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Background: Ageing is highly associated with cognitive decline and modifiable risk
factors such as diet are believed to protect against this process. Specific dietary
components and in particular, (poly)phenol-rich fruits such as berries have been
increasingly recognised for their protection against age-related neurodegeneration.
However, the impact of cranberries on cognitive function and neural functioning in older
adults remains unclear.

Design: A 12-week parallel randomised placebo-controlled trial of freeze-dried
cranberry powder was conducted in 60 older adults aged between 50 and 80 years.
Cognitive assessment, including memory and executive function, neuroimaging and
blood sample collection were conducted before and after the intervention to assess
the impact of daily cranberry consumption on cognition, brain function and biomarkers
of neuronal signalling.

Results: Cranberry supplementation for 12 weeks was associated with improvements
in visual episodic memory in aged participants when compared to placebo. Mechanisms
of action may include increased regional perfusion in the right entorhinal cortex,
the accumbens area and the caudate in the cranberry group. Significant decrease
in low-density lipoprotein (LDL) cholesterol during the course of the intervention
was also observed. No significant differences were, however, detected for BDNF
levels between groups.
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Conclusions: The results of this study indicate that daily cranberry supplementation
(equivalent to 1 small cup of cranberries) over a 12-week period improves episodic
memory performance and neural functioning, providing a basis for future investigations
to determine efficacy in the context of neurological disease. This trial was registered at
clinicaltrials.gov as NCT03679533 and at ISRCTN as ISRCTN76069316.

Keywords: brain, flavonoids, cognition, BDNF, cerebral blood flow (CBF), arterial spin labelling (ASL), MRI,
LDL-cholesterol

INTRODUCTION

The WHO estimates that by 2050, 22% of the world’s
population will be aged over 60 years (1). This is a product
of increasing life expectancy, which should be viewed as
an exceptional achievement; yet the improvement remains
somewhat overshadowed by the absence of preserved quality-
of-life. With age, the predominant risk factor for numerous
chronic and degenerative neurological conditions, maintaining
quality-of-life represents a significant global challenge. Indeed,
dementia incidence is projected to double every 20 years,
affecting an estimated 152 million individuals by 2050 (2), placing
considerable pressure upon already strained dementia care and
disease management strategies. It is therefore imperative that
proven effective solutions are developed to curb and manage
current projections. The pathophysiological processes leading to
the development of cognitive decline and dementias are complex
and multifactorial, offering reasonable explanation for the failure
of many pharmacological interventions to date (3). Future
strategies may therefore benefit from a multifaceted approach.
In addition to complex genetic predisposition, dementia risk is
further influenced by numerous environmental factors such as
diet, exercise and smoking status. Appealingly, these contributing
environmental factors are often modifiable, and represent targets
to address multiple underlying features of the disease process (4,
5). Therefore, achievable lifestyle interventions may represent an
alternative approach to mitigate disease risk.

Epidemiological studies have reported that higher dietary
intake of flavonoids is associated with slower rates of cognitive
decline (6–8) and dementia (9). Foods rich in anthocyanins
(responsible for imparting the red, purple and blue colour to
several fruits and vegetables) and proanthocyanidins such as
berries are consistently shown to improve cognition (10–13), and
are further supported by a wealth of preclinical data (14–19), as
well as emerging clinical evidence with fruit juices (20, 21) and
freeze-dried fruit powder (22–24). Potential mechanisms include
an enhancement of neuronal signalling and synaptic plasticity
(17, 25), a modulation of glucose metabolism/insulin resistance
(26, 27), a change in microbiota diversity and metabolism (28–
30) along with regional increases in cerebral perfusion (31–34),
however, further elucidation is required.

Cranberries (Vaccinium macrocarpon) are particularly rich in
(poly)phenols such as anthocyanins, proanthocyanidins (both A-
and B-type), flavonols and hydroxycinnamic acids (35), and are
recognised for their antioxidant and anti-inflammatory effects
(36–38) along with their capacity to modulate cardiometabolic
endpoints (38–40). However, limited information is currently

available regarding the evaluation of cranberries on cognitive
performance, with the only previous study exploring the impact
of cranberry intake on cognitive performance reporting no
cognitive benefit of a cranberry juice consumption for 6 weeks
in older adults with normal cognitive functions (41).

Here we report upon a single-centre, 12-week, double-
blind, placebo-controlled parallel intervention study in which
the impact of a freeze-dried cranberry powder intervention
(equivalent of one small bowl) was examined in the context of
cognitive health in healthy older adults (50–80 years). Cognitive
health was determined using a battery of cognitive tests in
combination with comprehensive biochemical and magnetic
resonance imaging (MRI) assessments.

MATERIALS AND METHODS

Study Participants
Healthy male and female older adults were recruited in this
study through online recruitment databases (Join Dementia
Research)1; existing research databases within the Norwich
Medical School, University of East Anglia, where participants had
previously consented to be contacted about research studies; and
community-based advertising (e.g., recruitment posters, leaflets,
talks). Participants were first pre-screened over the telephone
for eligibility for the study using a screening questionnaire and
were invited if they were aged between 50 and 80 years and
presented with no subjective memory complaints as assessed by
the Cognitive Change Index (CCI) questionnaire (42). Married
couples who lived together were particularly targetted to reduce
the variability in background diet patterns; however, participants
were permitted to take part in the study on their own.

Individuals were excluded if they had any of the following
condition: a diagnosis of any form of dementia or significant
neurological condition, significant memory complaints,
uncontrolled blood pressure, currently smoking or ceased
smoking less than 6 months prior to enrolment, clinically
diagnosed with psychiatric disorder, or currently on
antidepressant or antipsychotic medication, diagnosed with
a gastrointestinal disorder, or currently on any medication
that alters the function of the gastrointestinal tract, chronic
fatigue syndrome, liver disease, diabetes mellitus, or gall
bladder abnormalities including gall bladder removal, history
or MRI evidence of brain damage, including significant trauma,
stroke, learning difficulties or developmental disorders, or a

1https://www.joindementiaresearch.nihr.ac.uk/
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previous loss of consciousness for more than 24 h. In addition,
participants were not eligible for the study if they were prescribed
anticoagulant medicine such as warfarin, due to potential
interactions with the active cranberry powder. Other exclusion
criteria were restrictive or unbalanced diet and excessive alcohol
consumption (>15 units/week). Participants were also excluded
if they were identified as having a high flavonoid intake defined
as >15 portions of flavonoid rich foods (fruit, vegetables, tea and
coffee, fruit juice, dark chocolate, and cocoa) per day during the
telephone screening (43).

