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The human visual system has the ability to group parts
of stimuli into larger, inherently structured units. In this
article, a computational model inspired by tolerance
space theory simulating the human perceptual grouping
of dot patterns is proposed. Tolerance space theory
introduces a tolerance relation to a discrete set to
formulate the continuity of the discrete patterns. The
model proposed herein includes one- and two-reach
methods based on the assumption that dot patterns can
be represented in the proposed extended tolerance
space (ETS). Both methods are used to construct a ratio
neighborhood graph (RANG), calculate tolerance from
the diagram, compute the new RANG, and then rebuild
continuous structures from the new RANG with a
combinatorial procedure. Experiments are conducted to
show the high consistency of the proposed model with
human perception for various shapes of dot patterns, its
ability to simulate Gestalt proximity and similarity
principles, and its potential application in computer
vision. In addition, the close relationship of the
proposed model with the Pure Distance Law is
comprehensively revealed, and the hierarchical
representation of perceptual grouping is simulated with
an adaptation of the proposed model based on the ETS.

Introduction

Perceptual organization, a basic function of the
human visual system, is the ability to perceive objects,
scenes, and events from visual information. There have
been many studies published on the topic of perceptual
organization, dealing with a wide range of phenomena
(Wagemans et al., 2012), processes (Treisman, 1982),

neural mechanisms (Grossberg & Mingolla (1987),
models (Compton & Logan, 1993; Kubovy, 1994;
Kubovy et al., 1998; Feldman, 2003; Froyen et al.,
2015), and theories (Treisman, 1982; Wagemans
et al., 2012). Within the wider study of perceptual
organization, perceptual grouping is the process by
which local elements are organized into connected
groups or objects Wagemans (2015). This is important
for humans because numerous objects are projected
onto the retina in noncontiguous forms because of light
conditions, overlapping, and occlusion. However, with
the ability of perceptual grouping, humans are able to
perceive continuous objects and understand what they
are even if they seem discrete.

Simple examples are shown in Figure 1. Perceptual
grouping enables us to recognize four groups (vertical
lines) consisting of five dots each in Figure 1(a).
Similarly, the letter “A” in Figure 1(b) and the hollow
disk in Figure 1(c) are also recognized by the perceptual
organization of the human visual system.

In essence, visual processing is discrete, starting from
the sampling of continuous stimuli of the outside world
by the photoreceptor cells of the retina (Chen, 2005).
Dot pattern perception is one of the basic components
in visual perception research (Kubovy, 1994; Kubovy
et al., 1998). Gestalt psychology, which considers a
Gestalt as “a whole in itself, not founded on any more
elementary objects,” emphasizes the importance of both
wholes and parts (Wagemans et al., 2012) and provides
a list of principles for the empirical, methodological,
and conceptual basis of perceptual organization, such
as proximity, similarity, closure, good continuation,
and common fate (Wertheimer, 1938; Wertheimer &
Riezler, 1944). The classical Gestalt laws are often based
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Figure 1. Example of perceptual grouping of dot patterns. The
top row shows the original dot patterns, and the bottom row
shows the corresponding continuous structures recognized by
perceptual grouping. In this article, a computational model to
simulate this phenomenon is proposed.

on apparently disconnected dot arrays or lattices, and
they aim to explain how these disconnected arrays are
organized into perceptually connected wholes. The Pure
Distance Law (PDL), summarized by Kubovy et al.
(Kubovy, 1994; Kubovy & Wagemans, 1995; Kubovy
et al., 1998), quantifies the classical Gestalt laws of
grouping by proximity in dot lattices, but does not
provide a clear criterion as to which dots should be
grouped, which may limit its applicability to discrete
patterns, particularly dot patterns of arbitrary shape
and density.

Although there are many computational models
to simulate the proximity principles (Claessens &
Wagemans, 2008; Feldman, 2003; Froyen et al., 2015;
Papari & Petkov, 2005; Van Oeffelen & Vos, 1982,
1983), for example, good continuation (Claessens &
Wagemans, 2008; Froyen et al., 2015; Lezama et al.,
2017), there are no known methods that can simulate
the proximity principle and reconstruct perceptual
continuous shapes from nonuniform, arbitrarily shaped
dot patterns. Therefore, the main purpose of this
work is to develop a model to accurately simulate the
proximity principle and reconstruct a continuous shape
from nonuniform dot patterns.

Gestalt psychologists have reached a consensus
on the superiority of the whole over its parts. The
topological perception theory proposed by (Chen,
1982, 2005), which also claims “global first,” seeks
to construct a formal description for perceptual
organization on both discrete and continuous patterns.
However, the aforementioned computational methods
either merely leveraged the local information in dot
patterns (Claessens & Wagemans, 2008; Froyen et al.,
2015) or simply set the threshold constant (Papari &
Petkov, 2005).

Consequently, following the viewpoint of these
psychology theories, the contribution of global
information over local features of dot patterns is
emphasized in the present work. Tolerance space
theory (Zeeman, 1962; Sossinsky, 1986) is believed
to serve as a proper mathematical approach for the
perceptual organization of discrete patterns. It works
by introducing a tolerance relation to a discrete set that
is reflexive and symmetric to formulate the continuity
of the discrete patterns Chen (2005). The details of
tolerance space theory are defined in the Preliminaries
section.

Specifically, the notions of tolerance space theory
are borrowed to construct a ratio neighborhood graph
(RANG) to explore the global context information of
the dot patterns. The notion of tolerance space theory
is introduced, and then a new concept of extended
tolerance space (ETS) is proposed to promote the
generalization capacity of tolerance space theory.
Different from the definition of tolerance space, ETS
has a special relationship between the data elements
and the tolerance. Based on this extended concept,
many discrete patterns can be properly represented in
ETS; meanwhile, each continuous component satisfies
the definition of standard tolerance space on its own.
Therefore, finding the proper tolerance relationship for
ETS is the core idea of the proposed model.

In this work, a one-reach ratio distance method is
proposed to find the proper tolerance. Based on the
one-reach strategy, a two-reach method is proposed to
handle more complex structures and resist noise and
outliers, and to construct a RANG. Subsequently, a
combinatorial process is designed based on this RANG
to reconstruct continuous structures from discrete dot
patterns.

Many researchers claim that the Gestalt proximity
principle has a close relationship with the similarity
principle, which states that proximity is one of the
conditions of similarity in location (Wagemans, 2015).
Therefore, an attempt is made herein to simulate the
similarity principle using the proposed model in terms
of different features, such as color, shape, size, and
velocity. Moreover, the proposed model is also extended
to accomplish the task of image segmentation to show
its potential in engineering applications.

In summary, in this article, an ETS theory is
proposed as the principle underlying our computational
model. This model includes a one-reach method
and a two-reach method, which simulate perceptual
grouping for noisy and nonuniform dot patterns.
Physiologically meaningful parameter settings (i.e., the
thresholds thID1 = 0.12 and thID2 = 0.035) are found
in our computational model. Then, the consistency
between our simulation results and human perception is
quantitatively evaluated. Simulations for some Gestalt
principles and applications to image segmentation are
carried out to show the broad abilities of our model.
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Finally, the close relationship of our model to PDL, the
hierarchical representation achieved with our model,
simulations of five types of grouping, as well as the
psychological significances of our basic parameters are
all further discussed.

Related work

There are several subjects related to our work,
including computational models simulating dot
perception, clustering, surface reconstruction, and
image segmentation.

