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Objective: This study used homologous recombination (HR) related signatures to develop
a clinical prediction model for screening immune checkpoint inhibitors (ICIs) advantaged
populations and identify hub genes in advanced metastatic urothelial carcinoma.

Methods: The single-sample gene enrichment analysis and weighted gene co-expression
network analysis were applied to identify modules associated with immune response and
HR in IMvigor210 cohort samples. The principal component analysis was utilized to
determine the differences in HR-related module gene signature scores across different
tissue subtypes and clinical variables. Risk prediction models and nomograms were
developed using differential gene expression analysis associated with HR scores, least
absolute shrinkage and selection operator, and multivariate proportional hazards model
regression. Additionally, hub genes were identified by analyzing the contribution of HR-
related genes to principal components and overall survival analysis. Finally, clinical features
from GSE133624, GSE13507, the TCGA, and other data sets were analyzed to validate
the relationship between hub genes and tumor growth and mutation.

Results: The HR score was significantly higher in the complete/partial response group
than in the stable/progressive disease group. The majority of genes associated with HR
were discovered to be involved in the cell cycle and others. Genomically unstable, high
tumor level, and high immune level samples all exhibited significantly higher HR score than
other sample categories, and higher HR scores were related to improved survival following
ICIs treatment. The risk scores for AUNIP, SEPT, FAM72D, CAMKV, CXCL9, and FOXN4
were identified, and the training and verification groups had markedly different survival
times. The risk score, tumor neoantigen burden, mismatch repair, and cell cycle regulation
were discovered to be independent predictors of survival time following immunotherapy.
Patients with a high level of expression of hub genes such as EME1, RAD51AP1, and
RAD54L had a greater chance of surviving following immunotherapy. These genes are
expressed at significantly higher levels in tumors, high-grade cancer, and invasive cancer
than other categories, and are associated with TP53 and RB1 mutations.
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Conclusion: HR-related genes are upregulated in genomically unstable samples, the
survival time of mUC patients after treatment with ICIs can be predicted using a
normogram model based on HR signature.

Keywords: metastatic urothelial carcinoma, immune checkpoint inhibitors, homologous recombination,
genomically unstable, predict prognosis

INTRODUCTION

Urothelial carcinoma (UC) is the 10th most common type of
cancer worldwide, predicted to cause 573,000 new cases and
213,000 deaths in 2020 alone (Sung et al., 2021). In industrialized
countries, UC fatality rates have declined dramatically in recent
years as a result of breakthroughs in prevention, early detection,
and improved treatment (Babjuk et al., 2013). In the
United States, the 5 years survival rate of patients with the
early diagnosis is 95.8% because of multiple treatments such as
surgery and bladder perfusion, while patients with metastatic
urothelial carcinoma (mUC) is only 4.6% due to treatment
limitations (Saginala et al., 2020). As a result, experts
worldwide have been working nonstop to increase the survival
rate of individuals with mUC.

Although platinum-based chemotherapy is the first-line
treatment option for patients with mUC, cytotoxic drugs can
cause clinical internal resistance, systemic toxicity, and other
serious side effects, and approximately half of the patients should
not be treated with platinum-based chemotherapy due to their
age and pre-existing diseases (Klein and Hambley, 2009; Patel
et al., 2020). Bacillus calmette guerin infusion, immune
checkpoint inhibitors (ICIs), and other immunomodulatory
therapy have all emerged as effective innovative therapeutics
for mUC patients in recent years (Song et al., 2019). The
United States Food and Drug Administration (FDA) has
licensed several immunotherapy medicines (e.g.,
pembrolizumab, atezolizumab) for the first- or second-line
treatment of individuals with mUC. While some individuals
benefit from these treatments, between 70% and 80% of
patients do not (Massard et al., 2016). In 2018, the FDA
revised its license to require that ICIs be used exclusively in
patients with mUC who do not respond to platinum-based
chemotherapy but are positive for PD-L1 (Parikh et al., 2019).
However, recent research indicates that the therapeutic benefit of
PD-L1 is dependent on its expression on tumor-infiltrating
immune cells, rather than on tumor cells (Mariathasan et al.,
2018). At the same time, numerous technical issues limit the
detection of PD-L1 expression, including the fact that it is easily
missed in small biopsy samples, and the detection antibody’s PD-
L1 binding is unstable (Topalian et al., 2016). As a result, the
development of novel molecular markers capable of identifying
prospective dominant populations is critical.

Tumor immunotherapy’s goal is to prevent tumor immune
escape by inhibiting immunological checkpoints and to stimulate
the immune system with neoantigens created by tumor-specific
mutations (Hu et al., 2018). As a result, tumor mutation burden
(TMB) and tumor neoantigen burden (TNB) can be utilized to
predict the efficacy of ICIs (Chan et al., 2019; Wang et al., 2021).

A recent study has revealed that the DNA damage repair (DDR)
pathway is not only connected with platinum chemotherapeutic
drug susceptibility, but also with tumor mutation. As a result of
these alterations, genomically instability, neoantigen generation,
and upregulation of PD-L1 expression occur (Jiang et al., 2021).
Additionally, Park et al. (2019) found that abnormal mutations in
both the double-stranded and single-stranded DNA damage
repair pathways are related to TMB in patients with small-cell
lung cancer. Homologous recombination (HR) contributes to
gene stability in two ways, it is a highly accurate repair process
that maintains genomic stability when double-stranded DNA is
damaged in normal cells, but it can result in genomic instability
when hyperactive. For example, Shammas et al. (2009) discovered
that HR is particularly active in myeloma and that inhibiting
them considerably reduces genomically instability. As a
consequence, studying HR-mediated immune responses and
tumor alterations are essential.

