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Abstract: X-ray fluorescence spectroscopy is a non-destructive technique employed for elemental
analysis of a wide range of materials. Its advantages are especially valued in archaeometry, where
portable instruments are available. Considering ancient glass, such instruments allow for the detection
of some major, minor, and trace elements linked to the deliberate addition of specific components or
to impurities in the raw materials of the glass batch. Besides some undoubted advantages, portable
XRF (p-XRF) has some limitations that are addressed in this study. The performance assessment of
four different p-XRF units and the reconciling of their output were conducted. The results show the
limitations in cross-referencing the data obtained from each unit and suggest procedures to overcome
the issues. The p-XRF units were tested on the set of Corning reference glasses and on a small set of
archaeological glasses with known composition. The compatibility of the output was assessed using
multivariate statistical tools. Such a workflow allows us to consider data from multiple sources in the
same frame of reference.

Keywords: portable-XRF; ancient glass; reproducibility; composition

1. Introduction

XRF analyses of archaeological materials conducted with portable instruments (p-XRF)
are increasingly popular within the archaeometry community and have a history of devel-
opment that spans decades [1–5]. Portable equipment has also been applied to investigate
vitreous materials and ancient glass in particular [6–9]. The most relevant advantage of
p-XRF is the non-invasiveness of the analytical approach, which is much appreciated by
the institutions entrusted with the safekeeping of objects of historical value. Generally, no
sample preparation is required unless the object’s surface is clearly contaminated, altered,
or coated by conservation treatments. The time required for the analysis may vary. Anyhow
it is possible to collect data from a large number of analytical spots within a single session,
with qualitative information available in, practically, real-time. Producers of commercially
available p-XRF indicate the limits of detection (LOD) as low as several ppm, though the
actual LODs depend on the matrix composition [10].

Unfortunately, p-XRF has several drawbacks for the investigation of ancient glass.
The most evident is a significant limitation in providing accurate information for “light”
elements (Z < 14), which may constitute a large part of the total mass fraction in the glass
matrix. This may inhibit a characterization of the fluxing agents used in glass making,
which is one of the first research questions to be faced when studying archaeological glass.
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To overcome the issue, the p-XRF units can be equipped with helium-flow setups or with
small chambers for vacuum analyses to reduce the absorption of X-rays by Ar from the
atmosphere and enhance the possibility of detecting the weak XRF signals from Na and
Mg [11–13].

The above-mentioned issues combine with those inherent to the general XRF analytical
approach. Characteristic fluorescence lines of different elements may overlap, with typical
examples relevant for glass studies being the interference of Fe Kβ and Co Kα, or that of Pb
Lα and As Kα. These phenomena limit the accuracy of the quantification and may prevent
elements from being detected if they are present in minor quantities [14]. Moreover, the
measurement capability of XRF devices must undergo evaluation for every matrix that is
expected to be studied.

Adjustment of the acquisition parameters can improve the quality of the data and
might expand the number of applications for p-XRF as well as mark their limits [15–17].

Under the p-XRF label, we can find many types of spectrometers, with a variety of
features [3]. Moreover, among the numerous examples of the application of p-XRF in
archaeological glass studies, several approaches have been suggested to handle the data.
The selection of the most suitable approach for data handling depends on the archaeological
question to be answered [18], and the quality of data is often connected to the user’s level
of expertise in the method [19]. Although an exhaustive review of the literature dealing
with p-XRF applications for characterizing ancient glass is beyond the scope of the present
paper, we can highlight, within the most recent literature, the approaches that are still
in use.

Some users explore the spectra in a purely qualitative way: as long as energies are
associated with elements and the position and height of the peaks correspond to the respec-
tive element’s presence/concentration, the comparison of the relative heights of the peaks
provides information on the qualitative composition of the examined samples [20], though
recently this approach has been mostly reserved for XRF imaging of glass objects [21,22].

The so-called “semi-quantitative” approach is based on different workflows. This
approach does not allow direct comparison of the results with external data. Therefore,
results obtained with different instruments cannot be directly compared. Nevertheless, it
enables the possibility of distinguishing groups of artifacts within the obtained dataset.
The basic assumption in this approach is that the collected data are similar but may be
biased from an accepted nominal value. Using the definitions given in ISO 5725-1 [23],
we shall say that the precision of the data is good, but trueness can be poor. Often, in this
framework, p-XRF is used as a tool to optimize sampling for further analysis [24]. In such
a mode, the concentration values are not a prerequisite for data interpretation and can
be used in the same way as counts. Net area counts of peaks can be normalized to the
intensity of the anode Compton or Kα peak. This step eliminates the potential differences
in distances, angles, and matrix effects and allows for the comparison of acquisitions made
with the same XRF unit without mass fraction quantification [25]. Researchers may operate
on both counts per second (cps), weight percentages, or ppm concentrations [26].

