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Abstract: Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine protein kinase
that was originally identified as an enzyme involved in the control of glycogen metabolism. It plays a
key role in diverse physiological processes including metabolism, the cell cycle, and gene expression
by regulating a wide variety of well-known substances like glycogen synthase, tau-protein, and
β-catenin. Recent studies have identified GSK-3β as a potential therapeutic target in Alzheimer´s
disease, bipolar disorder, stroke, more than 15 types of cancer, and diabetes. GSK-3β is one of the
most attractive targets for medicinal chemists in the discovery, design, and synthesis of new selective
potent inhibitors. In the current study, twenty-eight Amaryllidaceae alkaloids of various structural
types were studied for their potency to inhibit GSK-3β. Promising results have been demonstrated
by alkaloids of the homolycorine-{9-O-demethylhomolycorine (IC50 = 30.00 ± 0.71 µM), masonine
(IC50 = 27.81 ± 0.01 µM)}, and lycorine-types {caranine (IC50 = 30.75 ± 0.04 µM)}.

Keywords: Amaryllidaceae alkaloids; Alzheimer’s disease; glycogen synthase kinase-3β; masonine;
caranine; 9-O-demethylhomolycorine

1. Introduction

Glycogen synthase kinase-3β (GSK-3β) is a ubiquitous pleiotropic serine/threonine kinase that
plays crucial roles in cellular functions, including cell-cycle regulation, differentiation, and proliferation,
and gene expression by regulating a wide variety of known targets such as glycogen synthase, τ-protein,
and β-catenin [1]. GSK-3 is involved in cellular signaling, including Wnt and Hedgehog pathways, and
in neuronal development, insulin pathways, transcription, cell division, cell survival, and cell death [1–
3]. Due to its multifarious roles, aberrant activity of GSK-3 underlines a variety of disorders including
Alzheimer´s disease (AD) [4], cancer [5], diabetes [6], cardiovascular disorders [7], and psychiatric
disorders [8].

One of the neuropathological characteristics of AD is the presence of neurofibrillary tangles (NFTs)
consisting of paired helical filaments, with the main component being hyperphosphorylated τ-protein.
Phosphorylation of τ-proteins is primarily dependent on GSK-3β and cyclin-dependent kinase 5
(CDK5) [9]. Genetic and epidemiological studies indicate that GSK-3β is deregulated in AD through
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alterations in upstream Wnt and insulin signaling pathway intermediates. This may be the reason
behind tau hyperphosphorylation and, later on, the formation of NFTs. GSK-3β may also induce the
formation of amyloid β-protein (Aβ), a further neuropathological marker for AD. Aβ is aggregated and
deposited in the AD brain and causes dysfunction of neurons, inflammation, and oxidative stress [10].
Aβ production is facilitated by overexpression of β-site amyloid precursor protein (APP)-cleaving
enzyme 1 (BACE1) and of presenilin 1 (PS1) [11]. Increased GSK-3β activity in the brains of patients
with AD, and its pathological activation facilitates Aβ production [12]. Therapeutic concentrations of
lithium, a GSK-3 inhibitor, block the production of Aβ peptides and the accumulation of Aβ peptides
in the brains of mice that overproduce APP [13,14]. Clinical studies have evaluated the safety and
efficacy of the irreversible GSK-3β inhibitor tideglusib in the treatment of patients with AD [15,16].
Tideglusib is a thiadiazolidinone that reduces tau phosphorylation in murine primary neurons. In a
pilot, double-blind, placebo-controlled, randomized, escalating dose trial, 30 patients with mild to
moderate Alzheimer´s disease were enrolled and received either tideglusib or placebo (orally) at
escalating doses for a total of 20 weeks. The objective of this pilot study was to evaluate safety and
tolerability of tideglusib with strict criteria for drug escalation or withdrawal. Tideglusib was well
tolerated by 65% of the patients [16].