In this study, the relationship between different DDR
pathways and immunotherapy response was deeply analyzed,
and a clinical prognosis model based on the HR signature was
constructed. This model can be used to predict the prognosis of
mUC patients following immunotherapy and to identify potential
hub genes, paving the path for more basic experimental studies.

DATA AND METHODS

Data Sources
Clinical characteristics and tumor tissue transcriptome
counts for mUC patients were collected from the
IMvigor210 cohort (http://research-pub.gene.com/
IMvigor210CoreBiologies/packageVersions/) (Mariathasan
et al., 2018), a phase 2 clinical investigation of
atezolizumab in advanced mUC. The study removed
samples from patients whose treatment outcomes were
unknown. 298 samples were ultimately obtained.
Additionally, the study obtained the expression profiles of
165 primary bladder cancer samples and 21 paired tissue
samples from the GSE13507 and GSE133624 in GEO database
(https://www.ncbi.nlm.nih.gov/geo/), and the TCGA BLCA
transcriptome counts sequencing data and sample
characteristic data from UCSC Xena (http://xena.ucsc.edu/)
and Thorsson et al. (2018). The study obtained 397 tumor
transcriptome data, removing samples with no discernible
immunological subtype and several samples from the same
patient. For future analysis, RNAseq transcriptome data were
transformed to transcripts per million the data for the chip
expression profile data were normalized using the “limma”
package’s functions. The workflow was displayed in Figure 1.
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Single Sample Gene Set Enrichment
Analysis
ssGSEA is a nonparametric method for normalizing the gene
expression values in a given sample and generating
enrichment scores based on the empirical cumulative
distribution functions of the signature genes and the
remaining genes (Barbie et al., 2009). Ten gene sets
representing distinct DDR pathways were retrieved from
the literature (Kang et al., 2012) and ssGSEA analysis was
conducted using the “GSVA” package in R4.1.1 (R Foundation
for Statistical Computing, Vienna, Austria) (Hänzelmann
et al., 2013). Then, the study examined the association
between the DDR pathway enrichment score and
immunological response.

Weighted Gene Co-Expression Network
Analysis
The purpose of WGCNA is to identify co-expressed gene
modules and to investigate the relationship between gene
networks and the targeted phenotypes, as well as the network’s
hub genes (Zhang and Horvath, 2005). According to the
WGCNA official guidance document (https://horvath.genetics.
ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/), the
study evaluated the top 5000 genes according to the median
absolute deviation for WGCNA and associated immunotherapy
response, enrichment score of DDR-related pathways, and other
features using the “WGCNA” package. Modules with a cluster
height less than 0.25 are merged to eliminate duplicates
(Langfelder and Horvath, 2008).

FIGURE 1 | The workflow of the selection process for the eligible studies in the analysis. DDR, DNA damage repair; ssGSEA, single sample gene set enrichment
analysis; WGCNA, weighted gene co-expression network analysis; HR, homologous recombination; PCA, principal component analysis; LASSO, least absolute
shrinkage, and selection operator; DCA, decision curve analysis; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.
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Function Analysis
Gene ontology (GO) analysis calculates p values for provided gene
sets in biological processes, molecular functions, cellular
components, and major pathways using the hypergeometric
distribution approach. Determine whether the number of genes
in a particular gene set surpasses the number of genes that would be
expected randomly in terms of function or route. Enrichment of
gene ontology analysis of genes inside each module using the
anRichment program (https://horvath.genomics.ucla.edu/html/
CoexpressionNetwork/GeneAnnotation/). The three most
significant components were eliminated based on the p-value.

Principal Component Analysis
Principal component analysis (PCA) is a technique for reducing high-
dimensional data sets to low-dimensional data sets. Its scores are
weighted according to the importance of each gene in thefirst principal
component, resulting in a weighted average that can be used to assess
the biological functions of signature genes (Berglund et al., 2017). The
“IOBR” package’s PCAmethod was utilized to perform feature scoring
on samples based onHR-relatedmodules (Zeng et al., 2021). The tissue
subtypes of the samples in the research cohort were determined using
the “BLCAsubtyping” package (Kamoun et al., 2020). The study
investigated the distribution of HR scores among subtypes, tumor
level, immune level, and overall survival.

Difference Analysis
The “Maxstat” package was used to determine the optimal
survival threshold for HR scores from IMvigor210 cohort
samples divided into high and low expression groups
(Lausen and Schumacher, 1992). The differentially
expressed gene (DEGs) screening standard used to develop
the clinical prognosis model of tumor immunotherapy was the
use of the “Desq2” package (Love et al., 2014), filter genes
count expresses overall less than 10, log2 |Fold Change |>1 and
p.adj<0.05 were used to identify DEGs.

