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Abstract: A highly selective and sensitive aptasensor for detecting patulin (PAT) was constructed
based on the fluorescence quenching of fullerenol quantum dots (FOQDs) towards carboxytetram-
ethylrhodamine (TAMRA) through PET mechanism. The π-π stacking interaction between PAT
aptamer and FOQDs closed the distance between TAMRA and FOQDs and the fluorescence of
TAMRA was quenched with maximum quenching efficiency reaching 85%. There was no non-specific
fluorescence quenching caused by FOQDs. In the presence of PAT, the PAT aptamer was inclined to
bind with PAT and its conformation was changed. Resulting in the weak π-π stacking interaction
between PAT aptamer and FOQDs. Therefore, the fluorescence of TAMRA recovered and was lin-
early correlated to the concentration of PAT in the range of 0.02–1 ng/mL with a detection limit of
0.01 ng/mL. This PAT aptasensor also performed well in apple juice with linear dynamic range from
0.05–1 ng/mL. The homogeneous fluorescence aptasensor shows broad application prospect in the
detection of various food pollutants.

Keywords: patulin; fullerenol quantum dots; aptasensor; fluorescence

Key Contribution: A novel highly sensitive and selective fluorescence aptasensor for patulin detection
based on the fluorescence-quenching ability of fullerenols quantum dots is reported.

1. Introduction

Patulin (PAT), also known as coral penicillin, is a secondary metabolite produced
by fungi such as Aspergillus and Penicillium. PAT occurs most often in apples that have
been spoiled by mold growth or in products made from spoiled apples, such as apple
juice and apple puree [1]. PAT is a neurotoxic mycotoxin, which exerts acute and chronic
toxicity to humans and can cause vomiting and nausea. It can change the permeability
of the cell membrane and inhibit the synthesis of macromolecules in cells, resulting in
the depletion of non-protein sulfhydryl groups and loss of cell activity [2,3]. PAT has
toxicological effects on fertility, carcinogenesis, teratogenesis and immunity [4]. Owing
to its drastic toxicity, different authorities have established regulatory limits on the level
of PAT in food. The maximum limit of PAT defined by the European Union Commission
(EU) and China was 50 µg/kg in fruit-based products [5,6], and the maximum daily intake
of PAT was setted as 0.4 µg/kg body weight/day by the World Health Organization
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(WHO) and Food and Agriculture Organization of the United Nations (FAO) [7]. Up to
now, various kinds of protocols have been developed for PAT detection, including thin
layer chromatography (TLC), High-performance liquid chromatography (HPLC), high-
performance liquid chromatography tandem mass spectrometry (HPLC-MS), micellar
electrokinetic chromatography (MEKC) and so on [8–10]. Although these methods exhibit
high reliability and accuracy, some of them are time-consuming and require expensive
instruments and highly skilled operators, which makes them unsuitable for in situ analysis.
Therefore, it is urgent to establish simple and fast analytical methods for PAT detection in
fruit products to ensure human health and consumption safety.

Aptamers are short synthetic single-stranded oligonucleotides or peptide synthesized
by systematic evolution of ligands by exponential enrichment (SELEX) method, which is
mainly repeated in the binding, separation, amplification and purification steps [11–13].
In the past few years, with the unique advantages of cost-effective and ease of synthesis,
high affinity, good stability and simple modification, aptamers have attracted increasing
attention and been widely used in biosensing applications for heavy metal ions, antibiotics,
drugs, protein and even whole cells detection [14–17]. Recently, Wu et al. screened and
identified a 40-mer aptamer for PAT and developed a colorimetic aptasensor for PAT
detection based on an enzyme-chromogenic substrate system in 2016 [18]. Afterwards,
electrochemical analysis method based on PAT aptamer were also constructed for detecting
PAT [19]. Although some progress has been made in establishing PAT aptasensors, it is still
very important to set up new biosensors for PAT with better performance.