The perception of regular dot patterns, such as
dot lattices, was thoroughly studied by Kubovy et al.
(Kubovy, 1994; Kubovy & Wagemans, 1995), who
identified different types of dot lattices and the notion
of the degree of instability of different dot lattices. They
later found that the relative strength of grouping dots
of a particular orientation approximates a decreasing
exponential function of the relative distance to the
shortest distance between dots in different orientations,
and they referred to this as the PDL(Kubovy et al.,
1998). The relationship between the proposed model
and PDL is comprehensively analyzed in the Discussion
section.

To mimic dot grouping with arbitrary shapes in
human perception, Papari and Petkov (2005) adopted
the Delaunay triangulation algorithm as an initial graph
and then cut the improper edges to build a reduced
Delaunay graph (RDG). However, the fixed threshold
chosen in the RDG limits its power in modeling
perceptual grouping.

Line detection from discrete patterns, such as dot
and gabor patterns, was also studied in some previous
work. Lezama et al. (2017) proposed an automatic
algorithm for detecting good continuation in dot
patterns. This algorithm identifies the dots in good
continuation and uses them to find the lines in dot
patterns. However, because this method calculates dots
that are locally quasisymmetric, it only finds lines
rather than continuous shapes. Detecting continuous
lines in gabor patterns relies on another feature, the
contour curvature, which is represented by orientations
of gabors and modeled using an association field (Field
et al., 1993). Furthermore, the maximum tolerable
contour curvature and spatial adjacency of gabors in
line were reported in Watt et al. (2008).

Hierarchical (or multiscale) perception is a basic
and flexible characteristic of human perception.
The normal distribution function (i.e., Gaussian
filter) has been widely adopted in human perception
simulation and computer vision applications within
scale-space theory (Lindeberg, 1994, 2013). To quantify
clusters of two-dimensional dot patterns flexibly
like human perception, a related pioneering work

(Van Oeffelen & Vos, 1982, 1983) proposed the
COntour-DEtecting clustering algorithm (CODE),
which is based on relative proximity using a binormal
distribution function and is invariant to translation,
rotation, and size. To thoroughly evaluate the
consistency of CODE and its variants with human
perception, Compton and Logan (1993, 1999)
conducted a series of experiments in which the
numerosity, scales, orientations, and shapes of dot
stimuli were varied. In contrast with CODE, Rosenholtz
et al. (2009) proposed to blur andmerge the components
in a higher feature space. This approach performs well
across diverse patterns with diverse features, such as
color and orientation.

For a long time, the lack of a formal way to
account for human intuition in computational
perceptual grouping models was recognized as a major
shortcoming. To address this problem, a logic-based
method, the Minimum Model theory, was proposed
by Feldman (2003), which chose the most preferred
model with least “coincidentalness.” Probability views
were also popular when building the formal description
of human perception. Bayesian methods proposed in
(Feldman & Singh, 2006; Froyen et al., 2015), which
were based on mixture models, were successfully
implemented to yield hierarchical representation for
diverse ranges of data including shape skeleton, dot
grouping, and image decomposition. Cue combination
and prior knowledge integration were also explored
in a Bayesian framework proposed by Claessens
and Wagemans (2008) to investigate the multistable
grouping of zigzag lattices. Although those models can
model and interpret many perceptual observations, they
are limited in interpreting some other fundamental
observations and being applied in computer
vision.

Clustering, another subject closely related to
perceptual grouping, aims to group data to several
clusters according to their inherent features. There
exist many kinds of clustering methods in terms of
different perspectives (Saxena et al., 2017), including
hierarchical, partitional, grid, density based, and model
based.

Image segmentation is another highly relevant and
broad research field, encompassing image partition,
edge detection, salient object detection, and so on.
In order to segment objects from the background,
many methods simulating perception and clustering
have been adapted into image feature spaces. Shi and
Malik (2000) adopted a global view of images within
a graph-based technique to find the “better cut” for
image partition. Comaniciu and Meer (2002) proposed
a general nonparametric technique to analyze and
group image pixels in feature spaces. Recently, deep
learning has further promoted the performance of
image segmentation (Peng et al., 2013). There exist such
a huge number of studies using various methods within
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this field that we can only review a few of them; more
reviews can be found in these surveys: Peng et al., 2013;
Ghosh et al., 2019.

The surface reconstruction process of discrete dot
patterns in the first part of the proposed model plays a
significant role. Similarly, several computer graphics-
based methods have conducted surface reconstruction
from scatters using Delaunay triangulation. For
instance, the crust (Amenta et al., 1998a; Zhao et
al., 2001) adopts the Voronoi diagram and Delaunay
triangulation to generate the vertices of triangles from
noise-free data; however, these methods are unable to
handle noisy and nonuniform data.

Persistent homology is an algebraic tool used to
compute topological features for a space at different
spatial resolutions by adopting the simplicial complex
(Pun et al., 2018). A filtration process with filtration
parameters in persistent homology can represent the
structure information in the resolution under this
parameter. However, persistent homology can only
reveal the grouping attributive relationship of dots,
whereas the proposed model can provide the continuous
and topologically correct structures for the perceptual
organization of dot patterns.

Preliminaries

Tolerance space theory

A tolerance is defined in terms of an algebraic
relation that is reflective and symmetric but in general
not transitive. Two stimuli x1 and x2 from a stimulus set
X will not be distinguished if they are sufficiently close
to each other. More details can be found in (Sossinsky,
1986; Peters & Wasilewski, 2012). One can say that
these two stimuli are within a tolerance and that the
tolerance ξ is defined as follows:

Definition 1. A tolerance ξ on set X is a binary
relation on a set X , that is, ξ ⊆ X × X , and has the
following properties. (i) Reflexive: ∀x ∈ X, (x, x) ∈ ξ ;
(ii) Symmetric: ∀x, y ∈ X,if (x, y) ∈ ξ , then(y, x) ∈ ξ .

Unlike other binary relations, the tolerance is not
in general transitive, which means that even if both
(x1, x2) and (x2, x3) satisfy a tolerance ξ , it does not
imply that the pair (x1, x3) also satisfies this tolerance.
The nontransitive property is the foundation of
tolerance theory. It is worth noting that the tolerance ξ
is a relation, not a threshold; therefore, the symbol “∈”
represents “satisfies” rather than “is included.” A toy
example of tolerance is illustrated in Figure 2.

Definition 2. A tolerance space (X, ξ ) is a set X
supplied with a tolerance ξ .

The notion of tolerance depicts the abstraction
of the least noticeable difference with mathematical
terminology. Referring to the analysis in Chen (2005),

：

• .
• .

• .
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Figure 2. Toy example of tolerance space theory. Tolerance ξ

here represents a relation in which the distance between
vertices i and j is less than 1.5. Symbols ∈ and /∈ represent the
relationships of “satisfies” and “unsatisfies,” respectively.
Therefore, according to the edge length marked in red, dots r
and g and dots g and b satisfy the tolerance ξ , whereas dots r
and b do not.

the special nontransitive property of tolerance
emphasizes the global topological properties.

As pointed out in Chen (2005), although Zeeman
has proven that the global topological properties are
preserved under a tolerance homeomorphism, it is still
quite difficult to implement computationally (Zeeman,
1962). Our thought is that recovering the continuous
structures of discrete patterns is one of the encouraging
solutions that address this problem. Therefore, a new
concept called ETS is defined to serve as the basis of the
simulation model described in the section that follows.

Delaunay triangulation

Delaunay triangulation is a significant preprocessing
technique in computational geometry (Delaunay,
1934; Amenta et al., 1998a, 1998b). A triangulation
of a finite point set is a collection of triangulations
or graph points, the vertices of which are the given
set of points, and the edges of which do not intersect
except at the points. Delaunay triangulation has many
useful properties, e.g., the smallest angle of any triangle
in triangulation is maximized, which ensures that
the triangulation result is unique for any point set.
In addition, Delaunay triangulation separates the
surface where the dots locate with simplexes (triangles)
without holes, which facilitates rebuilding a continuous
structure from the results.