Construction of Risk Prediction Model
In a 7:3 ratio, the IMvigor210 cohort was divided into training
and validation groups. In the training group, the least absolute
shrinkage and selection operator (LASSO) COX regression model
was generated using pairs of differential genes from the “glmnet”
package, and the lambda value with the lowest value was chosen
as the optimal lambda value (Simon et al., 2011). The selected
variables were included in the multivariate COX regression
model, and variables that did not support the proportional
hazards hypothesis were eliminated from the second
regression. The “rms” package was used to calculate the
variance inflation factor of each variable and assess whether
the model’s variables’ expressions were multicollinear, and
ultimately, derive the risk variables and risk coefficients.

Risk score � ∑
n

i�1
(ExpressionmRNAi × CoefficientmRNAi)

The samples were separated into high and low risk groups
based on their median risk score, and KM survival analysis was
performed on the training and verification groups.

Construction and Validation of a Prognostic
Nomogram
On the risk score and sample feature score, a univariate COX
regression analysis was conducted. The standard screening variable
was p < 0.05. Following the exclusion of samples with missing
variables. The stepwise regression method (https://cran.r-project.
org/web/packages/My.stepwise/index.html) was utilized to filter
covariates, and a multivariate COX regression prognostic model
was created. The variance inflation factor threshold was adjusted
at 4 to avoid multicollinearity between variables. Nomogram was
developed to investigate the association between total score and one-
and two-year prognoses. Finally, the calibration curve and decision
curve are used to assess the model’s predictive ability.

Screening of Important Homologous
Recombination Genes
The first principal component was discovered, and the primary
HR related genes contributing to it were identified using the
expected average contribution value (1/length (variables)*100%)
as a criterion. Using the median gene expression value as the
crucial value, samples from the IMvigor210 cohort were
separated into high and low expression groups, and the log-
rank test was performed to examine the difference between the
expression level and the immunotherapy prognosis level. To
ensure that p < 0.05 was utilized as the screening threshold
for module hub genes.

Verify the Relationship Between Hub Genes
and Clinical Features
Transcriptome sequencing data of bladder cancer and paired
paracancer samples from GSE133624 were used to analyze the
expression of hub genes in tumor samples and paired normal
samples. GSE13507 array expression profile data were used to
analyze the differences of hub genes in different pathological
grades and aggressiveness, as well as their relationship with
specific survival of patients.

Analysis of Hub Genes and Tumor
Progression Mechanism
Thorsson et al. (2018) scored the number of tumors in the TCGA
database according to the characteristics of different
biofunctional molecules. Pearson correlation analysis was
conducted on hub gene expression levels and characteristic
scores using the “Psych” package, and correlation heat maps
were drawn. In order to cor > 0.7 and p < 0.001 as a strong
correlation screening criterion. Based on the mutation data in the
immunotherapy cohort, the differences of hub genes in different
mutated and non-mutated samples were analyzed, and their
relationships with TMB and TNB were analyzed.

Statistical Analysis
The statistics in this study were based on the software package in
R4.1.1. The difference analysis of two samples for quantitative
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data conforming to normal distribution adopts independent
sample t-test, the non-parametric test was adopted for non-
normal distribution quantitative data, the non-parametric test
was adopted for various quantitative data, Chi-square test was
adopted for counting data, and the log-rank test was adopted for
Kaplan-Meier analysis. Correlation analysis was conducted by
Pearson analysis. Take p < 0.05 was the standard of statistical
significance.

RESULTS

The Homologous Recombination
Enrichment Score was Considerably
Greater in the Complete/Partial Response
Group Than in the Stable/Progressive
Disease Group
The enrichment analysis of ten different DNA damage repair
pathways revealed that the HR pathway had a considerably higher
enrichment score in the CR/PR group than in the SD/PD group
(p = 0.00086). Base excision repair (BER), non-homologous end
joining (NHEJ), translesion synthesis (TLS), and other scores
were considerably lower in the CR/PR group than in the SD/PD
group (p < 0.05), demonstrating that the genes involved to HR
were associated with immunotherapy result (Figure 2).

Recognize Modules Involved in
Immunotherapy Response and DNA
Damage Repair
Immunotherapy response data, as well as HR, BER, NHEJ, OTHER,
and TLS signature enrichment scores, were used to construct gene

co-expression networks containing the top 5000MDA-valued genes.
The study removed samples having a cluster height of more than
130, as they were considered outliers. When the network’s soft
threshold is set to 6, it is possible to design a co-expression network.
These genes can be classified into eight modules according to their
expression (Figures 3A–C). These modules include magenta,
purple, green, tan, greenyellow, black, blue, and grey. Correlations
between the green module gene co-expression network and
treatment response (cor = 0.22, p = 1E-4) and HR (cor = 0.71,
p = 5E-46) were significantly positive. Correlations with BER (cor =
−0.53, p = 3E-22), NHEJ (cor = −0.73, p = 3E-49), OTHER (cor =
−0.55, p = 7E-24), and TLS (cor = −0.66, p = 3E-37) were negative
(Figure 3D). The module membership (MM) and treatment
response (cor = 0.74, p = 5.5E-83), HR (cor = 0.94, p = 1E-200),
BER (cor = 0.74, p = 5.5E-83), NHEJ (cor = 0.9, p = 1.3E-171),
OTHER (cor = 0.82, p = 5.7E-116), TLS (cor = 0.92, p = 2.5E-193),
and OTHER gene signatures were significantly correlated (Figures
3E–J). Finally, the green module’s 472 genes were used to generate
the HR-related gene signature of mUC patients.

