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Abstract

Deployment of limited resources is an issue of major importance for decision-making in crisis events. This is especially true
for large-scale outbreaks of infectious diseases. Little is known when it comes to identifying the most efficient way of
deploying scarce resources for control when disease outbreaks occur in different but interconnected regions. The policy
maker is frequently faced with the challenge of optimizing efficiency (e.g. minimizing the burden of infection) while
accounting for social equity (e.g. equal opportunity for infected individuals to access treatment). For a large range of
diseases described by a simple SIRS model, we consider strategies that should be used to minimize the discounted number
of infected individuals during the course of an epidemic. We show that when faced with the dilemma of choosing between
socially equitable and purely efficient strategies, the choice of the control strategy should be informed by key measurable
epidemiological factors such as the basic reproductive number and the efficiency of the treatment measure. Our model
provides new insights for policy makers in the optimal deployment of limited resources for control in the event of epidemic
outbreaks at the landscape scale.
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Introduction

The management of diseases involves the expenditure of limited

resources, which more often than not are outstripped by the

demand for controlling all infected individuals [1–3]. This is often

the case when disease occurs simultaneously in different but inter-

connected regions [2,4,5]. Treatment of infection in one region

such as a state, city, or hospital may affect the potential for spread

to another region when there is movement of individuals between

the regions. Seeking to control disease outbreaks in more than one

region, poses a dilemma for epidemiologists and health adminis-

trators of how best to deploy limited resources, such as drugs or

trained personnel, amongst the different regions [6–11]. One

common objective is to minimise the numbers of infected

individuals and hence to minimize the burden of infection during

the course of an epidemic [4,12]. For epidemics of the SIS

(Susceptible-Infected-Susceptible) form, in which individuals can

be re-infected, Rowthorn et al. [10] showed that rather than

targeting the region with most infecteds, as might have been

intuitively expected, it is instead optimal to give preference to

treating the region with the lower levels of infecteds: the remaining

regions are treated as residual claimants, receiving treatment only

when there is resource left over. The epidemiological intuition

underpinning the optimal strategy is understood by noting that

since there are only two types of host (susceptible or infected),

preferential treatment in a region with low level of infection is

equivalent to giving preference to the region with the highest level

of susceptibles available for infection. Since, on average an

infected individual infects more than one susceptible, removing

infecteds where susceptibles are plentiful reduces the force of

infection of the epidemic and so is likely to bring the epidemic

under control. But what happens when there are more than two

epidemiological classes? For many diseases, reinfection is often

preceded by a period of temporary immunity, yielding a third class

of ‘removed’ individuals in the population that complicates the

identification of an optimal strategy for control. In this paper, we

focus on this much broader class of epidemics described by an

SIRS model.

We consider an SIRS-type epidemic in which infected

individuals cease to be infectious and move into a temporary

immune (R) class, after which they become susceptible once again.

This is characteristic of many diseases, such as malaria [13,14],

tuberculosis [15] and syphilis [16], in which infecteds (I) recover

naturally or after treatment. Infected individuals gain a temporal

immunity to the pathogen, after which they rejoin the susceptible

class (S) and can be reinfected. We assume that treatment is not

used as a prophylactic so that only infected individuals receive

treatment. Hence, the proportion of treated individuals is given as

fIƒI (0ƒf ƒ1):
To address the problem of resource allocation for disease

management in multiple regions, we use a combination of

optimization methods from economic theory of disease control

[17,18] with a metapopulation model from epidemiological theory

[19,20]. This enables us to formalize the problem and to derive

criteria for optimality so as to minimize the total number of

infections over time. Not infrequently, strict criteria for optimiza-
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tion identify strategies that may be logistically impractical, for

example by requiring a change in pattern of control at a switching

time that may be difficult to monitor [17]. Strictly optimal

strategies may also be challenged on grounds of social equity,

whereby every infected individual does not have an equal chance

of being treated [21,22]. Accordingly we assess the tractability of

optimal control strategies and consider also how adaptations may

be made to balance, optimality, tractability and social equity. For

the sake of simplicity, the analysis is initially carried out for two

interconnected regions (e.g.cities, towns or states) and the

robustness of the results to spatial structure are later tested for

two other simple and realistic spatial configurations.

Model
We consider two coupled sub-populations (regions) of suscep-

tible individuals each with a fixed size N, in which an epidemic is

described by a simple SIRS compartmental model:

d Si

dt
~sNznRi{b(1{ )SiIi=N{b SiIj=N{sSi ð1Þ

d Ii

dt
~b(1{ )SiIi=Nzb SiIj=N{mIi{gfiIi{sIi ð2Þ

d Ri

dt
~mIizgfiIi{nRi{sRi ð3Þ

with i=j and i,j~1,2: Each sub-population is composed of

susceptible (S), infectious (I) and recovered (R) individuals, and are

scaled here as proportions. The transmission rate for each sub-

population is given by b. The coupling strength between sub-

populations is given by 0v v1. The infectious period is given by

m{1; n is the rate of loss of immunity, and s is rate of birth/death.

g is a measure of the incremental increase in the recovery rate of

treated individuals, and fi is the proportion of infected individuals

in sub-population i that receive treatment. When all infected

individuals receive treatment (f1~f2~1), the basic reproductive

number, which is a widely-used epidemiological measure of the

intrinsic potential for multiplication of an epidemic, is given by

R0~
b

mzszg
. Without treatment R0 is equal to

b

mzs
.

