macrophages located close 

to metastatic melanoma in the lung. Such macrophages located close to a metastasis along 

with the actual metastatic tumor cells could also induce local immune suppression. We 

cannot, however, entirely exclude the possibility that the highly sensitive RT in situ PCR 

technique may augment acquired nucleotides in the cytoplasm of macrophages which have 

phagocytosed melanoma cell components (including IL-10 mRNA and protein).

Immunoregulatory T cells, CD4+CD25+ T regulatory cells are capable of suppressing anti-

tumor immunity (30, 43), and this class of cells derived from lymph nodes that contain 

metastatic melanoma can produce IL-10 upon allogeneic stimulation, but T helper cells have 

also been reported to secrete IL-10 (44). Immunosuppressive monocytes/macrophages 

having the same characteristics as tumor-associated macrophages can be induced by the 

influence of T regulatory cells (45). In this study, the presence of detectable IL-10 mRNA in 

macrophages correlated directly with detectable IL-10 mRNA in lymphocytes. Further 

investigation will investigate whether these IL-10-secreting peritumoral lymphocytes are T 

regulatory cells. Thus, through elaboration of immunosuppressive cytokines such as IL-10, 

macrophages and lymphocytes contribute to the immune suppression that impedes 
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development of effective anti-tumor immune responses. They may induce localized and 

specific immune paralysis at both primary and metastatic sites, facilitating growth of 

primary and metastatic melanoma. Further studies are needed to elucidate the specific 

mechanisms of cross talk between different cell types within the tumor and surrounding 

inflammatory cells.

In summary, IL-10 production by tumor cells increases as primary melanomas progress with 

important prognostic implications for the transition from melanoma in situ to invasive 

melanoma and metastatic melanoma. Macrophages and lymphocytes infiltrating around 

primary and metastatic melanoma may also contribute to immune suppression. The release 

of immunosuppressive factors from melanoma cells, tumor-associated macrophages and 

lymphocytes appear to contribute to localized and specific immune down-regulation at both 

primary and metastatic sites. The findings are consistent with the proposal that IL-10, acting 

with other cytokines, induces immune down-regulation that may render sentinel nodes 

susceptible to the development of metastases. Understanding the interaction between tumor 

cells and the immune network in the immune suppression of anti-tumor immunity will help 

to provide insights that will permit the introduction of future novel therapeutic approaches to 

the management of patients with melanoma.
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Figure 1. 
(a) Melanocytic nevus is negative for IL-10 mRNA by the RT in situ PCR technique. (b) 
Melanoma in situ. The RT in situ PCR technique shows that in some areas, melanoma cells 

express IL-10. Chromogen: NBT/BCIP. (c) Primary invasive melanoma. The RT in situ 

PCR shows that melanoma cells express IL-10 mRNA. Chromogen: NBT/BCIP. (d) 
Metastatic melanoma. The RT in situ PCR shows that IL-10 mRNA is most concentrated in 

the cytoplasm of and the nucleus contains less reaction product. Chromogen: NBT/BCIP.
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Figure 2. 
(a) Reactivity scores of IL-10 mRNA expression in melanoma cells. As expressed by Box 

and Whisker plot, the central bar represents the median value, with 25th and 75th percentiles 

expressed by the box. There is a statistically significant difference in IL-10 between 

melanoma in situ, invasive melanoma and metastatic melanoma by the Kruskal-Wallis test 

(P=0.0057). The IL-10 mRNA reactivity scores in invasive melanoma and metastatic 

melanoma are significantly higher than in melanoma in situ (P=0.0086, 0.015, respectively; 

post hoc Holm Bonferroni test). (b) Box and Whisker plots. IL-10 mRNA expression by 

melanoma cells is higher in vertical growth phase than radial growth phase melanoma 

(P=0.0076). There were no significant differences in IL-10 mRNA reactivity of 

macrophages or lymphocytes between vertical growth phase and radial growth phase 

melanoma.
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Figure 3. 
(a) IL-10 mRNA expression in lymphocyte and macrophage in primary melanoma. 

Macrophages including melanophages are strongly positive for IL-10 (dark blue color, 

marked by arrows). IL-10-positive lymphocytes are also present (blue color). Brown color is 

melanin. (b) Immunohistochemistry reveals that IL-10 is strongly expressed in some of 

macrophages including melanophages (red color, marked by arrows) and in scattered 

lymphocytes (red color, marked by asterisk). (c, d) In metastatic melanoma of the lung, 

IL-10 mRNA is diffusely expressed in tumor cells (blue color). (e) Alveolar macrophages 

near metastatic foci also express IL-10 mRNA in metastatic melanoma of the lung (blue 

color).
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Table 1

Expression of IL-10 mRNA and protein in tumor cells of primary and metastatic melanomas

Tumor IL-10 mRNA
(RT in situ PCR)

IL-10 Protein
(immunohistochemistry)

Melanoma: total 30/39 (77%) 30/36 (83%)

 Primary melanoma 19/27 (70%) 19/25 (76%)

    in situ 2/6 (33%) 2/6 (33%)

  invasive 17/21 (81%) 17/19 (89%)

 Metastatic melanoma 11/12 (92%) 11/11 (100%)

Melanocytic nevi 0/6 (0%) 0/6 (0%)

*
P <0.05

**
P <0.01
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Table 2

IL-10 mRNA reactivity in tumor cells, macrophages and lymphocytes correlated with stage of melanoma 

evolution (melanoma in situ and invasive melanoma). R =0.68 (dependent variable: Clark level, P =0.0016). 

Adjusted R 2 =0.40. Melanoma in situ was ranked lowest in consideration of Breslow thickness.

Clark level melanoma cells macrophages lymphocytes

Breslow thickness 1 0.41* −0.07 0.27

Clark level 1 0.53** −0.10 0.26

melanoma cells 0.62** 1 0.37 0.23

macrophages −0.49* 0.51* 1 0.46*

lymphocytes 0.38 −0.19 0.52** 1

Bold: significant correlations (*: P <0.05, **: P <0.01)

Above the main diagonal: Spearman’s correlation coefficients and P -values

Below the main diagonal: partial correlation coefficients and P -values
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Table 3

Multiple logistic regression model to predict characteristics of the vertical growth phase of melanoma (P 

=0.024, Nagelkerke R 2 =0.52)

Variables Coefficient S.E. P -value

Constant −1.46 1.17 0.21

Low IL-10 mRNA expression by tumor cells 1.96 1.59 0.22

Moderate to high IL-10 mRNA expression by tumor cells 4.40 1.72 0.011*

Low to moderate IL-10 mRNA expression by lymphocytes 1.46 1.81 0.42

Low IL-10 mRNA expression by macrophages −1.96 1.79 0.27

Moderate to high IL-10 mRNA expression by macrophages −3.89 2.39 0.10

S.E.: Standard Error
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