Methods

The human visual system has a limited capability in
perceiving or discriminating cluttered stimuli because
of visual acuity. For example, two dots cannot be
discriminated when they are sufficiently close. Zeeman
(1962) demonstrated this phenomenon as “the least
noticeable difference,” covering spatial acuity and
contrast sensitivity, and advanced a mathematical
structure of a “tolerance” to represent the nature of the
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(a) (b)

Figure 3. Toy example of ETS theory. (a) Given dot pattern, and
(b) continuous map reconstructed from (a) using the proposed
model. The form of ETS is used to represent the dot pattern as
({X1; X2}, ξ ), which means that the subsets X1 and X2 of dataset
X with tolerance ξ meet the definition of the tolerance space;
meanwhile, the set X with ξ does not meet this definition.

psychological “least noticeable difference.” A specific
discussion in Chen (2005) claims that the “tolerance
space” may be an appropriate mathematical tool for
translating the topological perception theory into the
discrete situation of visual perception. More recent
comprehensive details about tolerance space can be
found in Peters and Wasilewski (2012). In this section,
the tolerance space theory is extended to broaden the
range of its applications. This extended theory serves as
the cornerstone of the proposed model.

Extended tolerance space

Definition 3. Define a set X = {x1, x2, ..., xm}, where
Xn, (1 ≤ n ≤ m) is the maximum independent subset of
X , and eachXn satisfies the definition on tolerance space
(Xn, ξ ) with the same tolerance relation ξ , while any two
subsets do not. Denote (X, ξ ) = ({X1;X2; ...;Xn}, ξ ) as
the ETS.

The following properties can be easily derived from
Definition 3:

(a) The union of all of the maximum independent
subsets is equal to the whole set, {X1 ∪ X2 ∪ ... ∪ Xn} =
X ;

(b) There is no intersection between any two
maximum independent subsets, {Xi ∩ Xj; i �= j, ∀i, j =
1, 2, ..., n} = ∅;

(c) The standard tolerance space defined in Definition
2 is just a spacial case of ETS, in which there is only one
subset.

(d) Changing the tolerance ξ produces various ETSs
for a set of data.

The ETS extends the applicability of tolerance space
to many scenes. To demonstrate this notion, we present
an example in Figure 3. Generally, one will perceive
the discrete dot pattern shown in Figure 3(a) as two

continuous circles, one nesting within the other; this
is the ideal simulation result of the proposed model.
It is supposed that all of the locations of dots are
represented as a set X , and the dots in the inner and
outer circles are denoted as X1 and X2, respectively.
We can find a tolerance ξ by adopting our model to
make the data X satisfy the definition of ETS, while
the subsets X1 and X2 satisfy the definition of tolerance
space. One can determine the tolerance relation ξ with
an appropriate threshold to reconstruct a continuous
structure that is similar to the perception of the dot
pattern in Figure 3(b).

Computational perceptual organization model

Considering a set of discrete data Xdata =
{x1, x2, ..., xm}, because there may be some other
features like color and size, X = {v1, v2, ..., vm} is
used to denote the dot positions in Xdata, where
m is the number of data points. Similar to the
construction of an RDG (Papari & Petkov, 2005), an
initial neighborhood graph is constructed on point
set X first using Delaunay triangulation (Delaunay,
1934). Then, the unreasonable edges are removed
to generate the RANG by finding thresholds using
the one-reach method proposed in the Section on
One-reach Ratio Distance Method or the two-reach
method proposed in the Section on Two-reach Ratio
Distance Method. This new graph with an appropriate
tolerance relation satisfies the definition of ETS. The
RANG is the skeleton of the continuous structures of
dot patterns. Finally, a continuous map is reconstructed
by filling and combining the reasonable triangles
in the Section on Reconstruction of Continuous
Structures. The output is regarded as the simulation
result of the proposed computational model for the dot
pattern.

Delaunay triangulation demonstrated in the Section
on Delaunay Triangulation can create a neighborhood
graph, where a vertex v is connected to its neighbors
(Newman, 2010). To use Delaunay triangulation
to build the proposed perceptual organization
model, a new graph named RANG is defined first,
which is a specific subgraph of a neighborhood
graph.

It should be noted that two types of algorithms
are used in this work to create neighborhood graphs:
Delaunay triangulation and k-nearest neighbors (k-
NN) (Newman, 2010). For the purpose of continuous
structure reconstruction, Delaunay triangulation is
adopted because it properly separates the surface using
simplexes (triangles) without holes. However, Delaunay
triangulation is computationally intensive and unreliable
when data are of more than two dimensions. Therefore,
k-NN is used when the focus is more on grouping
rather than reconstructing continuous structures; for
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example, in the experiments in Sections on Proximity
and Similarity Principle Simulation and Image
Segmentation.

Definition 4. A RANG is a weighted, bidirected
graph, G = (V,R,W ), where V is the dot set;
R = (E,L) is the ratio distance L of each edge E
linking two adjacent dots inV ; andW is the weighting
of E .W has only two values: eitherW = 0 for removal
orW = 1 for retention.

To construct the RANG, a neighborhood graph is
first constructed using the Delaunay triangulation
algorithm. Then, the Euclidean distance is calculated
for each edge in the neighborhood graph, and the ratio
distance of each edge is calculated by normalizing
its Euclidean distance with the shortest Euclidean
distance of those edges within the scope of its one- or
two-reach neighborhood. Here, the one- or two-reach
neighborhood of a dot x is defined as the neighboring
dots (or nodes in the graph) that can be reached in
at most one or two steps, respectively, from node x
in the graph. One step means a node x can reach its
neighborhood y via one edge and y’s neighborhood z
(not in the neighborhood of x) via two edges.

It should be noted that because the RANG is a
bidirected graph, there exists only one Euclidean
distance between a pair of neighbors p and q. However,
there exist two ratio distances between them (p → q and
q → p) because the shortest edge in the neighborhood
of a vertex may be different.

The RANG defined in this work is a new graph that
consists of edges defined by the ratio distance rather
than the absolute distance. This feature endows the
proposed model with a good ability to find the intrinsic
properties of dot patterns and handle noise and various
densities.

One-reach ratio distance method
To keep the scale invariant and preserve the global

structural information as much as possible, for the dot
pairs of x with its j neighbors Nx = {n1, n2, ..., n j}, the
edge ratio distance for each edge r(x, ni) is calculated
by dividing the Euclidean distance of the edge, i.e.,
d (x, ni), by the shortest Euclidean distance among the
edges of x to Nx. This is written as

r(x, ni) = d (x, ni)
min
nk∈Nx

{d (x, nk)} . (1)

R(x) = {r(x, n1), r(x, n2), ..., r(x, n j )} is used to
represent the ratio distance sequence of a dot in the
neighborhood graph. Therefore, the sequence of all
of the dots in the neighborhood graph is represented
as Q0 = {R(x1),R(x2), ...,R(xm)}. Then Q0 is sorted
in ascending order to obtain a sorted ratio distance

1

1
1.5

1.2 4.8
6 4

1.21.5
2.5

1.4

xx

(a) (b)

Figure 4. Edge normalization used in the proposed model. (a)
One-reach neighborhood and (b) two-reach neighborhood
(connected with solid lines) of red dot x in neighborhood graph.
Ratio distance of the shortest edge (in Euclidean distance) is
normalized to 1 in the RANG.

sequence Q1. The results of edge normalization are
illustrated in Figure 4.