Due to simplicity and accessibility of fluorescent labels with diverse spectral char-
acteristics for optical signal transduction, fluorescence-based assay methods are readily
becoming the most widely used technique in the field of sensing [20]. Various fluorescence-
based biosensing platforms have been developed for different applications such as food
safety, environmental monitoring, drug delivery and bioimaging etc [21–24]. With the
rapid development of nanotechnology in material science, some new fluorescent labeling
materials and nanomaterial-based quenchers with excellent optical character have emerged
and attracted a lot of attention [25]. It has been demonstrated that fullerenols quantum dots
(FOQDs) with good fluorescence quenching performance are very suitable for application
in the field of biosensing [26]. It has also been verified that π-π stacking interaction existed
between FOQDs and biological molecules [27,28].

In order to achieve highly sensitive fluorescence detection of PAT, the excellent
fluorescence-quenching ability of FOQDs and the high affinity of PAT aptamer towards
PAT were combined. When TAMRA-labeled PAT aptamer and FOQDs were mixed, the π-π
stacking interaction between PAT aptamer and FOQDs closed the distance between energy
donor TAMRA and energy acceptor FOQDs. The fluorescence of TAMRA was quenched.
However, in the presence of PAT, the specific binding of PAT aptamer and PAT resulted in
the conformational change of aptamer. Thereby the π-π stacking interaction between PAT
aptamer and FOQDs was plainly reduced and the distance between TAMRA and FOQDs
was widened. In this case, the fluorescence recovery of TAMRA was observed in a PAT
concentration-dependent manner. The proposed PAT fluorescence aptasensor also worked
well in apple juice samples. This highly sensitive and selective fluorescence aptasensor
exhibit wider application prospect in detecting other mycotoxins and so on.

2. Results and Discussions
2.1. Fluorescence Aptasensor Development for PAT

The PAT aptasensor was developed on the basis of fluorescence quenching and recov-
ery between TAMRA and FOQDs, as shown in Figure 1. It has been reported that strong
π-π stacking interaction existed between ssDNA aptamer and FOQDs. However, after
the specific binding of ssDNA aptamer with its target, the π-π stacking interaction was
greatly weakened because of the conformational change of PAT aptamer. In our design,
the π-π stacking interaction closed the distance between TAMRA and FOQDs, resulting
in the fluorescence quenching of TAMRA through PET mechanism. After PAT was intro-
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duced into the TAMRA-PAT aptamer-FOQDs PET system, PAT aptamer was inclined to
bind with PAT and its conformation changed, giving rise to weak π-π stacking interaction
between changed conformation of PAT aptamer and FOQDs. Thus, TAMRA was far away
from FOQDs and PET process inhibited. The fluorescence of TAMRA recovered and the
fluorescence recovery was positively correlated with the concentration of PAT.
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Figure 1. Schematic diagram of the fluorescence aptasensor for PAT detection based on fluorescence
turn-off and turn-on from TAMRA to FOQDs. When TAMRA labeled-PAT aptamer was incubated
with FOQDs, fluorescence turn-off was observed by the luminescence quenching caused by FOQDs
towards TAMRA through PET mechanism. While in the presence of PAT, the aptamer was inclined to
bind with PAT and its conformation changed. TAMRA was far away from FOQDs and PET process
was inhibited, resulting in the fluorescence turn-on of TAMRA.

2.2. Properties Characterization of the FOQDs

FOQDs was purchased and used to realize the above design. It has a particle size of
2 nm. Fourier Transform Infrared (FT-IR) spectrum of FOQDs was shown in Figure 2b,
indicating the typical absorptions of fullerenols. It can be seen an intense broad O-H band
around 3490 cm−1, and three characteristic bands around 1620, 1410 and 1090 cm−1 corre-
sponding to C=C, C-O-H and C-O absorption, respectively. Energy Dispersive Spectroscopy
(EDS) results (Figure 2c) which indicated that C elements and O elements were both on
the surface of FOQDs, further confirmed that FOQDs had abundant hydroxyl groups [29].
Na elements might be attributed to the use of NaOH in the process of FOQDs synthesis
from fullerene [30]. It was clearly demonstrated that there were a large amount of hydroxyl
groups to form a hydrophilic surface on the surface of FOQDs, which greatly reduced the
particle-to-particle interactions and improved its dispersion in water [31,32].