For MRI measures, participants were not eligible to undergo
the neuroimaging component of the study if they had a cardiac
pacemaker, any metal surgical implants that would not be safe
within the MRI machine, or experienced claustrophobia in small
spaces. If participants were unable to undergo the neuroimaging
component of the study, they were still able to take part in the
other components of the study.

Study Design
A single-centre, 12-week randomised, double-blind placebo-
controlled parallel study design protocol was performed.
Participants attended three visits in total: a screening visit (V0),
a pre-intervention baseline visit (V1), and a follow-up visit at the
end of the intervention (V2).

The screening visit (V0) involved obtaining informed consent,
followed by collecting a fasted (>10 h) morning blood and
urine sample, physical measurements (height, weight, and blood
pressure). Basal blood pressure and heart rate was first collected
after participants had been lying supine for 5 min, and then
collected again upon standing. Participants were then provided
with a standardised breakfast and underwent global cognitive
screening using the Addenbrooke’s Cognitive Examination III
(ACE-III). Participants were excluded if they scored <88 on the
ACE-III, or had abnormal blood biochemistry, blood pressure or
urine results indicative of a potential exclusion condition (e.g.,
diabetes, uncontrolled hypertension).

If participants passed the screening visit, they were invited to
a pre-intervention baseline visit (V1). Following a standardised
breakfast and other measures, as described above, participants
completed a longer cognitive battery (2.5 h) including measures
of processing speed, working memory, episodic memory and
spatial navigation, and other experimental and perception tests
to be published elsewhere, with a half hour break partway
through testing to avoid fatigue. A 30-min MRI scan was also
conducted either during this visit or within the same week
of this visit. At the end of the baseline V1 visit, participants
were provided with sachets of study powder, assigned to
them using a computer-generated algorithm. The intervention
was provided in the form of sachets (4.5 g each) of freeze-
dried cranberry powder (Cranberry Institute, United States)
designed to be incorporated into food and beverages (see
Supplementary Table 1 for the product specifications for the
freeze-dried cranberry powder). Participants were instructed
to take two sachets per day, one in the morning and
one in the evening, to maximise the physiological impact
based on current understanding of bioavailability (44). The
daily dosage of cranberry powder was roughly equivalent

to consuming one cup or 100 g of fresh cranberries. This
dosage was calculated to provide 281 mg proanthocyanidins,
with increase of 20 mg flavonols and 59 mg anthocyanins
per day (see Supplementary Methods and Supplementary
Table 2). The placebo powder was designed to match the
active cranberry powder for taste, colour, fructose, total sugar
and calories and contained a blend of water, maltodextrin
(CPC Maltrin M-180), citric acid, artificial cranberry flavour
(Lorann oils), fructose, red colour (Lorann oils) and grape
shade (Esco Foods) that had been freeze-dried. Participants
were asked to return all remaining cranberry sachets at the
end of the 12-week treatment period, with the number of
leftover sachets being taken as one measure of compliance.
Adherence to treatment was also determined by measuring
total plasma (poly)phenol metabolites concentration as described
previously thereafter.

Apart from the addition of the study powder, participants
were asked not to modify their dietary intake in any further
way, including any changes to their caloric intake. However,
participants were asked to refrain from consuming any other
non-essential supplements that could have a significant impact on
the outcome measures for the duration of the study. Participants
were also asked to fill in a validated, semi-quantitative SCG FFQ
(version 6.6) (45) to account for their background diet.

The follow-up visit V2 was scheduled exactly 12 weeks
following the baseline visit at the end of the intervention
and was identical in procedures to the baseline visit. Fasted
blood and urine samples were collected in addition to physical
measurements, followed by the cognitive battery and MRI.

Cognitive Assessment
Participants completed all of the following cognitive tests at the
baseline and follow-up visits. The only exception to this was the
ACE-III, which was conducted at the screening visit in the first
instance to assess eligibility for the study (i.e., total score >88)
and then repeated at the follow-up visit.

Global cognition was assessed using the ACE-III
questionnaire, which covers domains including attention
and orientation, memory, fluency, language and visuospatial
functions (46). Executive functions and working memory
were measured by using the Trail Making Test (TMT) (47),
a short test of processing speed, attention, and set-shifting,
and the Digit Span (DS) test, a subtest from the Weschler
Adult Intelligence Scale–third edition (WAIS III) that assesses
attention and short-term memory. DS is composed of two tasks
administered independently of each other: “digits forward” and
digits backward. For each “digits forward” item, participants are
presented with a series of digits in increasing length and must
immediately repeat them to the examiner in the same order as
presented. For digits backward, the participant is required to
repeat the number sequence in the reverse order. A composite
executive function score was also calculated out of the ACE-III
Category Fluency score (/7), the DS Backwards Raw Score (/14),
and the Scaled Trails B from the TMT based on previously
published normative data (48).

Memory was evaluated by using the Rey Complex Figure
Test (RCF), a short measure of visual memory and visuospatial
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constructional ability (49). This study included the copy and 3-
min recall trials of the test. A measure of verbal episodic memory
was also measured using the delayed recall of the name and
address on the ACE-III (score out of 7).

The Supermarket Test is a computer- and tablet-based
assessment of spatial orientation that uses an ecological shopping
environment (50). It includes a path integration test and
measures (1) egocentric orientation, (2) short-term spatial
memory, (3) heading direction, and (4) central (vs. boundary)
based navigation preferences.

All tests were conducted using pen and paper, with the
exception of the Supermarket Test which was administered
using an Apple iPad.

Magnetic Resonance Imaging
Data Acquisition
Magnetic resonance imaging scans were conducted in all eligible
and willing participants at baseline and end of intervention
and took approximately 30 min. In order to monitor structural
brain information across the study, a T1-weighted 3D gradient-
echo MR sequence was conducted at each testing visit. A T2-
weighted fluid attenuated inversion recovery (FLAIR) scan was
also conducted during the study visits. Arterial spin labelling
(ASL) has previously been used to monitor changes in cerebral
blood flow (CBF) in Alzheimer’s disease and mild cognitive
impairment patients (51, 52).