Optimal control
We suppose that expenditure on control is subject to a budget

constraint c(f1I1zf2I2)ƒM, where c is the cost of treatment per

individual. This simple fixed budget constraint is used as a surrogate

that encompasses limitations in the amount of drug available and for

mobilisation and delivery of resources at the point of infection

(limitations in transport or trained personnel). These limit the

instantaneous availability of drug. If there are sufficient resources,

all infected individuals will be treated. Otherwise, resources are

allocated so as to minimize the discounted number of infected

individuals in both sub-populations over time. Hence, we choose f1

and f2 so as to minimize the following integral

J~
Ð ?

0
e{rt(I1zI2)dt ð4Þ

The discount rate (r) is included to allow for long-term changes, thus

giving greater emphasis to control in the short rather than the long

term [17]. The optimization approach we adopt is based upon the

Hamiltonian method [23], which is a device for minimizing the

objective function subject to the economic constraints and the

epidemiological dynamics of the model.

We assume that if it were possible to treat all infected

individuals, disease eradication would be achieved in the long

term (
b

mzszg
v1). Using Filippov’s theorem [24], it is possible to

show that the optimal control problem does have a solution. To

solve the problem of optimal deployment of limited resources (i.e.,

when there are insufficient resources to treat all individuals that may

become infected), we use the Pontryagin maximum principle

[23](PMP), a mathematical tool widely used to solve optimal control

problems for dynamical systems. This method takes into account the

influence of current infection on the future evolution of disease as

given by the propagation equations (1)–(3). The influence is

embodied in the co-state variables that appear in a mathematical

expression known as the Hamiltonian (see Materials and Methods).

PMP enables us to derive necessary conditions for optimality from

which it is possible to build up a set of candidate strategies for

optimality from which ultimately it is possible using extensive

numerical simulation to identify an optimal solution.

Results

Efficiency maximization
The Pontryagin maximum principle (PMP) was used to derive

necessary conditions for optimal resource allocation, when there

are insufficient resources to treat all infected individuals. Using

these necessary conditions together with exploratory numerical

analysis, we identify the following as candidate strategies for

optimality (see Materials and Methods):

N preferential treatment of the more infected sub-population - to

equalize disease burden within the regions as fast as possible

and thereafter to treat each region equally;

N preferential treatment of the less infected sub-population -

initially ‘sacrificing’ the sub-population with the higher level of

infecteds

N preferential treatment of the more susceptible sub-population -

initially ‘sacrificing’ the sub-population with the lower level of

susceptibles

N a strategy involving at least one switch between preferential

treatment of the more infected to either the less infected or the

more susceptible sub-population.

Although it is not possible to prove analytically that a given path

is optimal, after extensive numerical simulation, we identify the

single switch strategy from giving preference to the more infected

sub-population to giving preference to the less infected sub-

population as the best allocation strategy that minimizes the

discounted total numbers of infected individuals in both sub-

populations (Figs. 1 & 2). However, attempts to implement the

switching strategy are prone to the risk of missing the optimal

switching time. This risk is enhanced by the fact that the optimal

switching time depends upon the values of epidemiological

parameters and the initial levels of infection that are unlikely to

be accurately known in advance.

To conclude our analysis on efficiency maximization, we

investigate the effect of the rate of loss of immunity n on the

best allocation policy, by considering respectively the cases n??
and n?0 (see Table 1). Using numerical simulation, we compare

the candidate strategies for optimality (see Materials and Methods)

and show that for very large values of n, the best allocation strategy

is always to give ‘preference to the more susceptible sub-

population’. This observation agrees with the results of Rowthorn
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et al. [10] who show this policy to be the best strategy for the

control of an SIS type epidemic. Whereas for very small values of

n, a double switch of preference between the more and the less

infected region was shown to outperform the other allocation

strategies. It is difficult to prove the existence of an upper bound to

the number of switches. However, the more switches there are, the

harder the implementation of the allocation strategy would be.

The single switch strategy, though the best policy, is not easily

implementable. Numerical simulation shows that the second best

policy in terms of simplicity and efficiency maximization is either to

give preference to the more susceptible sub-population or preference

to the less infected sub-population depending on the initial state of

the system (Fig. 3). We compare the performance of these policies for

different values of the rate of loss of immunity (n) (Fig. 4). For n??
the two inequitable policies are identical. As the value of n decreases,

the difference between the policies increases, with the preferential

treatment of the more susceptible sub-population outperforming the

preferential treatment of the less infected sub-population. However,

when the rate of loss of immunity becomes small (n=mv0:4) the

relative performance of the two policies becomes highly dependent

on the initial state of the system (Fig. 4).

Efficiency and social equity
Since the optimal strategy is very difficult to implement, two

robust alternative strategies would be either to give preference to

the more susceptible sub-population or to give preference to the

less infected sub-population. However, these strategies are likely to

be regarded as highly socially inequitable from the perspective of

the chance that any infected individual receives treatment. For the

initial state of the system satisfying: I1,I2v25% and R1,R2v25%
(which may be regarded as early implementation of control), we

consider a widely-advocated, socially equitable strategy comprising

N a pro-rata policy designed to give equal opportunity for any

infected individual to receive treatment [22,25].

We compare the performance of this strategy with the three

tractable strategies considered above (i.e. not involving switching).

We do this for different values of the basic reproductive number

R0 (Fig. 5): R0 is a widely-used epidemiological measure of the

intrinsic potential for multiplication of an epidemic.