Some operators use face values of factory calibration provided by the p-XRF unit [27].
They can convert them to oxides and normalize them to 100% [28,29] or use SiO2 values to
compensate for the difference in total composition to 100% [30]. Regarding the light ele-
ments, such as Na and Mg, some researchers use average values for studied glass types [31]
or estimate their content through the “dark matrix” calculated by the p-XRF processor [32].
Again, the approach yields equipment-dependent data with no comparative potential.

Accurate concentrations can be obtained when standard or reference materials are
used to calibrate the spectra. This approach yields the highest quality results. The output of
the process should in principle be comparable with results obtained from other p-XRF units
or other types of analytical equipment. Some producers of p-XRF units prepare built-in cal-
ibrations that can be used when analysing archaeological glass or prepare them by request,
using the Fundamental Parameters (FP) method or the Compton normalization [31,33].
The FP approach is one of the several methods for the quantification of XRF data and
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enables the accurate estimation of major, minor, and common trace elements in the glass
matrix [4,5,28,29,33–35].

In general, the above-mentioned examples demonstrate that p-XRF is widely used
in the analysis of archaeological glass, although most of the matrix remains undetected.
Despite extensive applications to ancient glass, many researchers rely on other methods for
quantitative compositional information, reducing p-XRF to a tool for preliminary analysis
and using the p-XRF values in a strictly qualitative or semi-quantitative way.

Recently, the need for implementing integrated approaches between chemistry and
archaeology has significantly grown within the entities that are responsible for studying
and protecting cultural heritage. As a consequence, many relevant archaeological museums
and research institutions own analytical equipment, with p-XRF units being among the
most popular, as there are many research questions or purposes that can be answered
or fulfilled by this technique. Consequently, an extended archaeometric investigation
may face the issue of having different p-XRF units available for analysing multitudes of
archaeological objects in different institutions. As the collected data needs to be compared
to produce a new knowledge on the investigated collections, we must exclude any bias
introduced by the use of different equipment.

There have been several papers reporting a comparison of the results obtained with
different p-XRF units. They are mostly related to environmental samples and metals,
whereas, to the best of the authors’ knowledge, none deals specifically with archaeological
glass. Some of these papers highlight specific issues that cannot be overlooked while
assessing the reproducibility of data from different instruments. In particular, it has
been demonstrated how the data treatment can influence the final output [36] and that
the low Z element values (Al and Si) have extremely low reproducibility [37]. The use
of quality control references enhances the possibility to discriminate among samples of
similar composition [38] and the significant influence of sample conditions during the
analysis has been highlighted [39]. The CHARMed PyMCA protocol was an attempt
to standardize the practice of XRF analyses of copper alloys by using the Fundamental
Parameters (FP) approach combined with the use of calibration standards. This unified
procedure improved the inter-laboratory reproducibility of the results and provided a
framework for the validation of such results [40,41].

The present work aims at highlighting the main limitations in reproducibility of p-XRF
analyses performed with units of different configurations (anode material, acquisition
geometry, spot size, energy resolution, and power-voltage parameters), thus shedding
light on the actual possibility to face the main archaeological questions for glass with a
p-XRF approach if different instruments are employed. The study is preliminary to an
analytical campaign that will be conducted in situ on large collections of Iron Age glasses
held in several archaeological museums in Italy. The focus is set on quantification using FP
combined with calibration using the reference glass approach, which would allow results
to be exploited throughout a specific research project and beyond.

2. Materials and Methods
2.1. Reference Glasses

Certified Reference Materials (CRM) for glass that are offered on the market provide a
wide selection of elements with certified or informational concentration values. Yet, the
resemblance of the compositional range of ancient glasses with these (modern) reference
materials remains poor. Therefore, for this study, we selected a set of three reference
glasses provided by the Corning Museum of Glass (CMOG). The CMOG reference glasses
were developed to represent different compositional groups of historic glass, and they
feature the elements that play a role in glass (de)coloring and opacification, as well as some
common impurities that enter the glass batch with the silica source or with other glass
components. Each glass piece is named with letters for different glass types. CMOG A and
CMOG B are soda-lime-silica glasses that represent typical soda plant ash (A) and natural
evaporites (B) varieties of Mediterranean production glasses from the Bronze Age to the
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Medieval times [42]. CMOG D is a potash-lime-silica composition and was prepared to
reflect the compositions of some medieval and 17th–19th century European glasses [43],
though potassium-rich glasses existed earlier [44,45].