Module-Level Study of Gene Ontology
Functions
The WGCNA modules were analyzed using the GO function
analysis, and the results indicated that green modules with a
significant positive correlation with immunotherapy response
and a high HR enrichment score were primarily enriched in
the cell cycle (GO.BP: 0007049), cell cycle process (GO.BP:
0022402), and mitotic cell cycle (GO.BP: 0000278). Negatively
correlated black modules included exterior encapsulating
structure (GO.CC: 0030312), extracellular matrix (GO.CC:
0031012), collagen-containing extracellular matrix (GO.CC:
0062023), and others. Immunological response (GO.BP:

FIGURE 2 | Distribution of enrichment scores of DNA damage repair pathway in CR/PR group and SD/PD group. ATM, ataxia telangiectasia mutated; BER, base
excision repair; FA/HR, Fanconi Anemia/homologous recombination; MMR, mismatch repair; NER, nucleotide excision repair; NHEJ, non-homologous end joining;
OTHER, other; TLS, translesion synthesis; RECQ, recQ helicase pathway; XLR, cross-link repair; CR/PR, complete response/partial response; SD/PD, stable disease/
progressive disease.
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FIGURE 3 | Construction of gene weighted co-expression network. (A), Sample cluster diagram. (B), Analysis of the scale-free topology model fit index for soft
threshold powers (β). (C), A cluster dendrogram was built based on the dissimilarity of the topological overlap, which presents different gene co-expression modules in
IMvigor210, modules with a clustering degree less than 0.25 were merged. (D), Heatmap analysis of the correlation between module eigengenes of IMvigor210 and
enrichment score of DNA damage repair pathway. (E–J), The scatterplot of GS for the response, different enrichment score of DNA damage repair pathway vs. MM
in the green module. FA/HR, Fanconi Anemia/homologous recombination; BER, base excision repair; NHEJ, non-homologous end joining; OTHER, other; TLS,
translesion synthesis; GS, gene significance; MM, module membership.
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0006955), immune system process (GO.BP: 0002376), leukocyte
activation (GO.BP: 0045321), and other immune reaction-related
GO items were primarily enriched in the blue module (Table 1).

The Homologous Recombination Scores of
Several Feature Samples Varied
Significantly
The signatures of HR-related modules were scored using PCA.
The results indicated that the HR scores of the Lund2, TCGA,
MDA, and Baylor subtypes were substantially different (p < 0.05)
(Figures 4A–D). The Lund2 subtype had a considerably higher
score of genomically instability than the other subtypes, and the
sample composition score of genomically instability in the CR/PR
group (36.76%) was significantly greater than that in the SD/PD
group (12.17%). Neuronal (TCGA), luminal (MDA), and
differentiated (Baylor) subtypes had significantly higher HR
values than the other subtypes (p < 0.05). The HR scores for
high tumor level (TC2+) and high immune level (IC2+) were
substantially higher than those for low tumor level (TC0) and low
immunity level (IC0) (p < 0.05) (Figures 4F,G). The overall
survival rate of patients with a high score was substantially greater
than that of patients with a low score (p < 0.05) (Figures 4H,I).

Clinical Features and Functional Gene
Expression Were Different Across Groups
With High and Low Homologous
Recombination Score
The study divided the samples into groups according to the ideal
survival threshold for HR score and discovered that when the
critical HR score was 2.34, the overall survival Kaplan-Meier
analysis of the high and low score groups was the most significant

(p < 0.001) (Figures 4–I). There were significant differences in
treatment response, tumor level, immune level, TCGA subtype,
and immunophenotype between the two groups (p < 0.05), but
not in gender, intravesical BCG infusion, smoking history,
metastatic site, or other features (p > 0.05) (Table 2). The
comparison of high and low HR score samples revealed that
TMB and the number of mutations in TP53, RB1, FBXW7,
LRP1B, CCND3, FGFR3, TSC1, and HRAS were considerably
higher in the high score group than in the low score group.
Additionally, genes are involved in biological processes such as
the cell cycle, DNA replication, histones, HR, DDR, mismatch
repair, nucleotide excision repair, immune checkpoint, and CD8+
T-effector had significant differences between the high and low
groups (Figure 5).

Identifying Prognostic Genes and
Developing and Validating Risk Prognostic
Models
The differential analysis of high and low group samples yielded a
total of 1512 DEGs, including 797 upregulated and 715
downregulated genes. In the training group, LASSO regression
was done with a lambda of 0.1422 (Figures 6A,B). Six HR-related
immunotherapy prognostic genes were examined, and the risk
scoring formula was derived using multivariate COX regression:
Risk score = AUNIP* (−0.09913798) + SEPT3* (−0.11228204) +
FAM72D* (−1.03789188) + CAMKV* (−1.05763747) + CXCL9*
(−0.15162375) + FOXN4* (−0.32027958). Kaplan-Meier survival
analysis using the training group’s median risk score as the
threshold revealed that high-risk patients’ overall survival time
was considerably shorter than that of low-risk patients in the
training and validation groups (p < 0.01) (Figures 6C,D,F,G).
Overall survival was likewise significantly worse in high-risk

TABLE 1 | GO enrichment analysis of modules in WGCNA (Top3).