Given a threshold value, of the difference between the outcome

of a given control strategy and that of the pro-rata strategy, (d%)

above which the use of inequitable policies may be justifiable,

Fig. 5 shows that there exists a threshold value R� such that for

R0vR�, the pro-rata policy performs almost as well as the other

policies (e.g. for d = 10% R�~3:5). In this case, the pro-rata policy

is a good compromise in terms of equity, efficiency and simplicity.

For R0wR�, it would be better to opt for an inequitable policy

(e.g. preferential treatment to the more susceptible sub-popula-

tion). For high values of R0, the decreasing difference of value

Figure 1. Comparison of disease progress curves for a strategy that gives preferential treatment to the more infected sub-
population (A,D,G), preferential treatment to the less infected sub-population (B,E,H) and the most efficient strategy (C,F,I). Disease
progress is shown for different control outcomes. (A–C) Progress of disease in two interconnected regions 1 (solid lines) and 2 (dashed lines), with
treatment dynamics in insets, showing little differences between control strategies. (D–F) Preferential treatment to the more infected sub-population
and preferential treatment to the less infected sub-population diverge markedly from the most efficient strategy. (G–I) Disease continues to increase
but markedly less steeply in the region with the lower infestation (region 2), for preferential treatment to the less infected sub-population and most
efficient strategy. Disease progress curves are given for three different values of the initial number of infected: (A,B,C), (D,E,F), and (G,H,I). Default
parameters are g~4 (efficiency of control), b~6 (within-region transmission rate), ~0:1 (coupling strength), m~2y{1 (recovery rate), n~0:2y{1

(rate of loss of immunity), s~0:03y{1 (rate of birth/death), r~0:05y{1 (discount rate), and M~0:1 (fixed expenditure limit).
doi:10.1371/journal.pone.0024577.g001
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between the policies is due to the inefficiency of the control

measure (drug efficiency) in bringing the epidemic under control

(cf. Fig. 5 and 6). We also compare the policies for different value

of the coupling strength between the two sub-populations

(0v v1=2). We observed that when the coupling strength

decreases, the difference between the outcome of the control

policies increases with the pro-rata strategy becoming the more

less efficient than the optimal strategy (the single switch strategy

from giving preference to the more infected sub-population to

giving preference to the less infected sub-population). On the other

hand, the difference between the outcome of the control policies

declines as the coupling strength gets larger. Thus, as the

transmission between the sub-population increases the outcome

becomes less sensitive to the choice of policy [10] (result not shown

here).

To investigate the robustness of the result to spatial structure,

we consider two further spatial configurations: 10 identical regions

with symmetrical global coupling, and 10 identical regions

Figure 2. Difference between the outcome of the different
policies for the whole range of initial conditions. For a given
initial condition, the difference between two strategies (e.g ‘pre-
ferential treatment to the more infected sub-population’ and
‘preferential treatment to the less infected sub-population’) is
computed by (Jmore infected{Jless infected)=Jless infected in which Jless infected

and Jmore infected are the values of the discounted burden of infection for
the ‘preferential treatment to the more infected sub-population’ and
‘preferential treatment to the less infected sub-population’ strategy,
respectively. MI, MS, LI, A, and B denote respectively the ‘preferential
treatment to the more infected sub-population’, ‘preferential treatment
to the more susceptible sub-population’, ‘preferential treatment to
the less infected sub-population’, alternative and single switch policy
from ‘preferential treatment to the more infected sub-population’ to
‘preferential treatment to the less infected sub-population’. The average
difference value is represented by the dot, whereas the top and bottom
bars represent respectively the maximum and minimum values. As for
the middle bars, they represent respectively the ninety-ninth and first
percentiles. The average and percentiles were obtained for 705078 initial
conditions (See Materials and Methods).
doi:10.1371/journal.pone.0024577.g002

Table 1. Effect of the rate of loss of immunity (n) on the best
allocation strategy.

Epidemic model SIRS SIRS: SIS; n?? SIRS: SIR; n?0

Best strategy ‘single switch1’ ‘no switch2’ ‘double switch3’

1single switch of preference from the more infected sub-population to the less
infected sub-population.

2preference to the less infected sub-population.
3double switch of preference between the less infected and the more infected
sub-population.

doi:10.1371/journal.pone.0024577.t001

Figure 3. Difference between the outcome of the different
policies for the whole range of initial conditions. Notations
follow from Fig. 2. The figure shows the difference in efficiency between
‘preference to the more infected sub-population’ and ‘preference to the
less infected sub-population’ policies. The average value is represented
by the dot, whereas the top and bottom black bars represent
respectively the maximum and minimum values. The middle blue bars
represent respectively the ninety-ninth and first percentiles.
doi:10.1371/journal.pone.0024577.g003

Figure 4. Difference between the outcome of ‘preferential
treatment to the less infected sub-population’ and that of
‘preferential treatment to the more susceptible sub-popula-
tion’. The figure shows the effect of the change of the rate of loss of
immunity on the difference between the outcome of the two strategies.
The inset shows the effect for values of the rate of loss of immunity (n)
less or equal to the natural recovering rate (m): Difference is computed
as with Fig. 2. The solid line represents the average value, whereas the
dashed and dash dotted lines represent respectively the ninety-ninth
and the first percentiles. The average and percentiles were obtained for
705078 initial conditions (See Materials and Methods).
doi:10.1371/journal.pone.0024577.g004
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arranged in a circle with each population interacting only with its

two nearest neighbours. For small values of R0, the relative

outcome of the control policies is independent of the spatial

structure of the system (Fig. 7). But for high values of R0, the

variability in the outcome of the control policies with respect to the

initial state of the system increases with the sparsity of the coupling

matrix (Fig. 7). Simulation shows that the threshold value of R0

increases with the efficiency of the treatment measure (Fig. 6), and

decreases for increasing values of the rate of loss of immunity

(Fig. 8). Given that the choice of the discount rate affects the

relative valuation of the current and future disease, one would

expect a correlation between the choice of the discount rate and

the value of the percentage error above which social inequity is

justifiable.