GSK-3β has been implicated in playing a role in cancers which are resistant to chemo-, radio-,
and targeted therapy [17]. It has been shown to be a potential mediator in contributing to neoplastic
transformation, in part because it belongs to both the canonical Wnt/β-catenin and the PI3K/Akt
signaling systems, the two major pathways often dysregulated in cancer [18]. GSK-3 inhibitors may
eventually be used in the treatment of certain cancers. GSK-3 is believed to exert pro-proliferative
effects in solid cancers including: colorectal cancer, glioblastoma, pancreatic cancer, ovarian cancer,
and blood cancers [19].

A number of publications have emerged describing diverse molecules that inhibit
GSK-3β, such as manzamine alkaloids [20], pyrazolopyrimidines [21], pyridyloxadiazoles [22],
thiadiazolidindiones [23], maleimides [24], and paullones (a group of benzazepinones) [25]. Current
advances in the search for GSK-3 inhibitors have been recently reviewed [1,13,26].

Amaryllidaceae alkaloids, consisting of a nitrogen-containing polycyclic structure, are produced
exclusively by plants of the Amaryllidaceae family. These compounds have attracted considerable
attention, most prominently because of their inhibition of acetylcholinesterase (AChE) and activity
against drug-resistant cancers with dismal prognoses [27–30]. The best known Amaryllidaceae alkaloid,
galanthamine, is used in the treatment of Alzheimer’s disease, as a long acting, selective, reversible,
and competitive AChE inhibitor [28]. Further Amaryllidaceae alkaloids, such as pancratistatine,
narciclasine, lycorine, haemanthamine, distichamine, and their derivatives, are known for their potent
cell line specific anticancer properties, and some of them are involved at various stages of development,
with a clinical candidate earmarked for commercialization within the next decade [31,32].

In our search for active natural products against neurological and cancer disorders, we have
discovered the potency of Amaryllidaceae alkaloids to inhibit GSK-3β.

2. Results and Discussion

2.1. Amaryllidaceae Alkaloids

In the current study, 28 Amaryllidaceae alkaloids (Figure 1) of seven structural types: belladine (1),
haemanthamine (2–6), crinine (7–10), galanthamine (11–13), lycorine (14–19), tazettine (20),
and homolycorine (21–28), were studied for their ability to inhibit GSK-3β. All compounds have
been previously isolated in our laboratory from different Amaryllidaceae plants.
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Figure 1. Structures of the studied Amaryllidaceae alkaloids.

2.2. Potency of Amaryllidaceae Alkaloids to Inhibit GSK-3β

The inhibitory activity of the compounds was first screened at a concentration of 50 µM
(Table 1); a synthetic arylindolemaleimide derivative, SB-415286, was used as a positive standard. This
compound is a highly selective GSK-3 inhibitor developed by GlaxoSmithKline that inhibits GSK-3 as
well as other organic inhibitors of synthetic origin (e.g., thiadiazolidinones, oxadiazole analogues),
within the low nanomolar concentration range [23,24,33].
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Table 1. Screening of Amaryllidaceae alkaloids for their potency to inhibit GSK-3β (conc. 50 µM).