Module Rank ID Type Description Bonferroni

Black 1 GO:0030312 CC External encapsulating structure 1.07E-39
2 GO:0031012 CC Extracellular matrix 1.07E-39
3 GO:0062023 CC Collagen-containing extracellular matrix 1.52E-37

Blue 1 GO:0006955 BP Immune response 1.18E-61
2 GO:0002376 BP Immune system process 7.81E-52
3 GO:0045321 BP Leukocyte activation 1.39E-48

Green 1 GO:0007049 BP Cell cycle 7.30E-79
2 GO:0022402 BP Cell cycle process 3.04E-73
3 GO:0000278 BP Mitotic cell cycle 9.44E-70

Green-yellow 1 GO:0051607 BP Defense response to virus 5.12E-29
2 GO:0140546 BP Defense response to symbiont 5.12E-29
3 GO:0034340 BP Response to type I interferon 2.67E-27

Magenta 1 GO:0006396 BP RNA processing 7.19E-250
2 GO:0005730 CC Nucleolus 4.12E-190
3 GO:0016070 BP RNA metabolic process 1.95E-96

Purple 1 GO:0000977 MF RNA polymerase II transcription regulatory region sequence-specific DNA binding 3.92E-05
2 GO:0003700 MF DNA-binding transcription factor activity 1.52E-04
3 GO:0000976 MF Transcription regulatory region sequence-specific DNA binding 4.00E-04

Tan 1 GO:0007156 BP Homophilic cell adhesion via plasma membrane adhesion molecules 7.72E-42
2 GO:0098742 BP Cell-cell adhesion via plasma-membrane adhesion molecules 1.05E-35
3 GO:0005509 MF Calcium ion binding 2.22E-24

GO, gene ontology; WGCNA, weighted gene co-expression network analysis; BP, biological process; CC, cellular component; MF, molecular function.
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patients than in low-risk patients in the TCGA BLCA cohort
(without immunotherapy) at the optimum threshold (p < 0.01)
(Figures 6E,H). To assess the model’s diagnostic value, a time-
dependent ROC analysis was performed; the findings indicated
that the AUCMax value was 0.75, indicating that the model had a
high predictive value for the prognosis of patients undergoing
immunotherapy (Figure 6I).

Develop a Nomogram for Survival
Prediction
COX analysis was done univariately on the risk score and
feature scores of the samples’ various functions, and 19 factors
associated with overall survival were screened, as shown in
Table 3. Variables were screened using stepwise regression,

and multivariate COX regression analysis was used to generate
a column chart for five variables: risk score, TNB, mismatch
repair, CC Reg, and immunological checkpoint (Figure 7A).
Among them, risk score and mismatch repair were
independent risk factors for overall patient survival,
whereas TNB and CC Reg were independent protective
factors, as shown in Table 4. The calibration curve and
decision curve were used to assess the total score model’s
predictive value for patient survival time 1 and 2 years after
immunotherapy, and the results indicated that the predicted
total survival time was highly consistent with patient survival
time in practice (Figures 7B,E). Patients benefited from the
use of both models, and the benefit degree of model 2 (total
score) was greater than that of model 1 (risk score) (Figures
7C,D,F,G).

FIGURE 4 | HR score distribution in different subtypes of samples based on different molecular features. (A–E), The distribution of HR scores in different subtypes
was based on Lund2, TCGA, MDA, Baylor, and UNC classifications methods, as well as the composition ratio of different subtypes in the CR/SP and SD/PD groups; (F,
G), The distribution difference of HR score in different tumor level and immune level; (H,I), Kaplan-Meier survival analysis was performed on patients in the high and low
groups according to the median HR expression value (H) or optimal HR cut-off value (I). Lund, Lund University; TCGA, The Cancer Genome Atlas; MDA, MD
Anderson Cancer Center, UNC, University of North Carolina; HR, homologous recombination; TC, tumor cells; IC, immune cells; CR/PR, complete response/partial
response; SD/PD, stable disease/progressive disease.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8751288

Li et al. Prognosis Prediction in Immunotherapy

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Identify Critical Homologous
Recombination-Related Genes Inside the
Module
PCA was used to find the hub genes affecting HR scores. The
proportion of explanatory variables in the first principal component
(38.1%) was significantly greater than that in the other (Figure 8A).
The intersection of the genes in the first component and the HR
signature (GO: 0035825) genes in theGOdatabase revealed that nine
genes provided more than the average contribution to the ten genes
obviously implicated in HR (Figures 8B,C). Additionally, survival
analysis revealed that patients in the high expression group ofBRIP1,
EME1, FANCD2, RAD51, RAD51AP1, RAD54L, and RMI1 genes
had a significantly longer overall survival time than those in the low

expression group prior to immunotherapy (p < 0.05), and patients
had a better prognosis following immunotherapy (p < 0.05)
(Figures 8D–J).

Signature Gene Expressionwas Found to be
Associated With Carcinogenesis and
Progression
Further examination of the relationship between signature genes
and tumor occurrence and progression revealed that in patients
without immunotherapy, the expression levels of seven signature
genes were significantly higher in tumor tissues than in para-
cancer tissues (p < 0.05) (Figures 9A–G). The expression levels of
EME1, RAD51, RAD51AP1, and RAD54L genes were significantly

TABLE 2 | Patient characteristics.