2.3. Construction of the PAT Aptasensor

Firstly, the concentration of TARMA-labeled PAT aptamer was optimized. It was
indicated in Figure 3a that the fluorescence of TAMRA-labeled PAT aptamer enhanced
with the concentration increased from 10 nM to 60 nM. At the concentration of 60 nM,
the fluorescence intensity was enough to establish the fluorescence aptasensor for PAT
detection. Although higher concentration could result in the increasing of the fluorescence
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intensity, the high concentration would also reduce the detection sensitivity. So, 60 nM
of TAMRA-labeled PAT aptamer was used in this fluorescence aptasensor. In order to
study the energy transfer process between TAMRA and FOQDs, different concentrations of
FOQDs were mixed with TAMRA-labeled PAT aptamer at a fixed concentration of 60 nM.
They were incubated in HEPES buffer (50 mM, 5 mM MgCl2, 120 mM NaCl, pH 7.4). It
could be seen from Figure 3b that the fluorescence of TAMRA-labeled PAT aptamer was
quenched with 85% maximum quenching efficiency, depending on the concentration of
FOQDs. To rule out non-specific fluorescence quenching between FOQDs and TAMRA,
the fluorescence of TAMRA at a final concentration of 60 nM mixed with 70 µg/mL of
FOQDs in HEPES buffer was measured. From Figure 3c, it indicated that there was nearly
no non-specific fluorescence quenching. Therefore, the fluorescence quenching of TAMRA
was attributed to the strong π-π stacking interaction between FOQDs and PAT aptamer,
which closed the distance between TAMRA and FOQDs resulting in PET [27]. So 70 µg/mL
of FOQDs was chosen for the following experiments. Then TAMRA-labeled PAT aptamer
with a concentration of 60 nM was incubated with FOQDs in a concentration of 70 µg/mL,
and the fluorescence intensities were measured after different incubation time from 0 to
30 min to obtain the time-dependent fluorescence intensities. As indicated in Figure 3d,
5 min was enough to achieve the quenching equilibrium. A 30 min incubation period was
used for the fluorescence quenching process in the next fluorescence recovery experiment
to ensure that a quenching equilibrium could be achieved.
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Figure 3. (a) Fluorescence spectra of TAMRA labeled-PAT aptamer at different concentrations ranging
from 20 nM to 60 nM. (b) Luminescence quenching of TAMRA-PAT aptamer (60 nM) withdifferent
concentrations of FOQDs (0, 10 µg/mL, 20 µg/mL, 30 µg/mL, 40 µg/mL, 50 µg/mL, 60 µg/mL,
70 µg/mL, 80 µg/mL, 90 µg/mL, 100 µg/mL, 150 µg/mL, 200 µg/mL). (c) Fluorescence spectra of
TAMRA (60 nM). (d) Time dependence of the luminescence quenching efficiency of 60 nM TAMRA-
labeled PAT aptamer and 70 µg/mL FOQDs.