It can be inferred that all of the values calculated
by Equation 1 approach 1 if the distances between all
pairs of dots are similar. In contrast, if the lengths of
edges vary largely, some of the edge ratio distances
calculated by Equation 1 will be far greater than
1, which are supposed to be the unreasonable dot
relations. Therefore, choosing a proper threshold to
eliminate these improper edges is a feasible way of
finding the perceptually reasonable dot relations. In
the RDG (Papari & Petkov, 2005), the threshold is
simply set as a constant value of 1.65, determined
empirically, to remove the unreasonable edges defined
by the Euclidean distance. Such a criterion neglects
the essential distribution properties of different
patterns.

Different from RDG (Papari & Petkov, 2005),
the aim here is to determine the proper thresholds
adaptively for different dot patterns by investigating
their intrinsic features from distributions. Fortunately,
after plotting the ratio distance Q1 sorted in ascending
order on a diagram, the global intrinsic features can be
clearly observed.

An example of the Q1 diagram is depicted in Figure
5(c). It is clear from the blue curve that there exist
some abrupt increases in the ranges of [300, 350] and
[400, 450] on the horizontal axis. This fact inspired us
to find appropriate thresholds by detecting these abrupt
increases and determining the criterion to cut these
unreasonably long edges in the RANG, which is shown
in Figure 5(b). Considering that the first derivative of
the Q1 curve is noise-sensitive when used to detect the
abrupt increases in the Q1 curve, the first derivative of
Q1 is modulated by multiplying a weighting item to
form a one-reach indicator sequence QID1, as shown by
the red curve in Figure 5(c):

QID1(k) = WQ(k) · Q′
1(k), (2)
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Figure 5. Flowchart of the one-reach method in our computational model. (a) Dot pattern. (b) RANG constructed by using Delaunay
triangulation and edge normalization. (c) Diagram of the sorted ratio distance sequence Q1 and indicator sequence QID1. Indicator
threshold thID1 = 0.12 is empirically set to obtain the minimal ratio threshold w1 to create the tolerance relation ξ . (d) According to
the obtained ξ , edges between dot pairs that do not satisfy ξ will be disconnected to obtain a new RANG. (e) Continuous structure is
reconstructed by filling the simplexes (i.e., triangles).

where k is the index of edge in Q1; and Q′
1(k) is the

first derivative of Q1(k) calculated as

Q
′
1(k) =

⎧⎨
⎩

Q1(k+1)−Q1(k)
2 ; if 2 ≤ k ≤ m − 1,

0; if k = 1,
Q′

1(k − 1); if k = m.

(3)

The weightingWQ(k) is the ratio distance of the
current edge value Q1(k) to the mean cumulative value
from 1 to k, which is calculated as

WQ(k) = Q1(k)
1
k
∑k

i=1 Q1(i)
. (4)

WQ(k) represents the similarity to the mean of the
previous values of Q1. This means that if WQ(k) is
much greater than 1, this ratio edge is more likely to be
an unreasonable edge.

The value of the indicator QID1(k) indicates the
stability of Q1 at the k-th location. It was experimentally
found that, when setting a threshold thID1 = 0.12
for QID1, a series of locations with abrupt increases

can be stably obtained. Moreover, the Q1 value at
the first location obtained is exactly the one-reach
cutting threshold w1 as shown in Figure 5(b), which is
computed as:

w1

=
{Q1(min argk(QID1(k) > thID1)); if ∃QID1(k)

> thID1
max(Q1); else.

(5)

Therefore, for an edge L(p,q) that links adjacent dots
p and q (because each edge is computed twice, both
from p → q and from q → p), their states are denoted
as 0 for removal or 1 for preservation.

W(p,q) =
{1; if Q1(p→q) ≤ w1,
1; if Q1(q→p) ≤ w1,
0; else.

(6)

{Q1(p↔q) ≤ w1} in Equation 6 is the tolerance
relationship ξ of an ETS ({X1;X2}, ξ ). Equation
6 demonstrates that if two dots (p and q) in a
neighborhood graph accept the ξ that their edge ratio
distance is smaller than w1, the edge linking them
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Figure 6. Illustrations of the proposed one- and two-reach methods for continuous structure reconstruction from (a) noise-free and
(b) noisy dot patterns.

together is assigned a weighting W(p,q) = 1, which
means they are connected in the new RANG as shown
in Figure 5(d); otherwise,W(p,q) = 0, which means they
are disconnected. The disconnected edges between
adjacent dots are considered unreasonable because they
are intuitively too long in the neighborhood graph and
should be removed as shown in Figure 5. Finally, a new
RANG is obtained from the discrete dot pattern shown
in Figure 5(d).

It is worth mentioning that when the longest edge in
the neighborhood graph approaches zero, which means
the dot pattern converges to a continuous pattern,
the ratio distance calculated by Equation 1 converges
to 1, and all of the indicator values of QID1 should
be 0. As a result, the threshold w1 = max(Q1) = 0 is
obtained by Equation 5, and eventually no edge will
be removed according to Equation 6. This is the ideal
result obtained while processing a continuous map.
These analyses exhibit the robustness of the proposed
model when they are applied to continuous patterns.

However, when the absolute distances between dots
are large enough, there will be no continuous map
perceived, but discrete scatters will be. Fortunately, if
required, it is possible to add criteria in Equation 6 to
specify the maximal absolute length of the longest edge
of dot patterns.

Sometimes outliers exist in the discrete data, such as
the dot pattern shown in Figure 6(b). Unfortunately,
the proposed one-reach method can hardly handle
this situation since the outliers have similar reasonable
ratio distances to other dots. However, searching
for the shortest edges in a two-reach neighborhood
and calculating the ratio distance can avoid this
dilemma.

Two-reach ratio distance method
Different from the one-reach method searching

for the shortest edge within the one-step reachable
neighborhood in the neighborhood graph, the shortest
edge in our two-reach method is obtained by searching
within a two-step reachable neighborhood from the
RANG obtained by the one-reach method. This is
illustrated in Figure 4. If it is assumed that the red dot
is one of the outliers, the green dots are in its one-reach
neighborhood [Figure 4(a)], and the blue dots are all in
its two-reach neighborhood [Figure 4(b)]. The smallest
ratio edges within these two kinds of neighborhoods are
different. Consequently, if one sets a cutting threshold
(for instance, 1.1), there still exist edges in the one-reach
neighborhood connecting the outlier, whereas no edge
will exist in the two-reach neighborhood. This property
of the two-reach neighborhood largely improves the
robustness to outliers.

It should be mentioned that directly searching for the
shortest edge in the two-step neighborhood produces
a heavy computational burden because the run time
complexity of the computation procedure is O(n2).
Therefore, applying the two-reach method on the
RANG obtained by the one-reach method is natural
and feasible. The sorted two-reach ratio sequence Q2 is
obtained in a similar way as the one-reach sequence Q1.
Additionally, the indicator QID2 detecting the abrupt
increases of Q2 is computed as

QID2(k) = Q2
2(k)

1
k · ∑k

i=1Q2(i)
· Q′′

2(k), (7)
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where Q′′
2(k) is the second derivative of Q2(k) calculated

by Equation 8.

Q
′′
2(k) =

⎧⎨
⎩

Q2(k+1)+Q2(k−1)−2Q2(k))
4 ; if 2 ≤ k ≤ m − 1,

0; if k = 1,
Q′′

2(k − 1); if k = m.