Characteristic Overall, N = 2981 HR score group p Value2

High, n = 1291 Low, n = 1691

Sex 0.2
Female 65 (22%) 33 (26%) 32 (19%)
Male 233 (78%) 96 (74%) 137 (81%)

Response <0.001
PR 43 (14%) 25 (19%) 18 (11%)
CR 25 (8.4%) 20 (16%) 5 (3.0%)
PD 167 (56%) 64 (50%) 103 (61%)
SD 63 (21%) 20 (16%) 43 (25%)

IC Level <0.001
IC0 83 (28%) 26 (20%) 57 (34%)
IC1 112 (38%) 35 (27%) 77 (46%)
IC2+ 102 (34%) 68 (53%) 34 (20%)
Unknown 1 0 1

TC Level <0.001
TC0 238 (80%) 89 (69%) 149 (89%)
TC1 17 (5.7%) 9 (7.0%) 8 (4.8%)
TC2+ 42 (14%) 31 (24%) 11 (6.5%)
Unknown 1 0 1

TCGA subtype <0.001
I 107 (36%) 27 (21%) 80 (47%)
II 75 (25%) 46 (36%) 29 (17%)
III 60 (20%) 27 (21%) 33 (20%)
IV 56 (19%) 29 (22%) 27 (16%)

Immune phenotype 0.002
Desert 69 (28%) 25 (23%) 44 (33%)
Excluded 113 (46%) 45 (41%) 68 (51%)
Inflamed 62 (25%) 40 (36%) 22 (16%)
Unknown 54 19 35

Intravesical BCG 0.4
No 231 (78%) 103 (80%) 128 (76%)
Yes 67 (22%) 26 (20%) 41 (24%)

Tobacco History 0.8
Current 32 (11%) 15 (12%) 17 (10%)
Never 98 (33%) 40 (31%) 58 (34%)
Previous 168 (56%) 74 (57%) 94 (56%)

Met Disease Status 0.3
Liver 81 (30%) 33 (29%) 48 (30%)
LN Only 51 (19%) 26 (23%) 25 (16%)
Visceral 139 (51%) 54 (48%) 85 (54%)
Unknown 27 16 11

1n (%).
2Pearson’s Chi-squared test; Fisher’s exact test.
HR, homologous recombination; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; TCGA, the cancer genome atlas; BCG: bacillus calmette
guerin vaccine; IC, immune cells; TC, tumor cells.
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higher in high grade bladder cancer and invasive bladder cancer
(p < 0.05) than in low grade bladder cancer and superficial
bladder cancer (Figures 9H,I). Kaplan-Meier survival analysis
revealed that patients with high expression of EME1, RAD51AP1,
and RAD54L genes had a significantly shorter disease-specific
survival time than patients with low expression of EME1,
RAD51AP1, and RAD54 (Figures 9J–M).

Hub Gene Expression is Associated With
Tumor Proliferation and Gene Mutation
The study discovered that the expression levels of hub genes
such as EME1, RAD51AP1, and RAD54L were highly
positively correlated with Thorsson et al.’s proliferation
characteristic data (cor > 0.7, p < 0.001), and moderately
positively correlated with Th2 cells, Wound Healing, and

FIGURE 5 | The relationship between HR score groups, different subtypes, and core biological pathways. Rows of the heat map show gene expression (z-scores)
grouped by pathway. Lund, Lund University; TCGA, The Cancer Genome Atlas; MDA, MDAnderson Cancer Center, UNC, University of North Carolina; HR, homologous
recombination; TC, tumor cells; IC, immune cells; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; DDR, DNA damage repair.
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other characteristic data (cor > 0.4, p < 0.001) (Figures
10A–J). The study discovered that EME1, RAD51AP1, and
RAD54L were substantially more prevalent in TP53 and RB1
mutant samples than in non-mutation samples (p < 0.05), as
well as in high TMB and TNB samples than in low TMB and
TNB samples (Figures 10K–N). The findings indicated that
hub genes may enhance tumor growth and are
associated with tumor mutation, which may affect
immunotherapy.

DISCUSSION

Immunotherapy was discovered lately, and it now offers new
therapeutic choices for individuals with advanced mUC,
particularly those who are intolerant to platinum
chemotherapy (Witjes et al., 2021). Based on the diversity
in treatment among patients, the European Association of
Urology recommends utilizing ICIs when the positive
number of tumor-infiltrating immune cells evaluated by
Ventana SP142 is greater than 5% (Cathomas et al., 2022).
However, no attempt has been made to forecast mUC patients’
prognosis using tumor mutation-related characteristics.

The DDR signature genes were scored using ssGSEA, and the
results revealed that HR and BER, NHEJ, TLSD, and OTHER were
all distinct. The effective group (CR/PR) hadmuch higher HR scores
than the ineffective group (SD/PD), whereas the effective group had
significantly lower other features than the ineffective group. HR is a
process for repairing double-strand DNA breaks that can be used
exclusively during the S and G2 stages of the cell cycle due to its
reliance on sister chromatids as repair templates (Talens et al., 2017).
A recent study indicates that HR defects (HRD) in cancer might
result in unrepaired double-strand DNA breaks, fork collapse,
genomically rearrangement, and increased tumor aggressiveness
in breast and ovarian cancer (Bouwman et al., 2010; Piazza and
Heyer, 2019; Vergote et al., 2021). On the other hand, increased HR
repair protein production disrupts the HR repair process and
promotes gene rearrangement, resulting in genomically instability
(Richardson et al., 2004). Furthermore, HR-related genes have been
found to be substantially expressed in cancer cells with low HR
effectiveness, highlighting that this is a non-functional compensatory
strategy in DNA damage repair-deficient malignancies (Pitroda
et al., 2014). Patients with a HR deficiency in bladder cancer may
benefit more from HRD-targeted platinum medications and PARP
inhibitors, and no correlation between their functional activity and
bladder cancer has been established (Börcsök et al., 2021). The HR