The compositions of CMOG glasses have been established through an inter-laboratory
study, and since the 1970s, the glasses have been tested and their concentration revised
according to the new results [46,47]. The compositions relevant for this study are reported
in Table 1.

Table 1. Compositions (reported in element weight percent) of the reference glasses involved in this
study (relevant elements). Compositions are from: CMOG A, B, and D—([47] and references therein),
VA08, VA27—[48]; VA70—[49]; CB65—[50]; and CB36—[51]. The number of significant digits reflects
analytical precision as reported in the listed publications.

RMs K Ca Ti Mn Fe Co Ni Cu Zn Sr Zr Sn Sb Ba Pb

CMOG_A 2.38 3.60 0.47 0.77 0.76 0.134 0.02 0.94 0.035 0.09 0.004 0.150 1.32 0.41 0.067
CMOG_B 0.83 6.12 0.053 0.194 0.238 0.036 0.078 2.13 0.153 0.016 0.019 0.019 0.346 0.069 0.57
CMOG_D 9.4 10.6 0.228 0.43 0.36 0.018 0.039 0.304 0.080 0.048 0.009 0.079 0.73 0.261 0.224

VA_08 2.70 3.64 0.066 0.026 0.48 N.D. 0.002 N.D. N.D. 0.044 0.005 N.D. N.D. 0.009 N.D.
VA_27 3.49 4.81 0.114 0.036 1.09 0.001 0.006 N.D. N.D. 0.039 0.010 0.001 N.D. 0.010 N.D.
VA_70 2.19 4.90 0.019 0.209 0.182 N.D. 0.001 0.004 N.D. 0.041 N.D. N.D. N.D. 0.009 0.003
CB_65 1.06 5.1 0.072 0.42 2.11 N.D. 0.003 1.20 0.007 0.041 0.006 0.110 0.51 0.021 3.13
CB_36 0.51 4.80 0.060 0.71 1.53 0.004 N.D. 1.66 0.040 0.044 0.006 N.D. 0.075 0.029 0.139

In addition to the CMOG reference glasses, five pieces of archaeological glass (hence-
forth “archaeological references” or ARCH) were also included in the investigated glass
set and their composition is reported in Table 1. These samples originated from the Veh-
Ardashir (Iraq) and Crypta Balbi (Italy) assemblages. They are indicated with the codes VA
and CB, respectively, followed by a number that identifies the specific sample. Their com-
positions were determined by inductively coupled plasma-optical or mass spectrometry
(ICP-OES or ICP-MS) [48–51].

In this work, VA08 and VA27 were analysed as chunks of glass, while VA70 and the
CB samples were analysed as cross-sections. This allows us to evaluate the role of the shape
of the surface on the quantification. Successful quantification of irregularly shaped samples
will substantiate the quantification on future analyses to be performed non-invasively on
archaeological glasses. The CMOG reference glasses underwent polishing to ensure the
correct geometry of the acquisitions. Grinding paper of 500, 1200, and 2400 grit was used
on flat pieces (about 1 cm2 area and 2–3 mm thick). In addition, they were polished using
diamond pastes of 6 and 1 µm grain size.

2.2. XRF Units and Settings

Four p-XRF units were included in this study:

1. XGLab ELIO (hereafter ELIO). The commercial unit is produced by XGLab S.R.L.
(Milan, Italy);

2. Unisantis XMF-104 (hereafter Unisantis). The commercial unit is equipped with
polycapillary optics and produced by Unistantis (Geneva, Switzerland). Regarding
the size and configuration of the instrument, this is the only one with limited sample
size analysis due to the dimensions of the sample chamber and can therefore be
included in the category of transportable X-ray spectrometers [52];

3. Frankie (hereafter Frankie). An ad hoc unit with policapillary optics, developed by
the Italian National Institute of Nuclear Physics-National Laboratories of Frascati
((INFN-LNF) Italy);

4. NITON XL3T-900 GOLDD (hereafter NITON). The commercial unit is by Thermo
Fisher Scientific (Waltham, MA, USA). This instrument acquires a series of spectra in
different energy ranges to enhance the signal in specific parts of the spectrum.

The most relevant technical features of the equipment and the acquisition parameters
used in this study are reported in Table 2. Obviously, the four p-XRF spectrometers have
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very different configurations that are reflected in the resulting spectra. Therefore, each unit
required different parameter settings for the acquisition to achieve optimal results.

Table 2. Details of the XRF units involved in this study. V is the acceleration voltage of the X-ray
source, and I is the intensity of the current.