Structural Type Alkaloid % of Inhibition

Belladine Beladine (1) 34.4 ± 2.7
Haemanthamine Epimaritidine (2) 45.2 ± 1.1

Haemanthamine (3) 52.4 ± 0.1
Haemanthidine (4) 33.0 ± 2.2

Hamayne (5) 33.9 ± 0.1
Seco-isopowellaminone (6) 38.5 ± 0.8

Crinine Ambelline (7) 38.0 ± 0.8
Crinine (8) 39.6 ± 5.4

Undulatine (9) 43.3 ± 4.0
Crinamidine (10) 32.1 ± 7.9

Galanthamine Chlidanthine (11) 37.9 ± 9.5
Narwedine (12) 37.7 ± 0.3

Lycoraminone (13) 38.9 ± 1.0
Lycorine Caranine (14) 61.8 ± 9.2

Lycorine (15) 32.9 ± 0.2
1-O-Acetyllycorine (16) 49.9 ± 1.9

Galanthine (17) 26.4 ± 7.7
9-O-Demethylgalanthine (18) 50.9 ± 8.9

Norpluviine (19) 45.0 ± 4.3
Tazettine Tazettine (20) 49.2 ± 0.3

Homolycorine Hippeastrine (21) 10.7 ± 2.5
Homolycorine (22) 54.4 ± 0.6

9-O-Demethylhomolycorine (23) 63.6 ± 1.3
Masonine (24) 66.0 ± 4.0

Lycorenine (25) 47.6 ± 3.5
O-Ethyllycorenine (26) 57.7 ± 3.5

Oduline (27) 57.7 ± 4.4
Tetrahydromasonine (28) 22.4 ± 0.2

The best results in preliminary screening were demonstrated by alkaloids of the homolycorin-
type (21–28). Most of the substances tested in this group showed an activity at 50 µM of
more than 50%. After preliminary screening, the three most active compounds: caranine (14),
9-O-demethylhomolycorine (23), and masonine (24), were selected for IC50 determination.

The measurements were performed in triplicate and the values given are the average obtained
after at least two measurements. The IC50 values of the selected alkaloids are in the micromolar
range (about 30 µM) and were obtained for three of the selected compounds (Table 2). The highest
GSK-3β inhibition potency has been demonstrated by two homolycorine-type Amaryllidaceae
alkaloids, masonine (24, IC50 = 27.81 ± 0.01 µM; Figure 2) and 9-O-demethylhomolycorine (23,
IC50 = 30.00 ± 0.71 µM; Figure 2), and one lycorine-type alkaloid caranine (14, IC50 = 30.75 ± 0.04 µM;
Figure 2). The low number of available homolycorine-type alkaloids precluded a detailed
structure-activity relationship (SAR) study, but their general features can still be described. It seems that
the presence of hydroxyl substitution at position 2, as in hippeastrine (21; see Figure 1), is connected
with a distinct reduction of GSK-3β inhibitory activity (10.65% of GSK-3β inhibition at 50 µM)
compared with masonine (66.0% of GSK-3β inhibition at 50 µM), 9-O-demethylhomolycorine (63.6%
of GSK-3β inhibition at 50 µM), oduline (57.7% of GSK-3β inhibition at 50 µM), and O-ethyllycorenine
(57.7% of GSK-3β inhibition at 50 µM), where no substituent (e.g., hydroxy or methoxy group, etc.)
in position C-2 is present. The opening of the tetrahydropyrane ring in tetrahydromasonine (28,
see Figure 1) also reduces the GSK-3β inhibitory potency of homolycorine-type alkaloids (Table 1).
For a detailed SAR study of homolycorine-type of Amaryllidaceae alkaloids, it is necessary to study a
wider range of natural or semi-synthetic analogues of active alkaloids.
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Table 2. The potency to inhibit GSK-3β (IC50) of selected Amaryllidaceae alkaloids.

Alkaloid IC50 (µM) *

Caranine (14) 30.75 ± 0.04
9-O-Demethylhomolycorine (23) 30.00 ± 0.71

Masonine (24) 27.81 ± 0.05
SB-415286 ** 70.00 nM

* Data are the means ± Standard Deviation (SD) of three independent replications, ** SB-415286, a compound used
as a standard.
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The most interesting GSK-3β inhibition potency of natural products have been demonstrated
by the alkaloid manzamine A (IC50 = 10.2 µM), isolated from a common Indonesian sponge
Acanthostrongylophora and its semisynthetic analogue 1 [20], by indole alkaloid hymenialdisine
(HD, IC50 = 10 nM) [34], isolated from marine sponges from the Agelasidae, Axinellidae,
and Halichondriidae families [35,36], as well as meridianin E (IC50 = 2.5 µM) [37] isolated from
ascidian Aplidium meridianum. The mechanism of action has been studied in case of HD. The kinetic
experiments were performed by varying both ATP levels and HD concentrations. The results of
double-reciprocal plotting indicated that HD is a competitive inhibitor for ATP [34]. Compounds
isolated from endophytic fungus Cosmospora vilior have also been studied for their potency to inhibit
GSK-3β [38]. Cosmochlorin A and cosmochlorine B showed GSK-3β inhibition activity at IC50 values
of 62.5 and 60.6 µM, respectively [38].