When pro-rata is not a good candidate strategy in terms of

efficiency (R0wR�), an alternative strategy for balancing efficien-

cy and social equity may be the use of proportional allocation

where a fraction of the resources is allocated pro-rata, while the

remaining is allocated so as to maximize efficiency [22]. However,

determining what fraction of resource is to be allocated for equity

concerns, while retaining a good level of overall efficiency, requires

further debate and greater interrogation of epidemiological models

with insight from social sciences [22,26].

Discussion

We have addressed the problem of allocation of limited

resources for the control of an SIRS-type epidemic in different

but interconnected regions. Using a combination of optimization

methods from economic theory with a metapopulation model

from epidemiological theory for disease management, we have

formalized the problem of resource allocation and derived

criteria for optimality so as to minimize the discounted number

of infected individuals in both sub-populations over time, during

the course of the epidemic. Using extensive numerical simula-

tions, we have shown that the best strategy in terms of efficiency

maximization is a switching strategy, whereby resources are

initially preferentially allocated to the more infected sub-

population then to the less infected sub-population. However,

this strategy is seldom tractable, due to the fact that the switching

time depends upon the value of epidemiological parameters and

the initial state of the system, which are unlikely to be accurately

known [17,27].

Given that a practical strategy for disease control must account

for various factors such as efficiency maximization and social

equity amongst others, we have extended previous studies on

dynamic resource allocation by investigating how to account for

optimality (minimizing the burden of infection), social equity

(equal opportunity for infected individuals to access treatment),

and simplicity (ease of implementation) in identifying strategies for

disease control. We have shown that when faced with the dilemma

of choosing between a socially equitable strategy for resource

allocation (e.g. a pro-rata allocation strategy) and a purely efficient

but inequitable strategy (e.g. by giving preference to the more

susceptible sub-population or preference to the less infected sub-

population), the decision should be informed by the value of key

epidemiological and economic parameters. In particular, we have

shown that given a certain percentage of difference between the

outcomes of different strategies (i.e. relative discounted number of

infections that are not averted under the pro-rata policy) above

which the use of an inequitable policy may be justifiable, there

exists a threshold value of the basic reproductive number (R0)

below which it is better to adopt a purely socially equitable strategy

(pro-rata policy). This threshold value was shown to increases with

the efficiency of the treatment measure, and to decrease with the

average duration of the period of temporal immunity. The social

context of our analysis implies that equal weighting is given to the

health of each individual i.e. for the collective good of the entire

population.

 

 

Figure 5. Difference between the outcome of selected strate-
gies for different values of R0. The blue lines represent the
difference between the outcome of ‘preferential treatment to the more
infected sub-population’ and that of the pro-rata policy. The green lines
represent the difference between the outcome of the pro-rata policy
and that of ‘preferential treatment to the more susceptible region’, and
the red lines represent the difference between the outcome of the pro-
rata policy and that of ‘preferential treatment to the less infected
region’. Averages are obtained for 10,000 initial states of the system,
generated randomly.
doi:10.1371/journal.pone.0024577.g005

Figure 6. Difference between the outcome of ‘preferential
treatment to the less infected sub-population’ and that of that
pro-rata policy for symmetrical global connection between
regions. The effect of the efficiency of the treatment measure on the
average difference of outcome between ‘preferential treatment to the
less infected sub-population’ and pro-rata policy with respect to the
basic reproductive ratio (R0) is shown. Averages are obtained for 10,000
initial states, generated randomly, of a system of 10 regions. Default
parameter values as given in Fig. 1, except M~0:5:
doi:10.1371/journal.pone.0024577.g006
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Interest in the optimal allocation of resources for epidemic

control in structured populations has recently been renewed due to

the threat of pandemic influenza [11,28–30]. These studies

primarily focus on the optimal deployment of mass vaccination

to prevent or mitigate the spread of an outbreak of influenza

within a population. Among other things, they show that when

vaccine supplies are limited and the public health objective is to

minimize infections, it is optimal to target vaccination toward the

more epidemiologically important sub-populations (those that

suffer the greatest per capita burden of infection) [11,28–30]. The

other sub-populations would thus be indirectly protected through

herd immunity [11,28]. These results agree with our analysis

which shows that a good control strategy in terms of simplicity and

efficiency maximization would be to give preference to the more

susceptible sub-population. This sub-population may be regarded

as the more epidemiologically important as it is potentially the

main contributor to future infections.

Several areas of investigation suggest themselves for future work.

Foremost amongst these are allowance for heterogeneity in the size

of sub-populations, and the rates of transmission of infection, both

of which are recognized to be important factors in metapopulation

theory. Further work will also investigate the robustness of the

results for different measures for efficiency of control and to

uncertainty about the likely values of epidemiological parameters,

given that optimal strategies are often very sensitive to the

epidemiological parameters [27,31–33], which may not be

accurately known before control is implemented.

Materials and Methods

The objective is to minimize the discounted burden of infection

during the course of the epidemic

J~

ð ?