2.4. PAT Detection in Aqueous Buffer Solution

As illustrated in Figure 1, in the presence of PAT, the PAT aptamer was inclined to
bind with PAT and its conformational was changed. There was very weak π-π stacking
interaction between conformation-changed PAT aptamer and FOQDs, as TAMRA was
far away from FOQDs, resulting in the inhibition of PET process. The fluorescence of
TAMRA recovered and had a positive correlation with PAT concentration, as shown in
Figure 4a. It was indicated that the fluorescence recovery of TAMRA linearly corresponded
to the concentration of PAT in the range of 0.02 ng/mL–1 ng/mL, with the detection limit
of 0.01 ng/mL (Figure 4b). Compared to other reported PAT biosensors [18,33–35], the
present sensor performed better as indicated in Table 1, showing great potential for lower
concentration of PAT detection in agricultural products. This improvement depended
upon the good fluorescence quenching ability of FOQDs, with negligible non-specific
fluorescence quenching to non-labeled TAMRA. Other mycotoxins, including zearalenone
(ZEN), fumonision B1 (FB1), deoxynivalenol (DON), T-2 toxin and aflatoxin B1 (AFB1)
were introduced into the TAMRA-PAT aptamer-FOQDs PET mixture to investigate the
specificity of the aptasensor for PAT. In Figure 5, it could be found that all the other
mycotoxins cause negligible fluorescence alteration of TAMRA except PAT, which fully
confirmed the superior specificity of the aptasensor towards PAT resulting from the high
binding affinity of PAT aptamer.
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Table 1. Comparison with other biosensors for PAT detection.

Method LINEAR RANGE Limit of Detection Detection Time References

Fluorometric aptasensor based on
magnetized graphene oxide and DNase
I-assisted target recycling amplification

0.5–30 ng/mL 0.28 ng/mL ~2 h [33]

Quartz crystal microbalance sensor based
on molecularly imprinted sol-gel polymer

7.5 × 10−3 µg mL−1–6
× 10−2 µg mL−1 3.1 × 10−3 µg mL−1 ~4 h [34]

colorimetric method based on aptamer
and gold nanoparticles 50–2500 pg mL−1 48 pg mL−1 ~2 h [18]

Phosphorescent nanosensor based on
surface molecularly imprinted polymer
capped Mn-doped ZnS quantum dots

0.43–6.50 µmol L−1 0.32 µmol L−1 2 h [35]

Fluorescence aptasensor based on FOQDs 0.02–1 ng/mL 0.01 ng/mL 1.5 h This work
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2.5. PAT Detection in Apple Juice

It is absolutely essential to monitor the concentration of PAT in apple juice to ensure the
safety of consumption and the health of consumers. PAT detection was also realized in apple
juice that is 100-fold diluted with HEPES buffer. Figure 6a indicates that the fluorescence
of TAMRA was linearly correlated to PAT concentration ranging from 0.05 ng/mL to
1 ng/mL, with a detection limit of 0.03 ng/mL (Figure 6b). Subsequently, a standard
addition experiment was carried out to examine the practical application of this PAT
aptasensor in apple juice. Satisfactory recoveries were obtained from 95% to 106% in
Table 2. It firmly demonstrated that this aptasensor constructed with FOQDs as energy
acceptor had great potential application.
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Figure 6. (a) Fluorescence recovery spectra with increasing concentration of PAT (0, 0.05 ng/mL,
0.1 ng/mL, 0.3 ng/mL, 0.4 ng/mL, 0.6 ng/mL, 0.8 ng/mL, 1.0 ng/mL). (b) Fluorescence recovery
linearly corresponded to PAT concentration in the range of 0.05 to 1 ng/mL in 100-fold diluted apple
juice with HEPES buffer.

Table 2. Analytical and recovery performance of developed aptasensor for PAT detection.

Apple Juice
Sample

PAT Added
(ng/mL)

PAT Founded
(ng/mL) Recovery(%) RSD(%) n = 3

1 0.40 0.38 95.0 5.3
2 0.80 0.85 106.3 3.1
3 1.00 1.03 103.0 5.0

3. Conclusions

In conclusion, a highly sensitive and selective PET aptasensor for PAT detection
has been developed. FOQDs exhibited superior fluorescence-quenching ability with 85%
maximum quenching efficiency. What’s more, the non-specific fluorescence quenching
was almost negligible. Combined with the high specificity aptamer of PAT, this aptasensor
performed well both in aqueous buffer solution and apple juice samples. This homogeneous
aptasensor also had the advantages of simplicity and high efficiency, indicating broad
application prospects in detecting various food pollutants, such as other mycotoxins.