(8)

The two-reach cutting threshold w2 is obtained by
Equation 9 when setting thID2 = 0.035 empirically for
QID2 in this work. The processing of the new RANG
obtained by the two-reach method with w2 is similar
to that of the one-reach method, as demonstrated in
Equation 6:

w2

=
⎧⎨
⎩
Q2(min argk(QID2(k) > thID2)); if ∃QID2(k)

> thID2,

max(Q2); else.
(9)

The examples shown in Figure 6 exhibit the different
capabilities of the two proposed methods for dealing
with outliers. The proposed one- and two-reach
methods share the same core idea to disconnect the
unreasonable links, but they differ in calculation and
application scenarios. The two-reach method can
deal with various data, even data with outliers, but it
is computationally intensive, whereas the one-reach
method is weaker in processing outliers but less
computationally intensive. The more computationally
intensive versions, such as three (or more)-reach
methods might not be practical since the outliers are
already resisted by two-reach neighborhoods.

Reconstruction of continuous structures
Inspired by the combinatorial process (Zomorodian

2010) that combines the graph to the Vietoris–Rips
complex, a similar process is designed to reconstruct
a continuous map from the RANG. The process is
to simply fill all of the triangles with a certain color.
The difference between Zomorodian (2010) and the
proposed model is that we only fill the triangles instead
of finding the highest-dimensional simplexes. For the
examples shown in Figure 6, the proposed two-reach
method can properly reconstruct the continuous
structures.

Experiments

Continuous structure reconstruction

Visual results of the proposed perceptual
organization model and a comparison with those of
the RDG (Papari & Petkov, 2005) are shown in Figure
7. The figure shows that all of the methods perform

well on simple dot patterns. The one-reach method
cannot resist the noise, whereas the two-reach method
and the RDG can. The RDG has poor performance
in complex structures such as those shown in Figures
7(e)-(j). On the contrary, our two-reach method obtains
better results on all of the complex dot patterns tested
here.

To quantitatively evaluate the performance of
continuous structure reconstruction, the results of
the proposed methods and RDG (Papari & Petkov,
2005) were compared with the human depicted
graphs built in this work. However, the commonly
used metrics for surface reconstruction are suitable
for three-dimensional tasks, but not for flat surface
reconstruction. The F-score is commonly used as a
measure of accuracy in statistics and engineering
(Beitzel, 2006), and it takes into consideration both
precision and recall, which seems suitable to evaluate
the connectedness of adjacent points. Therefore,
we adopted F-score to evaluate the performance
of the perceptual organization algorithms in this
paper.
Observers: Ten observers with ages ranging from 22 to
28 with normal or corrected vision. All of the observers
were naive to the purposes of the experiment.
Stimuli: Ten dot patterns (shown in Figure 7) and
the corresponding neighborhood graphs pre-obtained
using Delaunay triangulation.
Apparatus: Subjects were seated in a chair in front of
a computer screen with a resolution of 1024 × 768 at
a distance of 80 cm. All of the programs were written
and run in MATLAB.
Procedure: We first ran the program, which
simultaneously presented the dot patterns and
corresponding neighborhood graphs in parallel. The
instruction to the observers was to cut the redundant
lines in the neighborhood graphs to form a continuous
graph according to the original dot patterns until all of
the stimuli were presented.
Results: The results of the human observers are
regarded as the ground truths, and the mean of all of
the observer data are denoted asG. The results obtained
by specific algorithms are denoted as S. Some significant
parameters such as the numbers of true positives,
false positives, and false negatives are calculated as
TP = card (S ∩ G), FP = card (S) − card (S ∩ G), and
FN = card (G) − card (S ∩ G), where the function
card (·) counts the element number of a finite set.
Precision (P) and recall (R) are calculated as follows
Beitzel (2006):

P = TP
TP + FP

= card (S ∩ G)
card (S)

, (10)

R = TP
TP + FN

= card (S ∩ G)
card (G)

. (11)



Journal of Vision (2021) 21(5):23, 1–21 Peng, Yang, & Li 10

(b)

(a)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

one-reach two-reach

Continuous

map of

2-reach
RDG

Continuous

map of

RDG

dot patterns

Figure 7. Quantitative evaluation of our model and RDG. Columns from left to right are dot patterns, simulation results of the one-and
two-reach methods, continuous maps generated by the two-reach method, and the simulation results and continuous maps of RDG.

Then, the F-score (F ) is calculated as

F = 2 · P · R
P + R

. (12)

Precision and recall measure accuracy from two
different perspectives, while the F-score can measure
comprehensive performance. Intuitively, a higher

F-score in the range (0, 1) means better results. It is
worth noting that, because not all of the observers
reported the same results, the F-scores of simulated
results and even individual observers for some patterns
never got the result of 1 in this experiment, such as (c)
and (d) in Figure 8.

The F-score was also adopted to compare the results
of the proposed one- and two-reach methods with those
of the RDG in Figure 8. The tested dot patterns were
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Figure 8. Quantitative evaluation and comparison of proposed methods and RDG.

drawn by hand, and each listed F-score is an average
of the F-scores from human observers. The results
shown in Figure 8 indicate that the performance of our
one-reach method is good but sensitive to noise, as
illustrated in the patterns in Figures 8(d), (f), (h), and
(j). The proposed two-reach method has more stable
performance on all of the data, whereas the RDG has
worse performance on complex data like the patterns in
Figures 8(e)–(j).

Constructing a surface from a graph obtained by
Delaunay triangulation has been widely adopted.
Consequently, it is naturally and reasonable to evaluate
our methods and similar methods by leveraging the
neighborhood graphs. However, a potential drawback is
that the connected neighborhood graph may have some
influence on the perceptual grouping of the original
dot patterns. This potential distractor will be avoided
in the experiment conducted in the next subsection,
Perceptual Grouping.

To summarize, the main purpose of this experiment
is to obtain the human labeled data of surface
reconstruction from the neighborhood graph created
by Delaunay triangulation and then evaluate the
performance of our model and that of RDG. The
results show that the proposed methods (especially
the two-reach method) both have better performance
than RDG, and the simulation results are highly
consistent with human labeled data. This observation
demonstrates that the proposed model can simulate
the perceptual organization (mainly on continuous
structure reconstruction) of dot patterns well.

Perceptual grouping

Perceptual grouping is also one of the functions of
our methods. Experiments in the previous sections
qualitatively exhibited the grouping abilities of our

methods, as Figure 7 shows. In this section, we first
introduce how we obtained the ground-truth through
a psychophysical experiment, and then how we used
two widely used metrics for evaluating the simulation
results of our methods and RDG in terms of different
transformations.
Observers: Eight observers with ages ranging from
22 to 28 with normal or corrected vision. All of the
observers were naive to the purposes of the experiment,
and they are different observers from the experiment in
previous subsection.
Stimuli: Five dot patterns ((a),(b),(c),(g), and (h) from
Figure 7) with different scales (i.e., 0.5 and 2 times the
original image size) and rotations (i.e., 45◦ and 90◦)
were pre-obtained. The corresponding label-images
with labeled dots (initially all of the dots were colored
in red, i.e., all of the dots were of the same class) were
provided. The reason why we chose the patterns in
Figure 7 rather than randomly distributed dot patterns
as used by Compton and Logan (1993) is that our
method extracts the global intrinsic features of dot
patterns. Therefore, it is inappropriate to evaluate the
performance of our method on randomly distributed
patterns. To evaluate the robustness of our model,
following the work of Compton and Logan (1999), we
also chose to rescale and rotate the original stimuli to
certain scales and orientations.
Apparatus: Subjects were seated in a chair in front of
a computer screen with a resolution of 1024 × 768 at
a distance of 80 cm. All of the programs were written
and run in MATLAB.
Procedure: We first ran the program, which
simultaneously presented the dot patterns and
corresponding label-images in parallel. The instructions
to the observers were to observe the randomly presented
original dot images and then label the label-images in
different colors according to their intuitive sense using
the mouse. When the observer finished and saved the
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Rescale Rotation

0.5 2 π/4 π/2 Original Average

Dot patterns NMI RI NMI RI NMI RI NMI RI NMI RI NMI RI

(a) 1.000 1.000 1.000 1.000 0.875 0.903 0.875 0.903 1.000 1.000 0.950 0.961
(b) / 1.000 / 0.933 / 0.948 / 1.000 / 0.957 / 0.968
(c) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(g) 0.982 1.000 0.953 0.994 0.959 0.994 0.959 0.994 0.982 1.000 0.967 0.996
(h) / 0.760 / 0.770 / 0.850 / 0.713 / 0.714 / 0.761
Average 0.994 0.952 0.984 0.939 0.945 0.939 0.945 0.922 0.994 0.934 0.972 0.937

Table 1. The NMI and RI of the results of our two-reach method. “/” means this value does not exist.