All data were acquired on a 3 Tesla Discovery 750 w wide
bore MR system (GE Healthcare, Milwaukee, WI, United States)
with a 12-channel phased-array head coil for signal reception.
After localisers, T1-weighted structural data were acquired using
a 3D inversion-recovery fast spoiled gradient recalled echo
(IR-FSPGR) sequence with repetition time (TR) = 7.7 ms;
echo time (TE) = 3.1 ms; inversion time = 400 ms; field-of-
view = 256 mm × 256 mm; acquired matrix = 256 × 256;
200 sagittal sections of 1 mm thickness; flip angle = 11◦; and
ASSET acceleration factor = 2 in the phase-encoding direction.
Furthermore, a 3D T2-weighted FLAIR (T2w FLAIR) sequence
was prescribed as follows: TR = 4800 ms; TE = 129 ms; inversion
time = 1462 ms; field-of-view = 256 mm × 256 mm; acquired
matrix = 256 × 256; 182 sagittal sections of 1 mm thickness;
flip angle = 90◦; an ARC acceleration factor of 2 in the phase-
encoding direction; and a “HyperSense” compressed sensing
subsampling factor of 2. The ASL scan consisted of a 3D spiral
pseudo-continuous ASL (pCASL) acquisition with the following
parameters: TE = 10.7 ms, TR = 4854 ms, 8 spiral interleaves with
512 sample points, field-of-view = 240 mm× 240 mm× 128 mm
with a reconstructed resolution of 1.9 mm × 1.9 mm × 4 mm;
post-label delay = 1500 ms, number of excitations = 3.
Before analyses, all participant scans were visually inspected for
significant head movements and artefacts.

Image Analysis
Voxel-Based Morphometry (VBM) was used on whole-brain T1-
weighted scans using the VBM package in FSL (FMRIB Software
Library, Oxford, United Kingdom) to confirm that there were
no grey matter structural differences between the cranberry and
placebo groups (53).

White matter hyperintensities (WMH) were rated using
Multi-image Analysis GUI (Mango version 4.1, Research Imaging
Institute, UTHSCSA, San Antonio, TX, United States) by
one rater (EF). A well-established rating scale developed by
Fazekas et al. (54) was used to qualitatively rate WMH in
periventricular (PWMH) and deep (DWMH) regions using
FLAIR images. WMH in the periventricular areas was rated as
0 = absent, 1 = “caps” or pencil-thin lining, 2 = smooth “halo,”
or 3 = irregular, whereas DWMH were rated as 0 = absent,
1 = punctate foci, 2 = beginning confluence of foci, or 3 = large
confluent areas.

For regional perfusion (ASL), equilibrium magnetisation
(M0) and perfusion-weighted images were calculated in-line on
the scanner workstation. All further analyses were performed
using a processing pipeline written in bash and Python
(v3.6, Python Software Foundation),2 which was run on the
ADA high-performance computing cluster at the University
of East Anglia. The pipeline closely resembled that used
for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)3

ASL sub-study, substituting FastSurfer for brain segmentation
instead of FreeSurfer (55). In brief, M0 and perfusion-
weighted images were scaled and used to calculate CBF maps
in physical units of arterial water density (mL/min/100 g).
T1-weighted data were then segmented using FSL’s FAST
algorithm and the derived grey matter probability maps
were used to register the ASL perfusion-weighted images
to T1 space—via FSL’s FLIRT algorithm. ROIs from the
FastSurfer segmentation were then used to determine ROI-
wise CBF statistics: minimum maximum, mean, median, and
standard deviation.

To visualise voxel-wise differences between groups, we
performed higher-level general linear model analysis using
FSL’s “randomise” permutation-testing tool. To facilitate this,
structural T1-weighted images for all participants were first
non-linearly registered to the Montreal Neurological Institute
standard brain using FNIRT and the resulting transformation was
applied to the ASL data. Difference images were then generated
for each individual through subtraction of the baseline ASL scan
from the post-intervention scan. An unpaired t-test was then
performed on these data using “randomise” with threshold-free
cluster enhancement to compare changes in perfusion between
the cranberry and placebo groups.

Biological Samples and (poly)Phenol
Metabolites Analyses
A fasted blood sample was taken at the screening assessment
visit and sent to the accredited pathology laboratories at
the Norfolk & Norwich University Hospital (NNUH) for
determination of markers of general health. Further blood
samples were collected at baseline and follow-up in EDTA,
SST and heparin vacutainer tubes (Becton-Dickinson,
United Kingdom) for assessment of circulating metabolites,
APOE genotype and blood biochemistry. Samples were
immediately processed for serum/plasma, aliquoted and stored

2www.python.org
3adni.loni.usc.edu
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at −80◦C until analysis. BDNF levels in plasma were assessed
by ELISA (R&D Systems, United Kingdom) following the
manufacturers’ instructions.

Plasma extraction of polyphenol metabolites was performed
using microelution solid phase extraction (µSPE) according
to validated protocols, with some modifications (56, 57).
Briefly, plasma samples (350 µl) were diluted (1:1) with
phosphoric acid 4% to reduce phenolic-protein interactions.
Each sample (600 µl) was loaded on a 96 well µSPE
plate, washed with water (200 µl) and 0.2% acetic acid
(200 µl) and finally eluted with methanol (60 µl). The
96 well collection plates were directly put in the UHPLC
autosampler for immediate analysis. Plasma samples were
analysed through UHPLC DIONEX Ultimate 3000 fitted with
a TSQ Vantage Triple Quadrupole Mass Spectrometer (Thermo
Fisher Scientific Inc., San Jose, CA, United States) equipped
with a heated-electrospray ionisation source (H-ESI-II; Thermo
Fisher Scientific Inc.). Separations were performed with a
Kinetex EVO C18 (100 mm × 2.1 mm), 2.6 µm particle
size (Phenomenex). For UHPLC, mobile phase A was water
containing 0.01% formic acid and mobile phase B was acetonitrile
containing 0.01% formic acid. The gradient started with 5%
B, keeping isocratic conditions for 0.5 min, reaching 95% B
at 7 min, followed by 1 min at 95% B and then 4 min
at the start conditions to re-equilibrate the column. The
flow rate was set at 0.4 ml/min, the injection volume was
5 µl, and the column was thermostated at 40◦C. The MS
worked in negative ionisation mode with capillary temperature
at 270◦C, while the source was at 300◦C. The sheath gas
flow was 60 units, while auxiliary gas pressure was set to
10 units. The source voltage was 3 kV. Ultra-high-purity
argon gas was used for collision-induced dissociation (CID).
Compounds were monitored in selective reaction monitoring
(SRM) mode, and characteristic MS conditions (S-lens RF
amplitude voltage and collision energy) were optimised for
each compound. Chromatograms, mass spectral data and
data processing were performed using Xcalibur software 2.1
(Thermo Fisher Scientific Inc.). Quantification was performed
with calibration curves of standards, when available; when not
available, metabolites were quantified with the most structurally
similar compound. Due to failure in collecting follow-up plasma,
14 volunteers were not considered for the calculations of plasma
metabolite content.