ID Hardware Acquisition Parameters a

Device
Anode,

V (max),
I (max)

Beam
Focusing,

Focal Spot

Detector: Type,
Active Area,
Thickness

Resolution
at Mn Kα

CPU Pulse
Processing
Channels

Spot Focusing
Device(s)

Filter,
Thickness Time b V I

ELIO
Rh

50 kV
50 µA

Pin hole
1.2 mm

SDD
25 mm2

500 µm
140 eV 2048

Laser
+

Camera
none 90 s 40 keV 40 µA

Unisantis
Mo,

50 kV
1000 µA

Polycapillary
80 µm

Si-PIN
7 mm2

300 µm;
186 eV 2048

Laser
+

Microscope
none 150 s 50 keV 300 µA

Frankie
W

50 kV
200 µA

Policapillary
300 µm

SDD
20 mm2

450 µm
173 eV 4096 Laser none 200 s 40 keV 80 µA

NITON
Ag

50 kV
100 µA

Pin hole
3–8 mm

SDD
25 mm2

500 µm
185 eV 4096 Camera

Cu 125 µm 30 s 40 keV 50 µA
Fe/Al 125 µm 30 s 20 keV 100 µA

none 30 s 8 keV 100 µA

a NITON acquires 4 spectra within a single acquisition, one of which is redundant for this study. b For the ELIO
unit the time parameter is the total time of the acquisition (sum of live and dead time). For the rest of the units,
the time parameter means live time.

2.3. Acquisition and Processing

On each CMOG reference glass, 10 spectra (ELIO and NITON units) or 3 spectra
(Unisantis and Frankie units) on different spots were acquired. For the archaeological
references, 3 measures on different spots were acquired for each p-XRF unit, except for
Frankie, for which only one acquisition was performed on each archaeological reference.

The obtained spectra were converted to .spc, .spe, or .mca before fitting with the
PyMCA software [53]. The configuration of each XRF unit was used to prepare an
instrument-specific FP configuration file which provided mass fraction values. The CMOG
A reference glass spectrum was the one used to improve quantification by adjusting the
incident primary spectrum profile to calibrate the FP composition with the reference one.
Matching was done for 15 elements: K, Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, Sr, Zr, Sn, Sb, Ba,
and Pb. For quantification, K series peaks were used for all except Pb and Ba, which were
quantified using L series peaks. Elements such as Na, Mg, Si, and Al were not included in
the fitting and were not considered in this study except for the FP model building, where
nominal compositions of CMOG glasses including these elements were used. In the batch
fitting mode, all the spectra were processed, and mass fraction values of the elements were
calculated and systematized.

The Limit of Quantification (LOQ)—the lowest amount of analyte that can be quanti-
fied with a given uncertainty—for each element’s concentration was estimated by using
the value of the gross area B under the relative peak (Kα for most of the elements except
Ba and Pb, where L series peaks were used). The LOQ was set to be equal to B + 10σB.
This corresponds to an uncertainty of ±30% in the measured value at the 99% confidence
level [54]. This value was found by empirical matching of concentrations to areas of the
peaks as described in the PyMCA tutorial [55]. This procedure was performed on CMOG A,
B, and D spectra, and the maximum value of LOQ (individual for each element of interest)
for these glasses was used as the general LOQ for all the samples. All the values that were
below the LOQ estimation were discarded.

The relative standard deviation (RSD) of tri- and decaplicates was used to calculate
measurement precision. To check the accuracy, the values were converted to elemental
weight % and compared to the nominal concentration (Table 1). In order to improve the
accuracy, linear regression correction was applied. Accuracy is reported in Section 3.3 as the
double mean relative error for each element (2σ values). Another way of correcting the data
is the normalization of the acquired values by the mean ratio of nominal to acquired values
of CMOG glasses. This method may be useful when the number of data points for building
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the regression curve is less than 4. Data corrected in this way were taken as semi-qualitative
because of the impossibility of reporting the uncertainties. General reproducibility of the
approach was judged by the results of Principal Component Analysis and Hierarchical
Cluster Analyses, where the condition of success was the grouping together of data on the
same sample obtained with different devices, thus excluding equipment bias as a source of
variability for the sample set.

3. Results and Discussion
3.1. Estimation of Limits of Quantification

In order to ensure that all the data points are a real representation of the concentration
in each of the references, the Limits of Quantification (LOQs) were calculated. The auto-
mated fitting of the spectra assigned values to the selected elements even when there were
no pronounced peaks in the spectra. Therefore, LOQs are needed to filter out the data that
were not significant for the quantification process. According to this procedure, the data
that were equal or below the LOQ were removed before any precision and accuracy checks.