3. Experimental

3.1. Amaryllidaceae Alkaloids

All Amaryllidaceae alkaloids tested have been previously isolated at the Department of
Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové from various Amaryllidaceae plant
species (Zephyranthes robusta [39,40], Chlidanthus fragrans [27,41], Nerine bowdenii [42], Narcissus poeticus
cv. Pink Parasol [43], and N. poeticus cv. Brackenhurst [44]). The purity of all compounds (≥ 98%) was
determined by 1H and 13C NMR spectroscopy.

3.2. GSK-3β Assay

Kinase-Glo Kit was obtained from Promega (Promega Biotech Iberica, S.L., Madrid, Spain),
and human recombinant GSK-3β and GSM substrate mimicking Glycogen Muscle Synthase from
Merck Millipore (Darmstadt, Germany). Adenosine 5-triphosphate (ATP) disodium salt hydrate,
ammonium acetate, ammonium hydroxide, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid
(HEPES), ethylene glycol-bis(-aminoethylether)-N,N,N,N-tetraacetic acid tetrasodium salt (EGTA),
ethylenediaminetetraacetic acid (EDTA), dimethyl sulfoxide (DMSO), magnesium acetate tetrahydrate,
formic acid, and 3-[(3-chloro-4-hydroxyphenyl)amino]-4-(2-nitrophenyl)-1H-pyrrol-2,5-dione were
purchased from Sigma-Aldrich (St. Louis, MO, USA). The GSK-3β selective inhibitor SB-415286
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([3-(3-chloro-4-hydroxyphenylamino)-4-(2-nitrophenyl)-1H-pyrrole-2,5-dione]) was purchased from
Selleck Chemicals (Houston, TX, USA). Ultrapure water was obtained using a Purite LTD water
purification system (Thame, UK). The experiments were carried out using a Victor X3 multimode plate
reader (Perkin Elmer, MA, USA).

GSK-3β activity and inhibition were studied according to the luminescent method of Baki et al.
using a Kinase-Glo reagent kit [45]. The reaction was performed in 96-well white plates. Each well
contained 10 µL of test compound (dissolved in DMSO) at 1 mM concentration and diluted in advance
in an assay buffer (pH 7.5) containing 50 mM HEPES, 1 mM EDTA, 1 mM EGTA, and 15 mM
magnesium acetate, to the desired concentration, 10 µL of ATP (1 µM final concentration), 10 µL
of 100 µM GSM and 10 µL of GSK-3β (20 ng). Ten microliters of either buffer or SB-415286 solution
(5 µM final concentration) was added instead of test compound solution in order to obtain the positive
(maximum activity) and negative control (total inhibition), respectively. The final DMSO concentration
in the reaction mixture did not exceed 5%. The mix was left to react at 37 ◦C for 30 min. Then the
enzymatic reactions were stopped with 40 µL of Kinase-Glo reagent. Glow-type luminescence was
recorded after 10 min. The activity is proportional to the difference of the total and consumed ATP.
The inhibition activities were calculated on the basis of maximal activity, measured in the absence
of inhibitor, and the maximal inhibition was measured in the presence of the reference compound.
The IC50 values were calculated using the GraphPad Prism 4.0 program (GraphPad Software Inc.,
CA, USA).

4. Conclusions

In conclusion, GSK-3β is an enzyme with a very large number of different actions in intracellular
signaling systems. Many of the pathways that use GSK-3β as a regulator have links to human diseases
and, thus, have great potential as a target for therapeutic prevention. Currently, GSK-3β inhibitors
have great promise as drugs for the pharmacotherapy of severe pathologies such as cancer, AD,
mood disorders, diabetes, stroke, and many others. Since the introduction of galanthamine into
the treatment of AD, Amaryllidaceae alkaloids have been an important source for the discovery of
potential therapeutic agents.

In the present study, the potency of Amaryllidaceae alkaloids to inhibit GSK-3β has been
studied. The results obtained suggest Amaryllidaceae alkaloids constitute an interesting scaffold. Since
Amaryllidaceae alkaloids can easily be isolated from natural sources in amounts which allow for
the preparation of their derivatives, thus the active GSK-3β inhibitors will be used in the design of
more potent semisynthetic compounds. The type of GSK-3β inhibition of active alkaloids, and their
semisynthetic derivatives, will be studied in future experiments.
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