0

e{rt(I1zI2)dt ð5Þ

subject to the propagation equations (1)–(3)and the following

epidemiological and economic constraints:

(Si,Ii,Ri)(0)~(Si0,Ii0,Ri0);

0ƒfiƒ1; f1I1zf2I2~min(I1zI2,M=c)

Each sub-population, of a fixed size N, is composed of susceptible

(S), infectious (I) and recovered (R) individuals, and are scaled here

as proportions.

Figure 7. Difference between the outcome of selected policies for different values of R0 for multiple sub-populations with different
coupling between sub-populations. For (A), regions are inter-connected with symmetrical global coupling. For (B), regions are inter-connected
only with nearest neighbours. The blue lines represent the difference between the pro-rata policy and the ‘preferential treatment to the more
infected sub-population’ policy. The green lines represent the difference between the ‘preferential treatment to the more susceptible sub-population’
policy and the pro-rata policy, and the red lines represent the difference between the ‘preferential treatment to the less infected sub-population’
policy and the pro-rata policy. Averages are obtained for 10,000 initial states, generated randomly, of two systems of 10 regions. Default parameter
values as given in Fig. 1, except M~0:5:
doi:10.1371/journal.pone.0024577.g007

Figure 8. Difference between the outcome of ‘preferential
treatment to the less infected sub-population’ and that of the
pro-rata policy for symmetrical global connection between
regions. The effect of the change of the rate of loss of immunity on the
average difference between ‘preferential treatment to the less infected
sub-population’ and pro-rata policy with respect to the basic
reproductive ratio (R0) is shown. Averages are obtained for 10,000
initial states, generated randomly, of a system of 10 regions. Default
parameter values as given in Fig. 1, except M~0:5:
doi:10.1371/journal.pone.0024577.g008
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Let A~fI1,I2 : I1zI2ƒM=cg be the region where there are

sufficient resources to treat all infected individuals. Since

SizIizRi~1, the equations on Ri can be ignored.

When there are more infecteds that can be treated,

c(I1zI2)wM and hence f1I1zf2I2~M=c. The relevant Ham-

iltonian in this case is

H~{e{rt(I1zI2)zm1
_SS1zm2

_II1zm3
_SS2zm4

_II2 ð6Þ

where mi are the co-state variables. Since f1I1~M=c{f2I2, the

Hamiltonian can be written as

H~{e{rt(I1zI2)z

m1(s(1{S1)zn(1{S1{I1){b(1{ )S1I1{b S1I2)z

m2(b(1{ )S1I1zb S1I2{mI1{g(M=c{f2I2){sI1)z

m3(s(1{S2)zn(1{S2{I2){b(1{ )S2I2{b S2I1)z

m4(b(1{ )S2I2zb S2I1{mI2{gf2I2{sI2)

ð7Þ

f2 (and hence f1) has to be chosen so as to maximize the

Hamiltonian [23]. This yields the following result:

If m2{m4w0 then f2I2~min(I2,M=c),f1I1~M=c{f2I2,

If m2{m4v0 then f1I1~min(I1,M=c),f2I2~M=c{f1I1

ð8Þ

And it must be the case that

_mmi~{
LH

Lxi

ð9Þ

where xi is the corresponding state variable to mi:
We assume that g satisfies the following condition:

b

mzszg
ƒ1 ð10Þ

That g satisfies equation 10 implies that if there are always enough

resources to treat all infected individuals, disease will eventually be

eradicated in the population. This is justified by the fact that this

criterion (equation 10) is equivalent to the basic reproductive ratio

R0 being less than or equal to 1 [34], which here is a necessary and

sufficient criterion to prevent invasion of an epidemic. Upon

equation 10 any admissible path (disease dynamic curves obtained

for a given value of the control functions f1 and f2) will either never

enter region A~fI1,I2 : I1zI1ƒM=cg, or enter and never leave

(see [10] and [27] for details). Therefore, besides the general

transversality conditions limt?? mi(t)~0, there are alternative

transversality conditions whenever a path enters region A [23].

We define a function V as follows

V (S1(t),I1(t),S2(t),I2(t))~

ð ?

t

e{rt(I1zI2)dt ð11Þ

where the integral is evaluated along the path defined by the

propagation equations (1)–(3) when f1~f2~1, with t being the

time at which the path enter region A. The alternative

transversality conditions for a path that enters region A is given by

m1(t)~
LV

LS1
, m2(t)~

LV

LI1
zqt

m3(t)~
LV

LS2
, m4(t)~

LV

LI2
zqt

and rV~H(t)

ð12Þ

where qt is a multiplier, and H(t) is the Hamiltonian evaluated at

time t.

Given an initial state of the system (Si,Ii,Ri)(0)~(Si0,Ii0,Ri0),
the existence of an admissible path which enters region A

depends upon the value of the expenditure limit M: When such

a path exists, the optimal control problem is equivalent to an

optimal timing problem, where the objective is to find the

shortest path to reach region A. For such a value of M, a simple

application of Filippov’s theorem [24] shows that a solution to

the optimal control problem exists. This is done using Theorem

10.1 from [24], and the compactness of the set of points

(ŜSi,ÎIi,R̂Ri) at which admissible paths, starting at (Si0,Ii0,Ri0), enter

region A.