There are several ways of establishing LOQs [54,56,57]. As outlined above, for practical
reasons, a 10σ threshold of the background deviation was selected to represent the LOQs in
the present study. Figure 1 reports the calculated LOQs as the elemental concentration for
the element of interest. They are the maximum values of the LOQ estimation for CMOG A,
B, and D reference glasses for each of the p-XRF units. The element concentrations in the
CMOG glasses are included in the graph to simplify the comparison.
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LOQs in XRF analyses usually depend on the matrix composition and the element’s
atomic number. It is lower for elements with Z ranging between 25 and 40, and higher
for lighter ones. The features of the source of radiation are also important to determine
LOQ, as source peaks due to Compton and Rayleigh scattering might interfere with the
characteristic energy peaks of the analysed elements, raising the LOQs. The same effect is
observed when the characteristic energies of the elements in the analysed sample overlap
in the detected spectrum.

Figure 1 demonstrates that the estimated LOQs are all in accordance with the expected
tendencies. It can be noticed that most of the elements are either under or within the
range of concentration of CMOG glasses. LOQ estimation for the NITON unit is above the
concentration range of CMOG glasses for Ni and Ba. These elements were detected during
the fitting, although the intensity of their signals was below the LOQ. The elements with
LOQs within the range of CMOG glasses concentration were detected in at least one of the
reference materials. Discarding the data points below LOQ makes the dataset rather small
for some elements (Figure 2).
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element of interest.

Unfortunately, for many minor elements, the number of data is equal to or less than
five. Therefore, calculated uncertainty may not reflect the true value for these elements.
Larger datasets are available for K, Ca, Mn, Fe, Cu, Sr, and Pb. Some elements (Co, Zn, Zr,
Sn, and Ba) may have only one data point considered by a single instrument (there might be
more data for another instrument). Data on fewer represented elements will reflect poorer
precision, and this will be considered in the further discussion of the data. Furthermore,
because of their heteroscedastic nature, quantitative data near the LOQ should be handled
with caution [40].

3.2. Precision of the Measurements

The variability among the repeated measures was estimated as the Relative Standard
Deviation (RSD). Mean RSD values per unit of equipment, together with their respective
maximum values, are shown in Figure 3.

It can be noticed that, generally, the relative dispersion of the data is less than 20%
for most of the elements across all the XRF units. The polished cross-sections of CMOG
glasses do not differ significantly from the sections and the chunks of archaeological
references. The only exceptions are some of the Unisantis acquisitions (VA27 was discarded
from consideration altogether because of extremely high RSD values, VA70 has one of the
highest RSDs for this instrument). One of the reasons for high RSD values might be the
proximity of the measured values to the respective LOQ (as in the case of ELIO CB65 Sn
(68%RSD) and CMOG B Co (36%RSD) values) since the integration of smaller peaks yields
a greater error on the fitted peak area estimation. The Frankie unit data shows the tendency
to increased RSDs for Sn Sb, Ba and Pb. This might be due to the lower sensitivity of the
spectrum after the peaks of the W anode (in the case of Ba L lines, it is their overlap with Ti
K lines). The precision found in our set of data is normally higher than the instrumental
precision obtained with other spectroscopic techniques (Table 1). Nevertheless, we can
state here that the dispersion of the data is acceptable for accuracy considerations.

3.3. Accuracy with the Fundamental Parameters Approach

The FP method is a well-established quantification algorithm that can provide ac-
curate quantitative results, especially when used in conjunction with matrix-matching
standards [4,36]. Values calculated by PyMCA software were examined to assess their
correspondence with the nominal ones. The result of this comparison is reported in Figure 4.
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The 2σ error values for all the XRF units (95% confidence interval) are reported for each
element. These values were calculated as two standard deviations of the absolute values of
relative error for each data point. Many of the data points are within ±20% of the nominal
values, but a significant number of them fall within ±50% of error. This quite broad range
renders this data unacceptable for many applications. The accuracy values of each XRF
unit differ for each element. It is remarkable that the Frankie unit values for the heaviest
elements exceed the 100% limit. It should be kept in mind that Frankie unit values had
lower precision for Sn, Sb, Ba, and Pb (Figure 3). The Unisantis unit is also demonstrating
the broadest range of errors on many elements, and this might be connected to the lower
number of acquisitions of the CMOG reference glasses (Frankie and Unisantis units) and
the archaeological references (for Frankie unit). Due to the LOQ threshold implementation,
Figure 4 lacks many data points. Several elements were not considered by some XRF units.
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3.4. Ratio Coefficients Correction