Statistical Analyses
Data were analysed using the Statistical Package for the
Social Sciences (SPSS; v28.0), applying standard statistical
thresholds (p < 0.05) and were tested for normality using
the Shapiro–Wilk test. Mann–Whitney U Independent-
Samples tests were employed to detect differences between
demographic, anthropometric and biochemical data at baseline.
One-way ANCOVA’s were used to detect baseline differences
in cognition between groups controlling for age, education
and gender. The impact of treatment on the cognitive
outcomes of interest was established using mixed linear
model with time and treatment as independent variables
and with age, education and gender entered as covariates.

Whole-brain differences in grey matter intensities were
analysed between cranberry and placebo groups at baseline
and follow-up with age added as a covariate. Periventricular
and deep WMH were compared between cranberry and
placebo groups at baseline and follow-up using ANCOVAs
with age added as a covariate. Mean regional perfusion
derived from ASL scans were analysed using mixed linear
modelling with age entered as a covariate to determine and
group × time interactions. Pearson correlations between
significant cognition and regional perfusion at follow-up
were also conducted.

Plasma metabolites, anthropometric and biochemical
measures were compared between groups at baseline
using non-parametric Mann-Whitney U-test analysis.
Mixed linear modelling was used to detect within group
differences between baseline and follow-up, as well as
group × time interactions. Correlations analyses between
plasma (poly)phenol metabolites and RCF delayed
score along with regional blood perfusion from MRI
ASL in regions found to be impacted by the cranberry
intervention were conducted using non-parametric
Spearman rank order. Unless otherwise stated, all results
are presented as means (SD).

RESULTS

Study Participants
Figure 1 shows a Consolidated Standards of Reporting Trials
(CONSORT) flow diagram. Seventy participants were consented
into the study. Of these participants, seven of them did not
pass screening and three declined further participation between
the screening and baseline visits. The final study population
consisted of 60 participants who attended the baseline visit
and commenced the intervention. All participants reported
being in good health, not consuming any food supplements or
medications that would interfere with the tested product. No
participants discontinued the intervention or were withdrawn
after they had attended the baseline visit, resulting in 60
participants completing the follow-up visit. There were no serious
adverse events or protocol deviations reported during the study;
however, there were two cases of participants experiencing
dental changes, which were documented. Of the participants
who were eligible for the intervention, 29 participants were
randomised into the active cranberry treatment group and
31 into the control groups. All baseline values were within
the physiological range and groups did not differ in age,
education, distribution of gender or global cognitive performance
at screening (Table 1).

Overall, compliance was excellent based on returned
empty sachets or unused study products and based on
increased plasma total concentration of (poly)phenol
metabolites. Specifically, plasma total concentration of
(poly)phenol metabolites increased by 1.82 ± 0.57 µM
in the cranberry group. No increase in plasma total
(poly)phenol concentration was observed in the placebo
group (Supplementary Figure 1).
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FIGURE 1 | Consolidated standards of reporting trials (CONSORT) flowchart diagram. ASL, arterial spin labelling; MRI, magnetic resonance imaging; VBM,
voxel-based morphometry.

TABLE 1 | Demographic characteristics of the subjects at inclusion (n = 60).

Characteristics Cranberry Placebo Sig. (p)

N 29 31

Gender (M/F) 12/17 13/18 0.965

Mean SD Mean SD

Age (years) 65.86 5.51 65.32 4.91 0.929

Education 14.38 2.60 14.61 3.01 0.610

ACE-III 96.58 2.39 96.10 2.80 0.644

(Chi-Squared and Mann–Whitney U Independent-Samples Test).

Food-frequency data indicated there was no difference
between the placebo and the cranberry groups on the
macronutrient content of their background diets. However,
a significant difference was observed (p = 0.02) in vitamin
D concentration between the two groups, with the placebo
group having a lower concentration (Supplementary Table 3).
Although not reaching significance, the cranberry group
presented with increased concentration of caffeine intake

(p = 0.09). Flavonoid content was similar between the two groups
with an average intake of 228 mg/day in the placebo group and
217 mg/day in the cranberry group (Supplementary Table 3).

Cognitive Performance
There were no differences between cranberry and placebo
groups at baseline on the ACE-III total score or on the
sub-scores (Attention and Orientation, Memory, Fluency,
Language, Address Delayed Recall and Category Fluency). No
difference at baseline was also observed for RCF, Digits spans
backward, Trail-making test A–B Scaled Score, or for the
composite executive function score but there was a significant
difference at baseline on visuospatial performance (p = 0.008,
Table 2).

At follow-up, a significant group × time interaction
[F(1,55) = 5.060; p = 0.028] was observed in performance of the
RCF test delayed recall such that the cranberry group showed
a significant improvement in performance between baseline
and follow-up compared to the placebo group. Linear mixed
modelling to detect group × time interactions between the
groups between baseline and follow-up did not reveal any
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TABLE 2 | Cognitive performance at baseline and follow-up, differences between groups at baseline (Mann–Whitney U Independent-Samples Test), and group × time
interactions on linear mixed modelling.