The singular solution
We suppose that there exists an allowable path that satisfies the

above maximal conditions on the Hamiltonian, and for which

there exists an open interval where we have m2~m4: By

differentiating m2{m4 over that open interval, we obtain

_mm2{ _mm4~½(m1{m2)b(1{2 )�S1zm1nz

½(m3{m4)b(2 {1)�S2{m3n

~0

ð13Þ

From an economical view point, the co-state variables can be

interpreted as shadow prices. Thus m1 and m2 indicate

respectively the marginal benefit to society of increasing by one

unit the proportion of susceptible (S1) and infectious (I1)

individuals of region 1 [35,36]. Because infection is harmful, and

increasing the proportion of infectious individuals will result in

decreasing the proportion of susceptibles, the shadow price m2 is

negative. Then, {m2 represents the proportion that society is

willing to invest for control that will result in reducing the stock of

infectious individuals in region 1 by one unit. Moreover m1{m2 is

positive. The same results hold for m3 and m4. Since m2~m4 on

an open interval, it follows that _mm2{ _mm4~0 on such an interval.

Equation 13 is then equivalent to

(b(1{2 )({m2zm1))S1zm1n~

(b(1{2 )({m2zm3))S2zm3n
ð14Þ

From (14), it follows that m1~m3 if and only if S1~S2. If S1~S2

on an open interval, it follows from the previous sentence that we

would have _mm1~ _mm3 on the same open interval. Simple algebra

shows that with m2~m4 and m1~m3 on an open interval,

_mm1~ _mm3 implies that I1~I2 on the same interval. Therefore, if

there exists an open interval on which m2~m4 and m1~m3, then

S1~S2 and I1~I2 on the same interval. The control strategy on

such an interval would be given by f1I1~f2I2~
M

2c
.
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Since _mm2~ _mm4 on an open interval, it follows from equation 9:

_mm1~{
LH

LS1
~{

LH

LI1

LI1

LS1
~ _mm2

LI1

LS1
~ _mm4

LI1

LS1

~{
LH

LI2

LI1

LS1
~{

LH

LS2

LS2

LI2

LI1

LS1
~ _mm3

LS2

LI2
(
LS1

LI1
){1

From the symmetry of the system, we have
LS2

LI2

(
LS1

LI1

){1~1; then

_mm1~ _mm3 on the open interval. We conclude from the transversality

conditions that m1~m3. It follows that the singular solution is

given by:

If S1~S2,and I1~I2 then g1I1~g2I2~
M

2c
ð15Þ

which satisfies that following equations:

d Si

dt
~s(1{Si)zn(1{Si{Ii){b(1{ )SiIi{b SiIj

d Ii

dt
~b(1{ )SiIizb SiIj{mIi{

gM

2c
{sIi,

i~1,2; j~2,1

ð16Þ

The singular solution is achieved by preferential treatment of

infecteds in the region with the higher prevalence of infecteds (see

Eq. 17). The policy is called the MRAP since it involves the Most

Rapid Approach Path to the singular solution, in which infection is

equalized in both sub-populations.

When
M

2c
v

(nzs)

g
(1{

1

R0
) (where R0~

b

mzs
) equation (16)

has two equilibrium points given by

S�,z~
gM

2cbI�,z
z

1

R0
,

and

I�,z~

nzs{g
M

2c

� �
b{ mzsð Þ nzsð Þ+½L�1=2

2 mznzsð Þb
with

L~ ((nzs{g
M

2c
)b{(mzs)(nzs))2{2(nzs)(mznzs)bg

M

c
.

We have Iz
wI�w0, where (S�,I�) is unstable (saddle point), and

(Sz,Iz) is stable. Another stable equilibrium point (disease free

equilibrium) is reached if the path enters region A.

When
M

2c
v

nzsð Þ
g

1{
1

R0

� �
, the singular solution may

exhibit a saddle-node bifurcation along the bifurcation parameter
M

c
(see Fig. 9). In other words, when the average proportion of

individuals treated individuals in each sub-population
M

2c

� �
is

lower than the epidemiological factor
nzsð Þ

g
1{

1

R0

� �
, the

singular solution fails to eradicate the disease, as the infection

path converges towards Iz, if control strategy (MRAP) is first

implemented when the proportion of infected in both sub-

population is above the unstable steady state (dashed line in Fig. 9).

Candidates for optimality
From the above results, it follows that the optimal control

strategy depends on the effect of a marginal change in the value of

m2{m4. However, this change can only be determine numeri-

cally. Using the shadow pricing analogy together with exploratory

numerical analysis, we derive some scenarios of practical

understanding that can be understood in terms of the co-state

variables m2 and m4.

From the interpretation of the co-state variables as shadow

prices, equation (8) can be interpreted as follows: if increasing the

amount of infected individuals in sub-population 1 (sub-population

2) by one unit, would generate more infection in the whole

population than an increase of the same amount in sub-population

2 (sub-population 1), then preference in treatment must be given to

sub-population 1 (sub-population 2). From equation (15) and

equation (8), it follows that an optimal solution is either a switching

strategy of preference between sub-population 1 and sub-

population 2, or the MRAP (the most rapid approach path to

singular solution). The MRAP solution, which is equivalent to

‘preferential treatment of the more infected sub-population’ is

given by the following equation:

If IivIj , fjIj~ min (Ij ,M=c) and fiIi~M=c{fjIj

If Ii~Ij and

(a) Si~Sj , fjIj~fiIi~M=2c

(b) SivSj , fiIi~ min (Ii,M=c) and fjIj~M=c{fiIi,

or vice{versa

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð17Þ

As for the switching strategies between sub-population 1 and 2,

they can be constructed in an infinite number of ways. Here we

Figure 9. Bifurcation diagram for the singular solution (Eq. 16).
The dashed line represents unstable steady states and the solid lines
represent stable steady states. Using the most rapid approach path to
the singular solution (MRAP), the initial proportion of infected
represents the level of infection when the singular solution is first
reached. Parameter values are given by Fig. 1.
doi:10.1371/journal.pone.0024577.g009
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consider two plausible candidate solutions for optimality (based

upon exploratory numerical analysis): ‘preferential treatment of

the more susceptible sub-population’, ‘preferential treatment of the

less infected sub-population’. These strategies are respectively

defined by the following equations:

If SivSj , fjIj~ min (Ij ,M=c) and fiIi~M=c{fjIj ,

If Si~Sj and

(a) Ij~Ii, fjIj~ min (Ij ,M=c) and fiIi~M=c{fjIj ,

(b) IjwIi, fjIj~ min (Ij ,M=c) and fiIi~M=c{fjIj ,

orvice{versa

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð18Þ

and

If IiwIj , fjIj~ min (Ij ,M=c) and fiIi~M=c{fjIj ,

If Ii~Ij and

(a) Si~Sj , fjIj~ min (Ij ,M=c) and fiIi~M=c{fjIj ,

(b) SivSj , fjIj~ min (Ij ,M=c) and fiIi~M=c{fjIj ,

orvice{versa

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð19Þ

The strategies giving preference to the more susceptible sub-

population, preference to the less infected sub-population as well as

the single and double switching strategies between one of the above

strategies and the MRAP strategy are all candidates for optimality.

Moreover, we consider an ‘alternative’ strategy which consists in the

first instance in equalizing the level of infection in both sub-

populations as fast as possible. This is done by implementing the

strategy giving preference to the more infected sub-population

strategy. When equality of the levels of infection is first reached,

preference is then given to the more susceptible sub-population. We

compare the above strategies. For any value of the initial condition,

simulation shows that the smallest value of the objective function

(Eq. 5) is obtained with the single switch strategy from giving

preference to the more infected sub-population to giving preference

to the less infected sub-population. Implementing the single switch

strategy is subject to the risk of missing the optimal switching time.

We were also able to show that the switching strategy satisfies the

Hamiltonian and transversality conditions. We were not able to rule

out the possibility that there are other paths, such multiple switching

strategies, which outperform the above strategy.

Simulation shows that the optimal switching strategy varies with

the rate of loss of immunity (n): For n?? (SIRS equivalent to an

SIS model), the best allocation strategy is always to give preference

to the less infected sub-population (here giving preference to the less

infected sub-population is equivalent to giving preference to the

more susceptible sub-population). This observation agrees with

Rowthorn et al. [10]. For n?0 (SIRS equivalent to an SIR model),

a double switch of preference between the less and the more infected

sub-population outperforms the other allocation strategies.

Details of the numerical explorations
Numerical simulation was done using a fourth order Runge-

Kutta scheme with 0.01 time intervals. Experiments were done for

different values of the period of integration and time intervals. The

accuracy of our method was established up to three decimal

places. The state variables were scaled with respect to the fixed

sub-population size N:
To compare different control strategies, simulations were done

using a large set of initial conditions (the state of the epidemic in

each sub-population before resources are first allocated). For every

single initial condition, we compared the value of the objective

function for each of the control strategies described above. To

build the set of initial condition, we proceeded as follows: for each

sub-population, we spanned the surface SzIzR~1 using an

increment step of 0.02, excluding extreme cases such as I~1 and

R~1: By crossing the initial conditions for the two sub-

populations, we obtain a set of 705078 initial conditions for the

whole system. The optimality of the single switch strategy was

shown to hold for all initial conditions.

Comparing the proposed candidates for optimality is not

enough to establish the optimality of a given solution. We used

the same method as Rowthorn et al. [10]. We consider the paths

that eventually reach set A: Any such path crosses the frontier of B
at a unique point (ÎI1,ÎI2): At this point, the transversality conditions

determine a unique set of shadow prices (m̂mi)
4
i~1. Taking

(ŜS1,ÎI1,ŜS2,ÎI2,(m̂mi)
4
i~1) as initial conditions, we can reverse the

systems of equations (1) and (9), thus tracking a path backward out

of set A: Reversing a second time converts this path into a unique

forward path that meets the set B at (ŜS1,ÎI1,ŜS2,ÎI2) and also satisfies

the Hamiltonian and transversality conditions. Using various

points on the frontier of A, and suitable values of (m̂mi)
4
i~1, we were

not able to find another solution, satisfying the Hamiltonian and

transversality conditions, that outperforms the switching strategies

(also known as ‘bang-bang’ solutions [23]).

Acknowledgments

We wish to thank Robert E. Rowthorn for thoughtful discussion and

valuable comments on the manuscript.

Author Contributions

Conceived and designed the experiments: MLNM CAG. Performed the

experiments: MLNM. Analyzed the data: MLNM. Contributed reagents/

materials/analysis tools: MLNM. Wrote the paper: MLNM CAG.

References

1. Lipsitch M, Bergstrom CT, Levin B (2000) The epidemiology of antibiotic resistance

in hospitals: Paradoxes and prescriptions. Proc Natl Acad Sci USA 97: 1938–1943.

2. Kiszewski A, Johns B, Schapira A, Delacollette C, Crowell V, et al. (2007)

Estimated global resources needed to attain international malaria control goals.

Bull World Health Organ 85: 623–630.

3. Monto A (2006) Vaccines and antiviral drugs in pandemic preparedness. J Infect

Dis 12: 55–60.

4. Dye C, Gay N (2003) Epidemiology: modeling the SARS epidemic. Science 300:

1884–1885.