It was decided to further look into the data in order to find the best way of improving
the FP quantification of the datasets. By observing the data, it was noticed that some of the
elements’ values were systematically under or overestimated within a single instrument’s
dataset. This points out the limits of the FP model implemented through PyMCA: it
accounts for a large number of variables, making the task of their optimization ever more
laborious when approaching perfection. Instead, it was attempted to offset these variations
by using the average ratios of nominal to acquired values of CMOG reference glasses to
obtain the coefficients for normalization of all the values in the dataset. The formula for
this type of correction is the following:

x1 = x0

(
Anom
Aacq

)
+

(
Bnom
Bacq

)
+

(
Dnom
Dacq

)
3

where x1 is the corrected value of the element and x0 is the initial value of the element.
A, B, Dnom and A, B, Dacq are the nominal and acquired values of CMOG glasses, respec-
tively. In this way, archaeological reference glasses were used as a validation set for the
new accuracy check. Figure 5 provides the results of such a correction compared to the
initial quantification. The values are compared as percentage recoveries from the nominal
values. Four sets of recovery values were calculated for each XRF unit: two sets of initial
quantification (average CMOG and ARCH recovery) and two corrected datasets (again, as
an average of recoveries of two respective groups of samples).
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Molecules 2022, 27, 6068 10 of 18

The division of CMOG and archaeological reference groups was done to check the
usefulness of such a correction. Since the coefficients were calculated on the CMOG
set of three glasses, it was expected that the average recovery for the corrected values
would be close to 100%. In such a case, one should look at the improvement of the data
of the archaeological reference group. Indeed, corrected CMOG glasses’ recoveries for
all instruments tend to align very near the 100% mark (red circles). As for the corrected
archaeological reference glasses group, the resulting values mostly improve when compared
to the values of initial quantification, but it is not always the case. For the Elio instrument,
for example, an improvement in Cu recovery is “compensated” by a larger bias for Zn.
However, most of the corrected values lie in the 20% interval from the nominal values
(black circles) that was arbitrarily decided to be an acceptable deviation from the true
values. Some corrected values are less than 10% off the nominal ones. Some elements do
not have representation in the archaeological reference group of some XRF units (Co, Ni,
Zr, and Ba were considered mostly only within the CMOG group). For such elements, it
is impossible to assess the effect of correction. Hence, the data on these elements should
not be considered as quantitative, yet the rest of the elements that are represented in the
archaeological reference group do obtain better values after this type of correction, so it can
be considered a useful transformation on the way to improving the overall accuracy.

3.5. Linear Regression Correction

Another type of empirical coefficient correction that was tested in this study is the
application of linear regression coefficients. This approach was described elsewhere [58].
Here we will state only that we calculated slope and intercept values of the initial quantifi-
cation and used an inverted linear regression equation to correct the data. The formula for
this transformation is the following equation:

x1 = x0b0 + a0

where x1 is corrected value of the element, x0 is the initial value of the element, and a0
and b0 are the intercept and slope values of the initial regression, respectively. Unlike the
previous type of correction, this one is increasingly efficient when the number of points that
constitute the calibration line grows. The elements that do not have at least two data points
cannot undergo such transformation, starting from elements with three data points, it is
possible to estimate the error of the quantification, which makes such data semi-quantitative.
Among the benefits of this correction is the accountability of any residual matrix effect that
was not accounted for during the FP quantification. Figure 6 shows the binary plots in
which the nominal values are plotted with: the concentration determined as indicated in 3.3
(left row, initial quantification), the values obtained as indicated in 3.4 (middle row, ratio
coefficients correction), and the values obtained with the regression coefficients described
in this section (right row). The elements considered are K, Ca, Mn, Fe, Cu, Sr, and Pb. All of
them are represented at least by five data points consistently in each instrument’s dataset.
This makes it possible to build more reliable calibration curves. The nominal curve, which is
created by plotting the nominal concentrations versus themselves in each plot, serves as the
target value and creates a 20% deviation interval that was assigned to be acceptable. One
can notice that initial quantification does not always provide the values that are within 20%
of the deviation. In fact, the values can follow seemingly parallel curves (most pronounced
in Sr initial plot) or diverge significantly from the nominal towards the upper point of the
curve (K and Pb initial plots). Both situations reveal that the matrix effect was not fully
accounted for. Both kinds of corrections tend to bring the points closer to the nominal
curve while still featuring the outliers that eventually broaden the uncertainty margins to
more than 20%. On most occasions, regression correction produced a better match with the
nominal curve than the values calculated with ratio coefficients. It is expected that the best
accuracy is achieved in the middle region of each calibration curve, while the likelihood of
divergences is higher in the lower and higher margins.
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In order to build the final dataset, we adopted a mixed approach: with less than four
data points for one XRF unit, data were corrected by the application of ratio coefficients;
when four (or more) data points were available, we used linear regression correction. Con-
centration values for elements that were obtained by the application of ratio coefficients lack
adequate uncertainty values. Those elements are presented in concentrations approaching
the LOQ, therefore high uncertainty is expected. Table 3 provides, relative to each element,
its respective way of correction for each XRF unit as well as the uncertainty of measurement
for every dataset corrected with the linear regression method. This table also includes
Pearson correlation coefficients (r) calculated for the corrected XRF values and the nominal
concentrations. In most of the cases, these coefficients indicated a very strong correlation
between the variables (r = 0.9 and higher; some are approaching 1). In several cases, they
are less than 0.9 but still highlight a strong correlation (e.g., Sr and Sb values for Frankie
unit). This corresponds to a divergence of the respective trend line in Figure 6. The effect
might be connected to a lower signal-to-noise ratio in the higher energy region of the
spectrum produced by this unit.