Rescale Rotation

0.5 2 π/4 π/2 Original Average

Dot patterns NMI RI NMI RI NMI RI NMI RI NMI RI NMI RI

(a) 1.000 1.000 1.000 1.000 0.875 0.903 0.875 0.903 1.000 1.000 0.950 0.961
(b) / 1.000 / 0.933 / 0.948 / 1.000 / 0.957 / 0.968
(c) 0.647 0.880 0.647 0.880 0.647 0.880 0.647 0.880 0.647 0.880 0.647 0.880
(g) 0.694 0.887 0.674 0.881 0.679 0.882 0.679 0.882 0.694 0.887 0.684 0.884
(h) / 0.760 / 0.770 / 0.850 / 0.713 / 0.714 / 0.761
Average 0.780 0.905 0.774 0.893 0.734 0.892 0.734 0.875 0.780 0.888 0.760 0.891

Table 2. The NMI and RI of the results of RDG.

data of one image, another one was presented, until all
of the images were presented.

Evaluating the performance of clustering is too
complicated to use the F-score adopted in the previous
section. Therefore, we adopted two of the widely used
metrics of clustering, that is the Normalized Mutual
Information (NMI) Vinh et al. (2010) and Rand index
(RI) Rand (1971). RI is complementary to NMI
because the latter fails in some cases, particularly when
both the predicted data and ground truth have only one
class.
Results: The results are shown in Tables 1 and 2. Table
1 shows the results of our two-reach method. For most
of the dot patterns (i.e., (a)-(g)), NMI and RI were
higher than 0.9. For the complex pattern (h) they were
larger than 0.7. These results show that our method is
insensitive to scale and rotation. The averaged results
in terms of stimuli and in terms of metrics were both
higher than 0.9, indicating the effectiveness of our
method. Table 2 shows various results of RDG (Papari
& Petkov, 2005). RDG was also stable across different
transforms, but the performance of RDG was worse
than the performance of our method, especially for the
complex dot patterns (c), (g), and (h).

The method of CODE, which was proposed in
Van Oeffelen and Vos (1982, 1983), also groups dots

using relative proximity. However, there are two main
differences between CODE and our methods. First, our
methods find the adjustive thresholds by an indicator
function when searching the global properties of dot
patterns, whereas CODE simply sets them by observing
local properties. Second, because the relative proximity
is represented by Euclidean distance, our methods are
more flexible and hence easier integrate with other
features compared to CODE, which uses Gaussian
functions to represent the relative proximity.

Proximity and similarity principle simulation

The proximity principle is commonly considered a
special case of similarity in location Wagemans (2015).
and Kubovy and Van Den Berg (2008) reported that
the grouping of proximity and similarity is additive in
the logarithmic form of the PDL. Since the proposed
model is designed to simulate the proximity principle, it
may also be possible to simulate the similarity principle
according to these observations.

Figure 9(a) shows a list of examples of discrete
patterns of similarity in terms of various features f ,
including color (C), shape (D), size (E), orientation (F),
and common fate (G), which can also be treated as a
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(a)

(b)

(c)

Figure 9. Simulations of gestalt proximity and similarity law by
using the proposed model. (a) Left: dot arrays grouped by
gestalt principles of proximity (B) and similarity in terms of
color (C), shape (D), size (E), orientation (F), and velocity (G).
Right: corresponding simulations using the proposed one-reach
method. It should be noted that no dot-wise grouping observed
in A is equivalent to the observation that all dots are grouped to
one line. (b-c) When proximity and similarity principles
simultaneously occur, a change in the weighting w f in Equation
13 can appropriately simulate vertical grouping (b) and
horizontal grouping (c).

similarity of velocity. The edge distance linking dot pair
(p, q) is computed as

d(p,q) =
√

‖�x‖22 + ‖�y‖22 + ‖w f · � f ‖22, (13)

where �x, �y, and � f represent the distance in
their respective dimensions, and w f is the weighting
of feature f . Then, the RANG of this pattern is
constructed based on this edge distance, and, with
proper w f in terms of features, the grouping of these
patterns is appropriately simulated by the proposed
model (one-reach method) as shown on the right-hand
side of Figure 9(a). Dot lattice examples with two kinds
of features of dots are exhibited in Figures 9(b and c).

To summarize, these results demonstrate that the
proposed model can simulate proximity and similarity
appropriately. Interestingly, the ability of simulating
proximity and similarity make the proposed model able
to cluster data. Therefore, in the Image Segmentation
subsection, the proposed model will adopt the distance
between super-pixels calculated by Equation 13 to
segment the digital images.

Image segmentation

One of the natural applications of grouping in
proximity (or similarity) in the field of computer vision
is image segmentation, which partitions a digital image
into segments. Numerous methods have been proposed
for image segmentation (Shi & Malik, 2000; Chan &
Vese, 2001; Felzenszwalb & Huttenlocher, 2004; Pablo
et al., 2011; Ronneberger et al., 2015).

Referring to the Proximity and Similarity Principle
Simulation section, the proposed model can simulate
the grouping of dot patterns in gestalt laws of similarity
and proximity, and it should also be possible for it to
accomplish the task of image segmentation. In this
section, the two-reach method proposed in the section
(Method) is adopted to segment the images.

Each image is first resized to 500 pixels in its larger
dimension, and the superpixel map S = {s1, s2, ..., sn}
is obtained using SLIC (Achanta et al., 2012) with
size parameter regionSize = 50 and regular parameter
regularizer = 500. Then, five features f = { fp, fc},
including the average position fp = {x, y} and the color
feature fc = {r, g, b} in color space, are extracted for
each superpixel and normalized to [0, 1].

It is held that the position features represent the
proximity of superpixels and that the color features
demonstrate the appearance similarity. Because
there are five feature dimensions (two for location
and three for color) of an RGB image, k-NN with
k = 5 is adopted to replace Delaunay triangulation
when constructing the neighborhood graph, because
Delaunay triangulation is slow and unstable in
processing high-dimensional data. Usually, image
segmentation results are not unique, but they may vary
from coarse to fine (Pablo et al., 2011). The simulation
experiment of proximity and similarity described in the
previous section revealed that it is feasible to balance
the weightings between position and color features to
obtain results in various scales.

The feature distance between super-pixels si and s j is
computed as

dist(si, s j )= ‖� f ‖2
=

√
‖w f · � fp‖22 + ‖� fc‖22, (14)
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wf = 0.1 wf = 0.2 wf = 0.5 GT
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Figure 10. Visual results of image segmentation using the proposed model by slightly adapting weighting w f . Column (1): Source
images. Columns (2)–(7): Segmentations with w f = 0.1, w f = 0.2, and w f = 0.5. Column (8): Human labeled salient objects of each
images. The results show that the objects (or foregrounds) are correctly segmented from their backgrounds by using our model.

where w f is a balance parameter between regional
proximity and appearance similarity, and � f is the
difference of average feature values between two
superpixels, including the location and color feature.
Various neighborhood graphs are constructed with
different balanced weightings w f that can be used in
the proposed methods. Finally, the proposed two-reach
method combines two super-pixels if they are physically
close to one another and have a similar appearance.