5. Sani A, Kroesea D (2008) Controlling the number of HIV infectives in a mobile

population. Math Biosci 213: 103–112.

6. May R, Anderson R (1984) Spatial heterogeneity and design of immunization

programs. Math Biosci 72: 83–111.

7. Hethcote H, van Ark J (1987) Epidemiological models for heterogeneous

populations: proportionate mixing, parameter estimation, and immunization

programs. Math Biosci 84: 85–118.

8. Zaric G, Brandeau M (2002) Dynamic resource allocation for epidemic control

in multiple populations. IMA J Math Appl Med Biol 19: 235–255.

Epidemic Control in Metapopulations

PLoS ONE | www.plosone.org 9 September 2011 | Volume 6 | Issue 9 | e24577



9. Brandeau M, Zaric G, Ricther A (2003) Resource allocation for control of

infectious diseases in multiple independent populations: beyond cost-effective-

ness analysis. J Health Econ 22: 575–598.

10. Rowthorn R, Laxminaryan R, Gilligan C (2009) Optimal control of epidemics

in metapopulations. JRSoc Interface 6: 1135–1144.

11. Keeling M, White P (2010) Targeting vaccination against novel infections: risk,

age and spatial structure for pandemic influenza in great britain. JRSoc

Interface;doi: 10.1098.

12. Dushoff J, Plotkin J, Viboud C, Simonsen L, Miller M, et al. (2007) Vaccinating

to protect a vulnerable subpopulation. PLoS Med 4: e174.

13. Aron J (1988) Mathematical modeling of immunity to malaria. Mathematical

Biosciences 90: 385–396.

14. Filipe J, Riley E, Drakeley C, Sutherland C, Ghani A (2007) Determination of

the processes driving the acquisition of immunity to malaria using a

mathematical transmission model. PLoS Comput Biol 3: e255.

15. Castillo-Chavez C, Feng Z (1997) To treat or not to treat: the case of

tuberculosis. J Math Biol 35: 629–645.

16. Grassly N, Fraser C, Garnett G (2005) Host immunity and synchronized

epidemics of syphilis across the united states. Nature 433: 417–421.

17. Forster G, Gilligan C (2007) Optimizing the control of disease infestations at the

landscape scale. Proc Natl Acad Sci USA 104: 4984–4989.

18. Goldman S, Lightwood J (2002) Cost optimization in the SIS model of infectious

disease with treatment. Top Econ Anal Policy 2: 1–22.

19. Hanski I (1998) Metapopulation dynamics. Nature 396: 41–49.

20. Keeling M, Grenfell TD (2000) Individual-based perspectives on R0. J Theor

Biol 203: 51–61.

21. Strosberg M (2006) Allocating scarce resources in a pandemic: Ethical and

public policy dimensions. Virtual Mentor (Ethics J Am Med Ass) 8: 241–244.

22. Kaplan E, Merson M (2002) Allocating hiv-prevention resources: balancing

efficiency and equity. Am J Pub Health 92: 1905–1907.

23. Seierstad A, Sydsaeter K (1986) Optimal control theory with economic

applications. New York, NY, USA: Elsevier North-Holland, Inc.

24. Agrachev A, Sachkov Y (2004) Control theory from the geometric viewpoint.

Springer-Verlag, New York, in: encyclopedia of mathematical sciences, vol. 87.
edition.

25. HHS (2007) hhs pandemic influenza plan. Technical report, United States

Department of Health and Human Services. URL http://www.hhs.gov/
pandemic/plan/sup6.html. accessed 2010 March 21.

26. Wu J, Riley S, Leung G (2007) Spatial considerations for the allocation of pre-
pandemic influenza vaccination in the united states. Proc R Soc Lond B 274:

2811–2817.

27. Ndeffo-Mbah M, Gilligan C (2010) Optimization of control strategies for
epidemics in heterogeneous populations with symmetric and asymmetric

transmission. J Theor Biol 262: 757–763.
28. Medlock J, Galvani A (2009) Optimizing influenza vaccine distribution. Science

325: 1705–1708.
29. Wallinga J, van Bovan M, Lipsitch M (2010) Optimizing infectious disease

interventions during an emerging epidemic. PNAS 107: 923–928.

30. Goldstein E, Apolloni A, Lewis B, Miller J, Macauley M, et al. (2010)
Distribution of vaccine/antivirals and the ‘least spread line’ in a stratified

population. J R Soc Interface 7: 755–764.
31. Tanner M, Sattenspiel L, Ntaimo L (2008) Finding optimal vaccination

strategies under parameter uncertainty using stochastic programming. Math

Biosci 215: 144–151.
32. Merl D, Johnson R, Gramacy B, Mangel M (2009) A statistical framework for

the adaptive management of epidemiological interventions. PLoS ONE 4:
e5087.

33. Ndeffo-Mbah M, Forster G, Wesseler J, Gilligan C (2010) Economically optimal
timing of crop disease control in the presence of uncertainty: an options

approach. JRSoc Interface 7: 1421–1428.

34. Heffernan J, Simth R, Wahl L (2005) Perspectives on the basic reproductive
ratio. J R Soc Interface 2: 281–293.

35. Behncke H (2000) Optimal control of deterministic epidemics. Optim Contr
Appl Meth 21: 269–285.

36. Dorfman R (1969) An economic interpretation of optimal control theory. Amer

Econ Rev 59: 817–831.

Epidemic Control in Metapopulations

PLoS ONE | www.plosone.org 10 September 2011 | Volume 6 | Issue 9 | e24577