FIGURE 6 | Construction and validation of survival risk model after immunotherapy. (A,B), Variables were filtered using LASSO regression, according to DEGs.
(C–E), Distribution of risk scores, survival status, and heat maps of hub variables in IMvigor210 training group and internal validation group, as well as TCGA_BLCA
cohort. (F–H), Kaplan-Meier survival analysis of high and low risk groups in IMvigor210 training group and internal validation group, and TCGA_BLCA cohort. (I), Time-
dependent ROC curves based on risk scores in the IMvigor210 cohort.
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score of the genomically instability sample in the Lund2 subtype was
significantly greater than that of the other subtypes, and the

genomically instability sample composition in the effective group
was significantly higher than that of the ineffective group in the
immunotherapy response subgroup. This demonstrates that high
HR scores are associated with immunotherapy responses and
suggest genomically instability in bladder cancer. Additionally, a
variety of other DDR function defects may result in genome and
chromosome instability, which may result in DNA leakage from the
nucleus to the cytoplasm, activation of cytoplasmic DNA sensors,
activation of downstream pathways, including type I interferon
response, and ultimately enhanced antitumor immunity, and may
result in cancer cells being susceptible to ICIs (Chen et al., 2022). GO
functional enrichment analysis showed that HR related modules
were closely related to the cell cycle, cell cycle process, and mitotic
cell cycle. Excessive cell division is connected with the management
of the cell cycle in tumor cells, including cell cycle checkpoints,
oncogene-induced replication needs, and mitotic checkpoints
(Matthews et al., 2022). Additionally, the heat map demonstrated
that samples with a high HR score expressed much more signature
genes such as cell cycle, DNA replication, histone, DDR,
immunological checkpoint, and CD8+ effector T cells than those
with a low HR score. This shows that samples with a high HR score
may bemore genomically unstable and thereforemore susceptible to
immunotherapy.

TABLE 3 | Univariate Cox regression analysis.

Characteristic Beta Hazard ratio (95% CI
for HR)

p Value

Sex −0.17 0.84 (0.6–1.2) 3.10E-01
IC level −0.34 0.71 (0.59–0.85) 2.10E-04 ***
TC level −0.03 0.98 (0.8–1.2) 8.10E-01
TMB −0.05 0.96 (0.93–0.98) 3.10E-04 ***
TNB −0.36 0.7 (0.59–0.83) 6.10E-05 ***
Lund2 0.19 1.2 (1.1–1.4) 1.70E-03 **
TCGA subtype 0.00 1 (0.88–1.1) 9.60E-01
HR score group −0.56 0.57 (0.42–0.77) 2.60E-04 ***
Immune checkpoint −0.08 0.93 (0.87–0.99) 1.50E-02 *
CD 8 T effector −0.10 0.91 (0.86–0.96) 3.30E-04 ***
DDR −0.04 0.96 (0.94–0.99) 4.80E-03 **
APM −0.07 0.93 (0.87–1) 4.50E-02 *
CC Reg 0.10 1.1 (1–1.2) 1.80E-02 *
Fanconi −0.07 0.94 (0.9–0.97) 7.80E-04 ***
Gene19 0.03 1 (0.98–1.1) 2.40E-01
Tcga 0.01 1 (0.94–1.1) 8.30E-01
Histones −0.08 0.92 (0.85–1) 5.00E-02
EMT1 0.02 1 (0.95–1.1) 6.30E-01
EMT2 0.03 1 (0.96–1.1) 4.00E-01
EMT3 0.01 1 (0.94–1.1) 7.40E-01
WNT target 0.17 1.2 (1–1.4) 8.30E-03 **
FGFR3 related 0.05 1.1 (0.95–1.2) 2.90E-01
Cell cycle −0.03 0.97 (0.95–0.99) 1.30E-02 *
Mismatch repair −0.06 0.95 (0.9–0.99) 2.70E-02 *
Homologous recombination −0.08 0.93 (0.88–0.98) 3.40E-03 **
Nucleotide excision repair −0.05 0.95 (0.91–1) 3.20E-02 *
DNA replication −0.04 0.96 (0.92–0.99) 1.50E-02 *
Base excision repair −0.05 0.95 (0.9–1) 4.20E-02 *
Risk score 0.82 2.3 (1.8–2.9) 5.70E-11 ***

***p < 0.001; **p < 0.01; *p < 0.05.
TMB, tumor mutation burden; TNB, tumor neoantigen burden; IC, immune cells; TC,
tumor cells; HR, homologous recombination; DDR, DNA, damage repair; APM: antigen
processing and presentation machinery; CC, reg, cell cycle regulation.

FIGURE 7 | Construction and validation of survival risk model after immunotherapy. (A), The Nomogram is composed of risk score and signature score of core biological
function. (B,E), Calibration curves of patients’ 1-year and 2-year survival after immunotherapy based on the total scoremodel. (C,D,F,G), The decision curve and net benefit curve
of patients’ survival at 1 and 2 years after immunotherapy, according to different models. CC reg, cell cycle regulation; TNB, tumor neoantigen burden.

TABLE 4 | Multivariate Cox regression analysis.