Baseline Follow-up Group × Time interaction

Measures Treatment M SD Sig. (p) M SD Sig. (p)

ACE-III Attention Cranberry 17.65 0.72 0.219 17.66 0.55 0.467

Placebo 17.35 1.11 17.60 0.62

Memory Cranberry 24.97 1.18 0.726 25.10 1.05 0.498

Placebo 24.84 1.70 25.67 1.95

Fluency Cranberry 12.45 1.53 0.512 13.24 0.91 0.164

Placebo 12.26 1.44 12.43 1.48

Language Cranberry 25.79 0.49 0.305 25.76 0.51 0.401

Placebo 25.58 0.54 25.83 0.46

Visuospatial Cranberry 15.62 0.73 0.008 15.76 0.51 0.120

Placebo 15.97 0.18 15.83 0.38

Address delayed recall Cranberry 6.10 1.05 0.466 6.34 0.81 0.332

Placebo 6.19 1.28 6.07 1.46

Category fluency Cranberry 6.34 1.17 0.759 6.66 0.61 0.431

Placebo 6.32 0.91 6.43 0.68

RCF Copy score Cranberry 34.52 2.61 0.994 35.34 1.05 0.092

Placebo 35.00 1.29 34.97 1.28

Delayed recall score Cranberry 18.59 7.67 0.416 23.41 5.96 0.028

Placebo 20.53 5.92 22.25 6.06

Digit span Forward raw score Cranberry 11.28 2.28 0.437 11.41 2.01 0.309

Placebo 10.84 2.28 11.39 2.50

Backward raw score Cranberry 7.76 2.18 0.781 7.86 2.5 0.165

Placebo 7.58 2.03 8.30 2.55

TMT A–B Cranberry 37.41 21.84 0.416 35.93 16.22 0.639

Placebo 33.29 16.89 34.14 13.73

B Scaled Cranberry 14.83 1.79 0.756 15.03 1.66 0.127

Placebo 15.13 1.73 15.37 1.97

Executive composite score Cranberry 28.93 3.50 0.964 29.34 3.73 0.430

Placebo 29.03 3.41 29.93 3.45

ACE III, Addenbrooke’s cognitive examination III; RCF, Rey complex figure test; TMT, trail making test. Significant values p < 0.05 are in bold.

differential impact of the intervention on groups pre- to post-
treatment for the copy score nor the other cognitive tests
(p > 0.05) (Table 2).

No significant differences were detected between groups
on the egocentric, allocentric error or allocentric heading
subtotals and totals of the Supermarket Test (Table 3). When
the linear mixed modelling was run on these subtotals and
totals, no significant group × time interactions were found
(p > 0.05 in all cases).

Magnetic Resonance Imaging
Among our study population, 47 participants were eligible and
underwent the neuroimaging component of the study (26 in the
cranberry group and 21 in the placebo group). Due to COVID-19
restrictions and reduced capacity of hospital facilities, 10 follow-
up scans could not be conducted. An additional five follow-up
scans could not be scheduled due to participants (n = 1) or
scanning facilities (n = 4) being unavailable during the critical
follow-up time window. Additionally, ASL data for 2 baseline
scans and 1 follow-up scan were not usable due to severe
motion artefacts.

There were no differences in whole brain grey matter
intensity between cranberry and placebo groups found at either
baseline or follow-up scans as assessed by the VBM package
in FSL with a p threshold set at 0.05 with age added as a
covariate. No statistically significant differences were observed
between groups in periventricular WMH between the cranberry
and placebo groups at baseline (p = 0.688) or follow-up
(p = 0.833), or for deep WMH at baseline (p = 0.693) or
follow-up (p = 0.723) in ANCOVA’s with age added as a
covariate. Two participants were rated as “3” for periventricular
WMH (i.e., “irregular”), with the remaining participants being
rated between 0–2.

Figures 2A–D depict representative magnetic resonance
imaging data. Mean regional CBF from ASL for the cranberry
and placebo groups at baseline and follow-up are summarised
in Supplementary Table 4. No significant differences in
regional perfusion between cranberry and placebo groups were
detected at baseline (p > 0.05). ASL group analysis with FSL’s
“randomise” tool indicated voxels covering similar volumes
to the ROI’s indicated in the ROI-wise analyses (Figure 2E).
Mixed linear modelling controlling for age and education
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TABLE 3 | Spatial navigation performance at baseline and follow-up, differences between groups at baseline (Mann Whitney U independent-samples test), and
group × time interactions on linear mixed modelling.

Measures Baseline Follow-up Group × Time interaction

Treatment Mean SD Sig. (p) Mean SD Sig. (p)

Supermarket test Egocentric score section 1 Cranberry 3.32 1.84 0.383 3.76 1.96 0.906

Placebo 3.67 1.76 3.92 1.91

Egocentric section 2 Cranberry 5.28 1.95 0.917 5.68 1.65 0.936

Placebo 5.04 2.01 5.58 1.79

Egocentric total Cranberry 8.60 3.29 0.656 9.44 3.29 0.885

Placebo 8.71 3.36 9.50 3.27

Allocentric error section 1 Cranberry 11.72 4.35 0.324 12.54 8.31 0.267

Placebo 13.00 4.94 11.96 5.81

Allocentric error section 2 Cranberry 14.28 3.00 0.164 15.47 10.54 0.481

Placebo 14.11 4.55 13.27 4.76

Allocentric error total Cranberry 13.00 3.14 0.964 13.98 8.88 0.325

Placebo 13.55 4.47 12.70 4.70

Allocentric heading section 1 Cranberry 5.64 1.50 0.562 5.92 1.80 0.417

Placebo 5.33 1.66 6.00 1.25

Allocentric heading section 2 Cranberry 5.60 1.50 0.489 5.84 1.34 0.697

Placebo 5.38 1.41 5.79 1.29

Allocentric heading total Cranberry 11.24 2.67 0.386 11.76 8.44 0.413

Placebo 10.71 2.46 11.79 2.23

FIGURE 2 | Representative magnetic resonance imaging data following 12-week consumption of a cranberry extract or a placebo. (A) Axial view of FastSurfer
cortical and subcortical segmentations superimposed on a T1-weighted image; (B) axial T2-weighted fluid attenuated inversion recovery (FLAIR) image; (C) a
coronal view of the T1-weighted image indicating regions that showed significantly increased perfusion after 12 weeks consumption of a cranberry extract—namely,
from superior to inferior, the right caudate nucleus, accumbens area, and entorhinal cortex; (D) an axial cerebral blood flow (CBF) map, in the T1 space, derived from
arterial spin labelling data; (E) t-value maps overlaid on a standard brain show trends to increased perfusion in the cranberry group as compared to the placebo
group, in similar regions to those indicated in the ROI-wise analyses; and (F) differences in mean blood perfusion for the right caudate nucleus (rCN), right nucleus
accumbens (rNAc), and right entorhinal cortex (rEC), with p-values represented for group × time interaction effects between cranberry and placebo groups from
baseline to follow-up.
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detected significant group × time interactions for the right
caudate [F(1,29.275) = 4.207, p = 0.049], right accumbens area
[F(1,31.744) = 4.916, p = 0.034], and right entorhinal cortex
[F(1,30.558) = 5.202, p = 0.030]. All models involved an increase in
perfusion between baseline and follow-up in the cranberry group
compared to a relative decrease in perfusion over time in the
placebo group (Figure 2F).