It is worth noting that no systematic bias from the nominal values emerged for VA08
and VA07, which were analysed as chunks. Therefore, no significant bias determined by
surface morphology or glass alteration emerged from the data.

3.6. Multivariate Approach to the Reproducibility Assessment

In order to check if the obtained reproducibility among the different types of equip-
ment supports the purpose of investigating a large set of archaeological glass with different
p-XRF units, we employed multivariate analyses. Principal Component Analyses (PCA)
and Hierarchical Cluster Analyses (HCA) were used to check if the compositions of the
same set of samples obtained from different p-XRF units will result in a proper represen-
tation (PCA) or classification (HCA) of the samples. In archaeometry, the compositions
of glass are normally used to highlight similarities or differences among archaeological
samples, therefore it is fundamental to assess if the use of different p-XRF units will prevent
the possibility to draw any conclusions of archaeological relevance based on the dataset.

PCA and HCA are widely used tools in data exploration. PCA allows for reduction of
dimensionality with a subsequent representation of all the data in a single space with two
or three coordinates, whereas HCA organizes samples into groups based on how closely
associated their compositions are and represents them in one single graph that highlights
the relationships within the dataset [59,60].

In this particular instance, we employed both PCA and HCA to check if the data were
from the same material, but different XRF units will be clustered together. Such group
arrangements will support evidence of reproducibility for these datasets. On the other hand,
distinguishing the reference samples will demonstrate the ability of quantitative p-XRF
data to serve as a basis for archaeometric discussion on glass technology and, perhaps, even
provenance. In order to perform the algorithm, the data corrected by linear regression or
ratio coefficients (see Table 3 for the type of correction for each element/unit of equipment)
were used, including the nominal values, that were used to check for any skewing. The
elements included in the analysis were: K, Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, Sr, Sn, Sb, and Pb.
Cells with no data were filled with “0”. The data were then scaled with a Standard Normal
Variate (SNV) transformation.
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Table 3. Corrections applied and the errors of the measurement (2σ values). L: linear regression coefficients. R: ratio coefficients. N/A: not applicable. Correlation
coefficients are calculated between corrected and nominal values.

Element
ELIO Unisantis Frankie NITON

Type of
Correction

Pearson
Correlation

Relative
Error 2σ, %

Type of
Correction

Pearson
Correlation

Relative
Error 2σ, %

Type of
Correction

Pearson
Correlation

Relative
Error 2σ, %

Type of
Correction

Pearson
Correlation

Relative
Error 2σ, %

K L 0.990 54.5 L 0.996 27.4 L 0.998 34.0 L 0.993 35.7
Ca L 0.946 15.8 L 0.987 13.2 L 0.932 19.7 L 0.905 19.5
Ti L 0.994 32.1 R 0.983 N/A L 0.995 24.3 R 0.983 N/A