Characteristic Beta Hazard ratio (95% CI
for HR)

p Value

Risk score 1.42 4.1 (2.4–7.1) 4.10E-07 ***
TNB −0.30 0.74 (0.61–0.91) 0.0039 **
Mismatch Repair 0.13 1.1 (1–1.3) 0.0033 **
CC Reg −0.16 0.85 (0.74–0.98) 0.03 *
Immune Checkpoint 0.08 1.1 (0.97–1.2) 0.12

Global p-value (Log-Rank): 4.5977E-11; AIC: 1059.89; Concordance Index: 0.7.
***p < 0.001; **p < 0.01; *p < 0.05.
TNB, tumor neoantigen burden; CC, reg, cell cycle regulation.
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Currently, most immunotherapy prediction models are based
on immune cell infiltration. Chen et al. (2021), for example,
developed a model based on the CD8+ effector T cell signature’s
immune checkpoint signature. Based on the HR gene signature,
the study created a 6-gene risk model. In both the training and
internal validation groups, patients with a high risk score had a
shorter overall survival time than patients with a low risk score,
and the ROC curve verified this. This study found risk score and
mismatch repair (MMR) to be independent risk factors for
immunotherapy patients, proving the risk score’s predictive
value. MMR defects result in base pair deletion or mutation at
recurrent microsatellite loci, resulting in microsatellite instability
(MSI), which is a type of genomic instability (Yoshioka et al.,
2021). Defects in DNA double-strand repair have been
demonstrated to cause MSI during replication stress in mouse
embryonic fibroblasts (Matsuno et al., 2019). Considering HR
repair is the primary form of DSB repair, defects in this way may
causeMSI as well as MMR defects. Tumor patients withMSI have
a substantial number of mutant neoantigens and showed

susceptibility to ICIs in cancers of various tissue origins,
according to Le et al. (2017), which was consistent with our
findings. TNB and CC Reg both are protective factors in their
own respect. TNB is more sensitive than TMB in predicting the
success of ICIs since it measures the total quantity of neoantigens
in tumor cells (Wang et al., 2021). Only a small percentage of
mutations can be identified by positive T lymphocytes because
not all tumor cell mutations yield neoantigens (Wang and Wang,
2017). The CC reg is also closely related to immunotherapy. By
phosphorylating and stabilizing SPOP and boosting its binding to
NFB/P65, the cyclin D-CDK4/6 kinase can lower PDL1
expression, which is favorable to immunotherapy (Liu et al.,
2022).

The study found RAD51AP1, RAD54L, and EME1 to be hub
genes in HR patterns associated with immunotherapy response and
tumor progression. RAD51AP1 stands for RAD51-associated
protein 1. RAD51AP1 enhances RNA transcript entrance into
donor DNA and increases HR by establishing a DR-loop when
local transcription is active (Ouyang et al., 2021). Breast cancer,

FIGURE 8 | The first principal component of PCA was used to screen for HR-related genes. (A), Explainability of different principal components to all variables; (B,
C), Contribution of HR related genes to the first principal component. (D–J), Kaplan-Meier survival analysis based on grouping of median expression values of HR related
genes. PCA, principal component analysis; HR, homologous recombination.
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colon cancer, and other cancers express it more. Its defects can slow
tumor growth by impairing stem cell self-renewal and increase
chemotherapy and radiation sensitivity (Bridges et al., 2020;
Bridges et al., 2021). RAD54L is a Rad51 cofactor that
participates in HR-related DNA damage repair via DNA-
dependent double-stranded ATPase(Ceballos and Heyer, 2011).
In bladder cancer, the transcription factor E2F1 directly activates
RAD54L, regulating DDR, and is linked to poor prognosis (Mun
et al., 2020). An endonuclease complex with methyl
Methanesulfonate-sensitive UV-Sensitive 81 protein is encoded by

EME1. In the absence of CHK1, this endonuclease complex divides
poorly replicated chromosomes in mitosis, producing chromosomal
instability and tumor development (Calzetta et al., 2020). The
finding of these genes in various cancers is related to disease
progression. Our study found a substantial correlation between
RAD51AP1, RAD54L, and EME1 gene expression and bladder
cancer proliferation, Th2, and wound healing scores. The
expression levels of hub genes were also higher in the TP53 and
RB1 mutant samples than in the non-mutant samples, and in the
high TMB and TNB samples than in the low expression levels. This

FIGURE 9 | Analysis of relationship between HR related genes and clinical features in GSE133624 and GSE13507. (A–G), Differences in expression of HR-related
genes between cancer and paired paracancer samples; (H,I), Expression differences of HR related genes in different tumor grades and invasive samples; (J–M), Kaplan-
Meier survival analysis based on grouping of median expression values of HR related genes in GSE13507.
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causes uncontrollable cell proliferation and genomically instability
due to TP53 and RB1 mutations (Mcclintock, 1938; Frias et al.,
2012). Thismay be themainmechanism acting on tumormutations.

In a summary, the study discovered that a high HR score was
associated with immune response and genomically instability.
However, whether the process is driven by HR gene
overexpression or by passive non-functional upregulation of HR-
related genes caused by DNA damage repair errors remains
uncertain, although this has no bearing on the subsequent
prediction models’ construction. Additionally, the study identified
hub genes related to immunotherapy and tumor growth in HR that
will be exploited in future fundamental research.
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