The visual results of the proposed model with
different w f are shown in Figure 10. As shown in
this figure, one can obtain various plausible image
segmentation results with different balance weightings,
where w f = {0.1, 0.2} are relatively finer.

Compared with human labeled salient objects from
Achanta et al. (2009), segmentation with w f = 0.5 can
correctly segregate the object from the background in
each image, which shows the practical potential of the
proposed model in computer vision.

Our model can also accomplish edge detection.
Figure 11 shows some visual examples in which the
edge maps can produce relatively good segmentations
for each image, and the average edge maps are quite
consistent with the human labeled edge ground truth
from Arbelaez et al. (2010). However, row (d) in the
figure exhibits a difficult case, where the leaves in the
background are not well segmented owing to the limited
ability of our model.

Because our model is a prototype of a segmentation
method transferred from perceptual grouping, there are

still several deficiencies to be further improved. One is
that only location and color features (i.e., low-level or
mid-level features) were used in our experiment, but
more sophisticated features (e.g., texture, orientation,
luminance, and even high-level cues) may benefit the
segmentation ability of our method. Additionally,
the parameters, such as regional size, number of
superpixels, thresholds thID1, and thID2, weighting
w f , and even the methods for distance calculation
can be more flexibly adjusted for better segmentation
performance.

Discussion

Relationship to PDL

In this section, the close relationship of our model
with PDL is analyzed, and it will be shown that the
proposed computational model (including one- and
two-reach methods) is a possible extension of the
computational formulation of PDL proposed by
Kubovy et al. (Kubovy & Wagemans, 1995; Kubovy et
al., 1998).

Kubovy et al. (Kubovy andWagemans, 1995; Kubovy
et al., 1998) drew a conclusion on the grouping strength
along two different orientations via the proximity rule,
which is termed the Pure Distance Law (PDL). This law
demonstrates that the relative strength of grouping into
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(a)

(b)

(c)

(d)

wf  = 0.1 wf  = 0.2 wf  = 0.3 Average GTImage

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Figure 11. Visual results of edge detection using the proposed model by slightly adapting weighting w f . Column (1): Source images.
Columns (2)–(7): Segmentations with w f = 0.1, w f = 0.2, and w f = 0.3. Column (8): Average edge maps obtained by our model.
Column (9): Human labeled edge ground truths. (d) The source image presented a difficult edge detection case for our model.

one orientation of dot lattices approximates a decaying
exponential function of the relative distance between
dots in that orientation (Kubovy & Wagemans, 1995;
Kubovy et al., 1998).

Specifically, considering a dot in the dot lattices
shown in Figure 12(b), |v| represents the distance
of an edge v, which denotes a direction of any edge
from {a, b, c, d} to link the adjacent dots. a is the
shortest edge in the neighborhood of a dot. p(v) is the
probability of each edge of the perceptual organization.
p(v)
p(a) represents the responses (i.e., grouping strengths)
along the direction of v.

Therefore, the PDL is formulated as an attraction
function:

ln
p(v)
p(a)

= α

( |v|
|a| − 1

)
, (15)

or

p(v)
p(a)

= eα
(

|v|
|a| −1

)
, (16)

where α < 0 is a proximity attraction to show the
grouping tendency. An illustration of this law is
provided in Figure 12(a). The first subgraph shows
this function, where the dots around the dashed line
represent the ratios of various dot lattices. Taking a
lattice as an example, the second sub-graph shows a
lattice with γ = π/2. There are many edges, but only
four kinds of ratios, that is, ( |a|

|a| ,
|b|
|a| ,

|c|
|a| , and

|d |
|a| ) in

this lattice, and all are plotted in the linear attraction
function graph as the third sub-graph shows. It is clear
that the grouping strength in the logarithm along a is
greater than in others, so this lattice tends to be grouped
in the vertical direction.

However, when the dot pattern is irregular, there
exist many more kinds of ratios than lattices. The
top part of Figure 13(a) shows such an example. The
PDL only provides a description of grouping strength
and tendency, but it does not suggest which ratios
a dot should accept to form a cluster in such a dot
pattern.

The proposed model (especially the one-reach
method) gives a possible answer to address this
problem. The intrinsic feature is explored from the
all-ratio sequence and the threshold is found through an
indicator function as shown in Figure 5. The simulation
result of the dot lattice is given in Figure 12(b), where
the ratio of |a|

|a| is separated from others as shown in
Figure 12(d), which means the dot lattice is grouped in
the vertical direction.

The same simulation results are also obtained for
the irregular dot patterns, such as those shown in
the top part of Figure 13(a). Figure 13(b) shows our
plausible results, including the grouping simulation and
separated ratios in the logarithm and power-function
graph. To demonstrate that the proposed method is
better, it was compared with k-means (Likas et al.,
2003) (Figure 13(c)) and OTSU Otsu (1979) (Figure
13(d)). The visual comparison results show that the
proposed method obtains better grouping results than
others.
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Figure 12. Illustration of the PDL on a dot lattice and how the proposed model finds the threshold for the PDL to determine the
grouping direction. (a) Diagram of PDL. Ratios of various dot lattices are plotted in it. (b) Example of dot lattice, where a represents
the shortest edge. γ is the angle of the horizontal and vertical edges. (c) Ratios of this dot lattice in the logarithm form of PDL. (d)
Proposed one-reach method computes a threshold w1 = 1.5 for this dot lattice to retain only the edge connected by a, which means
that the dot lattice is grouped in the vertical direction.

In summary, the proposed model can conceivably
provide a criterion for the PDL when deciding (or
simulating) which direction the dot lattices are grouped
along. Beyond this, the PDL is extended herein to group
random, nonuniform dot patterns and reconstruct their
continuous structures.

Hierarchical perceptual grouping

The viewpoint of perceptual grouping tends to be
hierarchical has been reported by many studies (Palmer,
1977; Marr & Nishihara, 1978; Lee & Mumford, 2003).
Referring to Def. 3, the ETS is a set of maximum
independent subsets with a tolerance denoted as
(X, ξ ) = ({X1;X2; ...;Xn}, ξ ). However, when the
tolerance ξ is altered, the maximum independent
subsets and the grouping results can be different, which
enables the proposed model to accomplish hierarchical
grouping. There are many factors related to the task of
hierarchical perceptual grouping, such as the distance
between the eyes and objects. In this section, we discuss
the possibility of our model simulating hierarchical

perceptual grouping with a distance-modulated
example.

The computational models described in the previous
sections only simulate the perceptual organization
of the human visual system at a specific distance.
However, the perceptual organization of structures is
also modulated by the distance between objects and
the eyes. The human visual system can perceive the
finer local geometric properties of an object at shorter
distances, whereas more coarse and global properties
are perceived at longer distances. This phenomenon is
common in daily life. For example, the advertisements
on LED billboards seem smooth and continuous at
a distance, but many tiny, colored lamps will be seen
up close. The essence of this phenomenon is that the
ability to distinguish the retina image is influenced by
distance and is due to the limited acuity and sensitivity
of the retina. An illustration of this effect is shown in
Figure 14(a).