As a significant group × time interaction was found for the
delayed recall of the RCF, a correlation analysis was performed
between the follow-up RCF delay scores and follow-up regional
perfusion data, however, no significant correlation was found for
either group (p > 0.05).

Biological Samples and Polyphenol
Metabolites Analyses
There was a group × time effect on cholesterol, such that total,
low-density lipoprotein (LDL) but not high-density lipoprotein
(HDL) cholesterol decreased over the 12 weeks in cranberry
but not in the placebo group [LDL; F(1,40) = 4.100; p = 0.048].
Although not reaching significance, a trend toward a decrease
in total cholesterol was also observed in the cranberry group
[F(1,42) = 4.073; p = 0.050] when compared to the placebo
group (Table 4).

Investigating our data further, we observed a strong
interindividual variability with male participants possibly
experiencing a greater benefit from the cranberry intake. Indeed,
a steep but not significant decrease in BMI (from 27 ± 4.2 to
24.5 ± 2.5 kg/m2) in male participants was observed following
12 weeks of cranberry intake. This decrease also applied to fasting
blood glucose and systolic blood pressure along with an increase
in HDL cholesterol (Supplementary Figure 2).

There was no significant difference in BDNF concentration
following cranberry intake for 12 weeks when compared to
placebo (p = 0.7119) although concentrations were higher than
in the placebo group at follow up (Supplementary Figure 3).
High concentrations of BDNF in the cranberry group at baseline
may be explained by higher concentration of caffeine intake in
this group (Supplementary Table 2). BDNF at the follow-up visit
did not correlate significantly with CBF in any treatment group
(p > 0.05).

There were no significant differences in plasma total
(poly)phenol metabolites at baseline, apart from the flavonol
kaempferol-3-glucuronide which presented higher concentration
in the placebo group [Mann Whitney-U (1, 43) = 351.00,
p = 0.026; Table 5]. At follow-up, there were significant increases
in 4-methylcatechol-sulphate, hippuric acid, caffeic acid and
total (poly)phenol metabolites in the cranberry group when
compared to the placebo (Table 5). No significant correlation
between circulating (poly)phenol metabolites, RCF scores or
regional blood perfusion at follow-up were observed (p > 0.05),
indicating an indirect effect of the cranberry treatment on
cognitive performance and brain perfusion.

No participants were found to carry two copies of the APOE-
4 mutation. Furthermore, there were no differences between the
cranberry and placebo groups for distribution of APOE genetic
types, χ2 (3) = 2.60, p = 0.457 (Table 6).

DISCUSSION

This investigation reports the effect of long-term cranberry
supplementation (12-week placebo-controlled intervention)
upon cognitive performance and brain health. Daily
supplementation with freeze-dried cranberry extract (equivalent
to one cup of fresh cranberries) led to significant improvements
in episodic memory performance, which coincided with
increased perfusion of key neural areas which support cognition
in older adults. Our results are in direct contrast to a previously
conducted clinical investigation in which no significant change
in memory performance was established following cranberry
intake (41). The discordance between these results likely relates
to experimental inconsistencies such as duration of the intake
(6 vs. 12 weeks) or product formulation (cranberry juice vs.
freeze-dried whole cranberry powder).

Surprisingly, the cranberry intervention had no further
impact upon additional neurocognitive domains. Working
memory and executive functioning (including the executive
functioning composite score) remained unaltered despite the
contrary being reported by others investigating flavonoid-rich
juices e.g., blueberry, Concord grape juice and orange juice
(21). This could in part relate to the distinct (poly)phenolic
composition of each distinct intervention. Conversely, this
may be a product of cognitive test choice, with tests such as
the DS backward and trail making A and B believed to be
less sensitive in detecting changes in executive functioning in
non-cognitively impaired adults (58). In agreement with our
results, a longer-term 12-week intervention with wild blueberry
juice (20) led to similar improvements upon episodic memory
performance in older adults. These two studies highlight that
longer duration of supplementation is required to establish
episodic memory enhancement associated with high anthocyanin
and proanthocyanidin containing berries.

As anticipated, the cranberry intervention had no impact
upon differences in structural grey matter between groups,
nor did it influence differences in WMH over the 12-week
period of investigation. However, in line with results suggesting
that the cranberry intervention led to improved episodic
memory performance, differences in perfusion in response to
the intervention were detected between cranberry and placebo
groups in key cerebral regions supporting memory consolidation
and retrieval (59). A relative increase in perfusion was detected in
the cranberry group between baseline and follow-up compared
to the placebo group in medial temporal (entorhinal) and
prefrontal (orbitofrontal) regions, as well as in the nucleus
accumbens, which would provide optimal distribution of the
essential nutrients for neuronal activity, such as oxygen and
glucose (60).

The pathophysiological processes leading to
neurodegeneration, like many other diseases, are proposed
to involve the dysfunction of multiple systems within the
body. Neurodegeneration is hypothesised to be characterised
by progressive changes in several interlinked cellular and
molecular mechanisms, including chronic neuroinflammation,
oxidative stress and metabolic imbalances, as well as loss
of vascular integrity and function, deposition of aggregated
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TABLE 4 | Blood biochemistry, blood pressure, heart rate and anthropometry at baseline and follow-up, differences between groups at baseline (Mann-Whitney U
Independent-Samples Test), and group × time interactions on linear mixed modelling.