4. Materials and Methods
4.1. Materials

TAMRA-labeled aptamer sequences for PAT used in this study were purchased from
Sangon Biotech (Shanghai, China) Co., Ltd. Wuhan Synthesis Department. TAMRA-labeled
aptamer sequences are as follows: 5′-ggC CCg CCA ACC CgC ATC ATC TAC ACT gAT
ATT TTA CCT T-TAMRA-3′.

Patulin, potassium phosphate monobasic (KH2PO4), sodium phosphate dibasic
(Na2HPO4), magnesium chloride (MgCl2), potassium chloride (KCl), HEPES sodium salt,
FOQDs and other mycotoxins: ZEN, FB1, DON, T-2, AFB1 were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Milli-Q water obtained from a Milli-Q system (Millipore,
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Bedford, MA, USA) was used in the experiment. Apple juice (purity: 100%) was bought in
a local supermarket.

4.2. Instrumentation

The size and morphology were recorded by a HITACHI H-7000FA transmission
electron microscope (Tokyo, Japan). FT-IR spectrum of FOQDs was measured on a Thermo
Fisher Scientific Nicolet iS10 FT-IR Spectrometer (Waltham, MA, USA). Fluorescence spectra
were recorded using a Hitachi F4500 fluorescent spectrophotometer (Tokyo, Japan).

4.3. Quenching Measurements

Different concentrations of FOQDs were used to incubate with TAMRA-labeled
PAT aptamer at a fixed concentration of 60 nM. The concentration of FOQDs were set
at 0, 10 µg/mL, 20 µg/mL, 30 µg/mL, 40 µg/mL, 50 µg/mL, 60 µg/mL, 70 µg/mL,
80 µg/mL, 90 µg/mL, 100 µg/mL, 150 µg/mL, 200 µg/mL. They were incubated in HEPES
buffer for 1 h and the fluorescence signals were obtained by excitation at 550 nm. Then
TAMRA-labeled PAT aptamer with a concentration of 60 nM was incubated with FOQDs
in a concentration of 70 µg/mL. The time-dependent fluorescence signals were measured
after different incubation time from 0 to 30 min.

4.4. PAT Detection in Buffer Solution

Various concentrations of PAT (0, 0.01 ng/mL, 0.02 ng/mL, 0.03 ng/mL, 0.06 ng/mL,
0.09 ng/mL, 0.1 ng/mL, 0.2 ng/mL, 0.4 ng/mL, 0.6 ng/mL, 0.8 ng/mL, 1.0 ng/mL) were
respectively mixed with TAMRA-labeled PAT aptamer (60 nM) for 1 h at room temperature.
Then, FOQDs were added individually at a concentration of 70 µg/mL and incubated for
another 30 min. The fluorescence signals were recorded. To investigate the selectivity of
this PET aptasensor, other toxins including ZEN, FB1, DON, T-2 and AFB1 were introduced
into the TAMRA-PAT aptamer-FOQDs PET mixture. ZEN, FB1, DON, T-2 and AFB1 with
a concentration of 0.4 ng/mL were incubated with TAMRA-labeled PAT aptamer with
a concentration of 60 nM in HEPES buffer at room temperature for 1 h, respectively. A
total of 70 µg/mL FOQDs were added individually and incubated for 30 min. Then, the
fluorescence intensities were measured.

4.5. PAT Detection in Apple Juice Samples

The apple juice samples were purchased from the local market of Wuhan, China.
In order to detect PAT in the apple juice, the apple juice was diluted 100 times with
HEPES buffer to avoid matrix interference. The assay procedure was the same as that in
the HEPES buffer. Standard addition method was carried out by adding different PAT
(0.40 ng/mL, 0.80 ng/mL, 1.00 ng/mL) into PAT-free apple juice samples and then detected
the concentration of PAT by this fluorescence aptasensor.
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