Mn L 0.993 12.4 L 0.978 15.5 L 0.988 36.7 L 0.974 23.7
Fe L 0.986 33.6 L 0.989 6.5 L 0.994 27.4 L 0.977 33.6
Co R 0.989 N/A R 0.992 N/A R 0.999 N/A R N/A N/A
Ni R 0.986 N/A R 0.983 N/A L 0.998 12.0 N/A N/A N/A
Cu L 0.970 22.7 L 0.965 49.6 L 0.989 11.5 L 0.977 21.0
Zn L 0.969 22.7 L 0.998 6.6 L 0.998 11.9 R N/A N/A
Sr L 0.969 33.0 L 0.965 11.8 L 0.868 17.6 L 0.944 12.9
Zr R N/A N/A R N/A N/A N/A N/A N/A R N/A N/A
Sn R 0.876 N/A R N/A N/A R 0.846 N/A R 0.983 N/A
Sb L 0.983 100.0 R 0.914 N/A L 0.736 64.1 L 0.978 27.9
Ba R N/A N/A R N/A N/A R 0.999 N/A N/A N/A N/A
Pb L 1.000 33.4 L 0.999 26.4 L 0.995 98.0 L 1.000 20.5
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Five PCs were created, with three bearing most of the explained variance (PC1: 52.65%,
PC2: 20.62%, and PC3: 14.34%). The scores and loadings plots of PC1 against PC2 and
PC3 are reported in Figure 7. There is a clear separation of sample groups instead of
unit groups. Usually, groups are tightly packed without any visible skewing of a specific
dataset. Exceptions are the VA samples that are clustered together, although VA70 can
be distinguished using PC3. These glasses have a very similar composition and belong
to the same type of (clear) glass. Therefore they cannot be differentiated based solely on
the concentrations of the elements detected in this study [48,49,61]. CMOG B of Frankie
unit can be separated from the rest of the CMOG B data points. The CMOG glasses, which
represent different glass types, are properly located in different quarters of the PC1 vs. PC2
plot with respect to the point of origin based on their differences in composition.

Figure 7. PCA of the dataset. Biplots for PC1 vs. PC2 (left) and PC1 vs. PC3 (right). Squares: loading.
Circles: scores. Five points of each sample are from each unit of equipment (four) plus the nominal
concentration (one). The numbers in parenthesis represent the variance percentage.

Clusters were calculated using Euclidean distances on SNV pre-treated data and were
based on at least three valid measures. It was decided to present eight clusters (by the
number of reference materials). Figure 8 shows the result of the calculation. It can be seen
that the datasets are grouped by sample. VA27 and VA08 belong to one cluster by using the
same hierarchical level that usually divides single samples, but they are properly separated
at a lower level of similarity. These reflect the subtle differences in composition as these
samples are different only by Ti and Fe values (Table 1). The CMOG B data of the Frankie
unit falls as an outlier between the CB36 cluster and the rest of the CMOG B acquisitions.
However, in general, these cases do not impede datasets of the same sample, but different
XRF units plus nominal compositions can be grouped together.

Both Figures 7 and 8 show that the graphical representation of the data with multivari-
ate methods is determined by the compositions of the samples, and no bias from the use of
different equipment emerged. This allows for discussion of glass compositional groups
(plant ash, natron, and potash) based on K and Ca values and (de)colorants and opacifiers
(by the transition metal values), which is invaluable information about glass technology of
the past [62].
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Figure 8. Hierarchical clustering plot that includes five datasets of each reference material (one for
each XRF unit, except for VA27, which does not have values for Unisantis). The dendrogram features
eight clusters distinguished by a different color (upper part). The bottom part shows color-coded
datasets (each color represents a specific sample).

4. Conclusions

The investigation highlights some limitations and pitfalls of the quantitative p-XRF
method for archaeological glass analyses, which remains a challenging task not only in
terms of quantification strategy for adaptation to a specific matrix in p-XRF analyses but
also due to the intrinsic complexity of the interpretation of compositional data for ancient
glass that results from the great variety of components in the glass batch, and therefore in a
large quantitative variability.

On the other hand, by focusing on the analytical part, we demonstrated that, despite
their hardware differences, four p-XRF units produced quite similar results provided that
strictly controlled data handling is performed. Unfortunately, the set of certified reference
materials available for elemental analyses of archaeological glass is very limited, and
therefore it has not been possible to gather a large number of data points across all the
elements of interest. Nevertheless, the results we presented in this work demonstrate
that it is possible to achieve good-for-purpose reproducibility between different p-XRF
units by following fairly practical procedures: ratio coefficients correction can be used
on FP data when a low number of reference standards are available (less than four),
whereas the data can be corrected by linear regression correction when four (or more)
reference data points are available. This procedure, besides increasing the potential pool of
quantitative compositional data on ancient glass, allows us to state that the compositions
of glass determined through different p-XRF equipment can be actually used to highlight
similarities or differences among archaeological samples (if the levels of uncertainty are
lower than the actual differences between groups of glasses), and that the data obtained
through different p-XRF units will allow us to draw conclusions of archaeological relevance
based on the glass composition determined in situ.
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