Baseline Follow-up Group × Time interaction

Measures Treatment Mean SD Sig. (p) Mean SD Sig. (p)

Biochemistry Cholesterol (mmol/L) Cranberry 5.6 1.1 0.98 5.4 1.2 0.050

Placebo 5.5 1.0 5.4 1.1

HDL cholesterol (mmol/L) Cranberry 1.7 0.4 0.98 1.7 0.3 0.428

Placebo 1.6 0.4 1.6 0.4

LDL cholesterol (mmol/L) Cranberry 3.5 1.0 0.81 3.2 1.0 0.048

Placebo 3.4 0.9 3.3 1.2

Triglyceride (mmol/L) Cranberry 1.0 0.4 0.96 1.1 0.4 0.518

Placebo 1.2 0.6 1.1 0.5

Glucose fasting (mmol/L) Cranberry 4.7 0.4 0.98 4.6 0.4 0.963

Placebo 4.8 0.5 4.7 0.5

ALT (U/L) Cranberry 17.8 5.2 0.90 18.6 7.6 0.812

Placebo 17.3 8.5 17.6 6.5

AST (U/L) Cranberry 22.4 4.6 0.83 22.8 6.8 0.459

Placebo 24.6 3.6 22.4 5.1

Alkaline phosphatase (U/L) Cranberry 69.3 17.7 0.24 69.2 16.1 0.860

Placebo 73.8 22.0 73.0 18.0

Creatinine (µmol/L) Cranberry 72.9 12.4 0.96 73.4 10.5 0.609

Placebo 73.1 14.0 71.3 11.6

Total bilirubin (µmol/L) Cranberry 11.2 4.1 0.45 10.3 3.8 0.110

Placebo 14.1 4.9 15.1 6.1

Total protein (g/L) Cranberry 71.0 3.8 0.81 70.7 4.0 0.669

Placebo 71.9 3.5 72.0 3.3

Albumin (g/L) Cranberry 40.6 2.3 0.86 40.4 3.1 0.133

Placebo 40.0 2.3 40.8 2.2

Globulin (g/L) Cranberry 30.4 3.8 0.71 30.2 3.7 0.803

Placebo 31.8 3.1 31.3 3.2

Urea (mmol/L) Cranberry 5.1 1.0 0.96 5.0 1.1 0.862

Placebo 4.9 1.0 4.7 1.2

Calcium (mmol/L) Cranberry 2.3 0.1 0.98 2.3 0.1 0.198

Placebo 2.4 0.1 2.4 0.1

Adjusted calcium (mmol/L) Cranberry 2.4 0.1 >0.99 2.4 0.1 0.757

Placebo 2.4 0.1 2.4 0.1

Phosphate (mmol/L) Cranberry 1.0 0.2 >0.99 1.0 0.2 0.947

Placebo 1.0 0.2 1.0 0.2

Bicarbonate (mmol/L) Cranberry 27.0 3.2 0.77 26.7 2.2 0.341

Placebo 25.9 2.2 26.1 1.9

Na (mmol/L) Cranberry 139.5 2.3 0.19 139.7 2.4 0.496

Placebo 134.5 2.9 138.0 2.2

K (mmol/L) Cranberry 4.5 0.3 >0.99 4.4 0.2 0.996

Placebo 4.5 0.3 4.5 0.4

Blood pressure and heart rate Diastolic (mm Hg) Cranberry 79.3 9.9 0.60 81.2 10.7 0.786

Placebo 81.3 11.2 82.9 10.5

Systolic (mm Hg) Cranberry 139.0 17.4 0.85 134.9 18.5 0.521

Placebo 139.7 18.3 132 13.6

Heart rate (bpm) Cranberry 62.7 8.6 0.61 61.5 8.1 0.209

Placebo 61.6 8.2 62.9 10.2

Anthropometry BMI (Kg/m2) Cranberry 24.9 4.0 0.93 24.1 3.0 0.305

Placebo 25.0 5.9 25.7 3.9

Weight (Kg) Cranberry 71.5 15.2 0.88 68.5 11.8 0.271

Placebo 72.1 18.5 73.7 13.8

ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; HDL, high-density lipoprotein; K, potassium; LDL, low-density lipoprotein; Na, sodium.
Significant values p < 0.05 are in bold.
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TABLE 5 | Plasma (poly)phenol metabolites at baseline and follow-up visits in µ mol/L.

Metabolite Group Baseline (µ mol/L) Baseline difference Follow-up (µ mol/L) Group × Time

M SD p M SD p

Kaempferol-3-glucuronide (Flavonols) Cranberry 0.017 0.018 0.026 0.019 0.020 0.274

Placebo 0.033 0.034 0.028 0.022

4-Methylcatechol-sulphate (Catechols) Cranberry 0.033 0.016 0.617 0.042 0.015 0.003

Placebo 0.032 0.012 0.024 0.010

4-Hydroxybenzaldehyde (Benzaldehydes) Cranberry 0.013 0.006 0.609 0.019 0.013 0.307

Placebo 0.013 0.006 0.018 0.009

Hippuric acid Cranberry 2.82 1.58 0.892 4.29 1.94 0.002

Placebo 2.76 1.12 2.53 1.78

4-Hydroxyhippuric acid Cranberry 0.039 0.020 0.540 0.043 0.025 0.508

Placebo 0.043 0.023 0.041 0.025

4-Hydroxybenzoic acid Cranberry 0.024 0.022 0.056 0.027 0.012 0.358

Placebo 0.032 0.079 0.038 0.054

Benzoic acid-4-sulphate Cranberry 0.023 0.023 0.107 0.028 0.024 0.192

Placebo 0.015 0.009 0.014 0.009

Benzoic acid-3-sulphate Cranberry 0.026 0.038 0.609 0.020 0.021 0.588

Placebo 0.015 0.014 0.012 0.011

Caffeic acid (3′,4′-Dihydroxycinnamic acid) Cranberry 0.021 0.012 0.856 0.032 0.014 0.005

Placebo 0.020 0.008 0.019 0.013

Ferulic acid-4-glucuronide Cranberry 0.018 0.020 0.927 0.025 0.015 0.061

Placebo 0.016 0.015 0.012 0.010

3-Hydroxyphenylacetic acid (Phenylacetic acids) Cranberry 0.078 0.041 0.496 0.087 0.042 0.811

Placebo 0.068 0.033 0.074 0.028

3-(3′-Hydroxyphenyl)propanoic acid (Phenylpropanoic acids) Cranberry 0.051 0.043 0.115 0.039 0.036 0.166

Placebo 0.077 0.054 0.041 0.049

5-(Phenyl)-γ-valerolactone-methoxy-glucuronide (3′,4′) (Phenyl-γ-valerolactones) Cranberry 0.018 0.011 0.751 0.017 0.010 0.190

Placebo 0.017 0.009 0.013 0.008

Total metabolites Cranberry 3.18 1.68 0.820 4.69 2.01 0.002

Placebo 3.14 1.20 2.87 0.321

Significance of baseline group differences was determined by non-parametric Mann-Whitney U independent samples tests, and main effects of time within group between baseline and follow-up along with interactions
between group and time was determined using linear mixed modelling. Significant values p < 0.05 are in bold.
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TABLE 6 | APOE genetic status of participants in the cranberry and placebo groups, and overall totals.