This phenomenon was simulated by extending the
proposed model to a distance-modulated model. To a
certain extent, this distance-modulated model can be
treated as a generalization of the proposed two-reach
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Figure 13. Illustration of finding a threshold for the PDL diagram for nonuniform data by using the proposed model, k-means, and
OTSU. (a) Top: An example of a dot pattern. Bottom: Diagram of the proposed one-reach method when simulating the perceptual
grouping of this dot pattern. (b) Top: Simulation result of proposed method. Bottom: Ratios plotted in the PDL diagram are split to
blue and red using the threshold computed by proposed method. The ratio values marked in blue are accepted. (c) Top: Simulation of
using k-means to group the ratios with a group number of 2. Bottom: Segregated ratios using k-means. (d) Top: Simulation of using
OTSU to group ratios. Bottom: Segregated ratios using OTSU.
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Figure 14. Simulation of distance-modulated perceptual grouping by modifying the proposed model. (a) Illustration of how humans
see and perceive a dot pattern at different distances; (b) simulation of this process using our model. With various distance factors,
different cutting thresholds [represented by the black dots along the y-axis in (b)] are obtained to reconstruct various continuous
maps from the target.

method, because the proposed two-reach method finds
the empirically best tolerance for removing the “most
unreasonable” edges, and in the distance-modulated
model, various levels of tolerance are found by altering
the indicators thID1 and thID2.

The diagram of Q2 in the two-reach method depicts
the structural properties from global to local, and
the indicator sequence QID2 computed by Equation

7 depicts the stability state of Q2. By adjusting
the indicator thresholds thID1 and thID2 based on
the distance factors df1 and df2 as follows, various
structures are obtained.

thID1 = 0.12 · df1, (17)

thID2 = 0.035 · df2. (18)
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Here, df1 and df2 act as distance modulation factors.
The core operation to simulate the distance effect in
the proposed model is to change the distance factors
to df1 and df2, respectively. Setting a larger value for
df2 simulates a longer distance between the human eyes
and the objects, whereas a smaller value simulates a
shorter distance. Therefore, one must preserve all of the
structural information in the first step by setting df1 as
a large value. df1 = 1, 000 is usually enough for most
patterns.

The two-reach method can be regarded as a special
case of this model with specific thID1 and thID2.
However, since the final result of the proposed model is
the combination of filled triangles, missing any triangle
will make the results inaccurate. Each value of thID2 will
produce a series of cutting thresholds (i.e., w2) based on
the sequence QID2 [e.g., the red curve in Figure 14(b)].
Therefore, it is necessary to find several representative
thresholds. As shown by the QID2 curve in Figure 14(b),
most of the possible thresholds (corresponding to the
locations with large fluctuations in the QID2 curve) can
be clustered into several groups. DBSCAN (Ester et al.,
1996) is adopted to find these groups, and the first value
from each group is selected as a representative cutting
threshold.

In the example presented in Figure 14, two
parameters of DBSCAN are set as epsilon = 45 and
minPts = 15. When the dot pattern is placed close
enough to the eyes, only local features are perceived,
that is, the isolated dots, rather than lines or rings.
However, when the structure is placed farther away,
more global properties are perceived. Therefore, from
near to far, one first perceives the dot patterns, then
three circles, then a disc nested in a ring, and finally a
disc.

In this section, we exhibited the flexible ability of
our methods to model the hierarchical representation
of perception with a distance modulated example. It is
also possible to replace the distance with other factors
in this model to form other factor-modulated models.

For different types of grouping

Perceptual grouping is not a single process as
it seems. There are various conceptual differences
when referring to perceptual grouping in different
research fields. One of the clear classifications was
reported in Wagemans (2018), where the grouping
was distinguished as clustering, segregating, linking,
layering, and configuring. In this section, we discuss the
ability of our model when applied to simulating those
different types of grouping using by Equation 14.

According to the definitions in Wagemans (2018),
clustering is “the process of treating individual items as
members of a larger ensemble, basically extracting their
common feature and ignoring others.” Segregating is
defined as “the process of treating one subset of items

as members of a larger set, while at the same time also
distinguishing this set from another subset of items.”
Layering is “the process of segregating two sets of items,
with an additional indication of which subset is figure
and which is ground.” All can be regarded as different
groups of elements owing to different features, which
can be easily simulated by our model when adding
visual features (e.g., orientations here) using Equation
14. Although our model can separate the different areas
of discrete patterns, it lacks the necessary information
to discriminate which is foreground and background,
as shown by the segmentation results in Figure 10.
Fortunately, leveraging some assumptions is one of
the solutions and has been widely used in the field of
salient object detection, such as feature contrasts (Itti et
al., 1998; Cheng et al., 2014), boundary priors (Zhang
& Sclaroff, 2015; Huang & Zhang, 2017), and even
contour priors (Yang et al., 2016; Liu et al., 2017).

Linking is “the process of connecting individual
items in specific ways, often as a sequential spreading
of pair-wise couplings” (Wagemans, 2018). It has been
regarded as a very general process in human perception
from rather simple to higher-order cases. Finally,
configuring is “ the process of organizing individual
items in larger, structured wholes or Gestalts with
configural properties.” Linking discrete elements into
certain shapes such as a horse, circle, etc., will lead to
configurations with those shapes. However, because
our model is mainly designed for continuous structure
reconstruction and grouping based on the global
properties of relative proximity, one of the challenges is
how to create such proper relative proximities between
their neighbors. Consequently, our model would be able
to simulate linking and configuring after extending the
proposed model with proper feature representation and
high-level priors (e.g., the shape coding of a horse).

Further discussion

We have proposed a computational model for dot
pattern perception and shown the relevant applications
in the above sections. Our model is flexible since its
parameters, such as thID1, thID2 in Equation 17 and
Equation 18 and w f in Equation 14, can be adjusted
to produce hierarchical representations of discrete
patterns and image segmentation. The parameters
recommended by the authors, thID1 = 0.12 and
thID2 = 0.035, enable the model to perform well across
many tasks.

The main idea of our model is to simulate human
perception to extract global information from discrete
patterns, which was validated by our experiments to
be consistent with human perception. In addition,
PDL has refined the theory that relative proximity
is closely related with the human perception of dot
lattices. We have discussed that our model can be a
possible extension of PDL when applied to broader
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situations. Therefore, it seems reasonable to speculate
that maybe the human visual system accomplishes such
tasks in a similar way, capturing global properties from
relative proximity and making decision based on some
thresholds. Thresholds like thID1 and thID2 may suggest
to find the similar principles in human visual system,
which provides new perspectives to this research field
and is worth further study in our future work.

We have also exhibited the potential of our model for
applications in data mining, computer graphics, and
computer vision. Although too naive to accomplish
these tasks perfectly, it still shows desirable performance
in the tasks of clustering, surface reconstruction,
image segmentation, edge detection, and salient object
detection. In addition, to make our model more
powerful across different tasks, it is also very flexible in
terms of adjusting parameters and incorporating more
features, including low-level and high-level information.

Conclusions

In this article, a computational model for the
proximity principle for dot-pattern grouping inspired
by tolerance space theory is proposed. This model
includes a one-reach method, a two-reach method, and
a combination process to reconstruct the continuous
structure of the dot patterns. The edge ratio sequence in
the so-called diagram is investigated to find a tolerance
for the ETS, which serves as a threshold for removing
unreasonable edges.

Experiments and quantitative evaluations on
continuous structure reconstruction, proximity,
similarity principle simulation, and image segmentation
reveal the effectiveness of the proposed model in
perceptual grouping and computer vision. The close
relationship between the proposed model and the PDL
is comprehensively analyzed, and the ability to adapt
the proposed model to simulate distance-modulated
perceptual grouping of dot patterns is discussed.
Finally, the possible physiological significance and
potential applications of our model have also been
discussed, offering new perspectives for these research
fields.

Keywords: dot patterns, perceptual grouping,
computational model, one-reach method, hierarchical
representation
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