APOE genotype Cranberry Placebo Total

E2/E3 3 4 7 (11.67%)

E2/E4 0 2 2 (3.33%)

E3/E3 21 22 43 (71.67%)

E3/E4 5 3 8 (13.33%)

APOE, Apolipoprotein E.

proteins, mechanisms that underlie not only pathological but
also normal brain ageing, resulting in loss of neural plasticity
and neuronal death (61). However, the exact nature and results
of these processes are still being elucidated. Treatments that
can target and slow down these processes would be valuable in
counteracting brain ageing and cognitive decline. Results from
intervention studies involving humans remain less prevalent,
and as such findings that lend support to the causal effects of
berry (poly)phenols on the prevention of age-related cognitive
decline and dementia from interventional studies remain sparse,
and further attention needs to be dedicated to determining the
causality of flavonoid consumption on improving cognition and
preventing dementia.

Although it was anticipated that BDNF may increase in
the cranberry group (in line with improved cognition) and
as reported for other flavonoids (62), such results were not
significant. In particular, a high concentration of BDNF was
measured at baseline which masked the overall impact of
cranberries at follow-up. Such increased concentration may
be related to participants’ higher consumption of caffeine
in this group at baseline. During our analysis, we also
observed a significant decrease in LDL cholesterol following
cranberry intake, along with a trend in total cholesterol
decreases. Such results are in agreement with a previous study
demonstrating that cranberry supplements were effective in
reducing atherosclerotic cholesterol profiles, including LDL
cholesterol and total cholesterol levels (63). Interestingly, in
our study, cranberry intake seemed to better benefit older
male participants where a steep decrease in body weight and
associated parameters [fasting glucose, high-density lipoprotein
(HDL) cholesterol, blood pressure] were better controlled.
Such results are in agreement with data demonstrating the
anti-obesogenic impact of cranberries, although most of the
information is derived from animal studies (64). Further studies
would be necessary to confirm such findings in well controlled
clinical studies.

In addition to biochemical measures, the circulating plasma
(poly)phenol metabolites indicated that both groups were well
matched at baseline, apart from flavanols which were higher
in the placebo group before the intervention. The results of
the background diet questionnaires also indicated that the
placebo group had a higher average intake of flavonols, although
this difference between groups was not significant. The high
molecular weight fraction in our study represented 70.4%, so
high concentrations of phenolic metabolites/catabolites were not
expected after overnight fasting. There were, however, increases
in total metabolites in the cranberry group as a result of the

intervention, which appeared to be driven largely by significant
increases in catechols and hippuric acid. Further and contrary to
expectations, plasma (poly)phenol metabolite concentrations did
not relate to either RCF delay score or regional blood perfusion
within the regions found to be differentially changed between
groups as a result of the intervention. It is therefore possible
that the mechanisms underpinning the changes in cognition
and regional blood perfusion in the brain were not the direct
interaction between these metabolites and neural targets.

The relatively small sample size of this intervention may
have been a limiting factor particularly with regards to having
sufficient power to detect significant differences in both cognition
and brain perfusion. Indeed, regarding the neuroimaging data,
several regions showed a trend for perfusion differences such as
the insula and the medial orbitofrontal cortex, which may have
reached significance if more participant scans were available.
Only a subsection of the study sample was able to have complete
baseline and follow-up MRI scans due to practical constraints
and the impact of COVID-19 lockdowns on hospital imaging
facilities during the critical follow-up window for several
(n = 14) patients. Furthermore, although it was not reported
by any participants, other health conditions which may have
influenced cognitive results such as sleep apnoea were not
systematically excluded in this study. It is also important to
note that the cranberries also contain other health-promoting
compounds and nutrients, including fibre and other nutrients,
making it sometimes difficult to determine whether it is in fact
these specific polyphenols producing the health effects. For
example, nutrients such as fermentable fibres can influence gut
microbial metabolism of polyphenols (65). Furthermore,
other mechanisms such as chronic neuroinflammation,
mitochondrial function and compromised vascular integrity
and function are increasingly becoming understood to be key
mechanisms which also contribute to age-related cognitive
decline and neurodegenerative conditions and provide targets
for interventions to curtail the disease processes contributing to
age-related neurodegeneration [for review, see Flanagan et al.
(66)]. Indeed, these mechanisms are also among the targets
of nutritional interventions including those involving high-
polyphenol foods, particularly in light of their suggested
bidirectional relationships with the function of gut microbiota.
Similarly, markers of other factors that could be impacted by
cranberry intake and could also relate to neurodegeneration
such as chronic infection (67) were not measured. The focus
of the intervention discussed in this study was the impact of
a long-term cranberry intervention on cognition and brain
function, and as such the investigation of the impact on these
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additional mechanisms, although important, fell outside the
scope of this study. Finally, as the physicochemical properties and
dietary intake forms could impact the absorption and bioactivity
of nutrients (68) contained in the cranberry powder, and as
such could be controlled in future investigations to ensure that
the effectiveness of the cranberry is not impacted by different
methods of incorporating it into the diet.

These findings are, however, certainly encouraging that
sustained intake of cranberry over a 12-week period produced
significant improvements in memory and neural function in
older adults who were cognitively healthy. Future studies
investigating whether these changes translate to a clinical
population of cognitively impaired adults in the context of
neurodegenerative conditions such as mild cognitive impairment
or dementia is warranted based on these results. Determining
whether these changes are sustained following the cessation of
intake, for how long and to what degree would also be of interest.
Replication of this study in a larger sample size might also
produce more robust results.
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