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Lipid droplets (LDs) are endoplasmic reticulum (ER)-related dynamic organelles that store

and regulate fatty acids and neutral lipids. They play a central role in cellular energy

storage, lipid metabolism and cellular homeostasis. It has become evident that viruses

have co-evolved in order to exploit host lipid metabolic pathways. This is especially

characteristic of the Flaviviridae family, including hepatitis C virus (HCV) and several

flaviviruses. Devoid of an appropriate lipid biosynthetic machinery of their own, these

single-strand positive-sense RNA viruses can induce dramatic changes in host metabolic

pathways to establish a favorable environment for viral multiplication and acquire essential

components to facilitate their assembly and traffic. Here we have reviewed the current

knowledge on the intracellular life cycle of those from the Flaviviridae family, with particular

emphasis on HCV and dengue virus (DENV), and their association with the biosynthesis

and metabolism of LDs, with the aim to identify potential antiviral targets for development

of novel therapeutic interventions.
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INTRODUCTION

Cellular homeostasis is maintained by a constant metabolic energy flux. As one of the major energy
sources, lipids are synthesized, modified and utilized through various pathways. Lipid droplets
(LDs) are ubiquitous and conserved cytoplasmic compartments delineated by a phospholipid
monolayer, and serve as energy reservoirs in almost all living organisms. Excess lipids are packaged,
stored and distributed in LDs, an organelle which is not only important in lipid storage and
metabolism, but protein quality control, pathogenesis, and immune responses (Walther and Farese,
2012).

Since viruses lack the appropriate machinery to conduct their own lipid synthesis, most have
evolved mechanisms to hijack host lipid metabolic pathways (including LDs) for completing their
intracellular replication cycles. Hepatitis C virus (HCV) has long been demonstrated to do so (Paul
et al., 2014). Apart from the cell biology underlying infection, the interplay between viral infection
and host lipid metabolic pathways is important not only to elucidate the pathogenicity of this
category of viruses but also to assess how they can be targeted as a general means of combating
infections.

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2017.02286
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.02286&domain=pdf&date_stamp=2017-11-28
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sanyal@hku.hk
https://doi.org/10.3389/fmicb.2017.02286
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02286/full
http://loop.frontiersin.org/people/488814/overview
http://loop.frontiersin.org/people/486951/overview
http://loop.frontiersin.org/people/400189/overview


Zhang et al. Viral Exploitation of Lipid Droplet Metabolism

As a consequence of development of gene editing and mass
spectrometry based lipidomics and proteomics technologies, an
increasing body of evidence indicates the involvement of host
LDs at different steps of the intracellular life cycle of HCV
and flaviviruses (Martín-Acebes et al., 2016b). Here, we have
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deacetylase; ACAT, acyl-CoA, cholesterol acyltranserases; ACC, acetyl
coenzyme a carboxylase; ADRP, adipose differentiation-related protein; AICAR,
aminoimidazole carboxamide ribonucleotide; AMPK, 5′ AMP-activated protein
kinase; ApoB100, apolipoprotein B100; ARF, ADP-ribosylation factor; ARF1-COP
I, ADP-ribosylation factor-coat protein I; ATGL, adipose triglyceride lipase; AUP1,
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3-mercaptopropyl]amino-2-phenylbenzoyl-(L)-leucine methyl ester; GGTI-298,
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methyl ester trifluoroacetate salt; GW4869, N,N′-Bis[4-(4,5-dihydro-1H-
imidazol-2-yl)phenyl]-3,3′-p-phenylene-bis-acrylamide dihydrochloride;
HCV, hepatitis C virus; HMGCoA, 3-hydroxy-3-methylglutaryl CoA;
HMGCR, 3-hydroxy-methyglutaryl-Coenzyme A reductase; HMGCS,
hydroxymethylglutaryl-CoA synthase; HSL, hormone-sensitive lipase; IKK,
IkB kinase; JEV, Japanese encephalitis virus; LD, lipid droplet; LY294002,
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activated protein kinases; MEDICA 16:3,3,14,14-Tetramethylhexadecanedioic
acid; MGL, monoglyceride lipase; MS-209, dofequidar fumarate; MTase,
methyltransferase; MTOC, microtubule-organizing center; MTP, microsomal
triglyceride transfer protein large subunit; MVD, mevalonate (diphospho)
decarboxylase; MβCD, methyl-β-cyclodextrin; NIM811, N-methyl-4-isoleucine
cyclosporine; NB-DNJ, N-Butyldeoxynojirimycin; NIs, nucleoside/nucleotide
analog inhibitors; NNIs, non-nucleoside inhibitors; NS, non-structural;
nSMase2, neutral sphingomyelinase 2; OSBP, oxysterol-binding protein; OSC,
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phosphatidylinositide 3-kinases; PI4KA, phosphatidylinositol 4-kinases;
PI4P, phosphatidylinositol 4-phosphate; PLA2G4A, cytosolic phospholipase
A2; PNPLA5, patatin-like phospholipase domain-containing protein 5;
PPARα, peroxisome proliferator-activated receptor α; RdRp, RNA-dependent
RNA polymerase; S1P, site 1 protease; SAM, S-adenosylmethionine;
SCAP, Sterol regulatory element-binding protein cleavage-activating
protein; SCPI-1, [N-(4-{[4-(3,4-dichlorophenyl)-1,3-thiazol-2-yl]amino}-
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cataloged these interactions and anticipate that this knowledge
will be beneficial for identification of host factors as suitable
targets for antiviral interventions.

LIPID DROPLET—A MULTIFUNCTIONAL
ORGANELLE

Morphology and Composition of LDs
LDs are essentially the emulsion phase of insoluble oil droplets
dispersed in aqueous cytoplasm. Compared to other cellular
organelles with double-layered membranes, the structure of
LDs is rather unique, containing a hydrophobic core and a
single layer of amphipathic phospholipids. The neutral lipid core
contains predominantly triacylglycerols (TAGs) and cholesterol
esters (CEs) (Thiam et al., 2013). Although the composition
of the phospholipid monolayer varies in different cell types,
phosphatidylcholine (PC) and phosphatidylethanolamine (PE)
are the two major phospholipids. The morphology and
consumption of LDs are drastically altered by the composition
of their phospholipid monolayer (Guo et al., 2008). The surface
of the monolayer is decorated with LD-associated proteins,
including lipolytic enzymes such as hormone-sensitive lipase
(HSL), adipose triglyceride lipase (ATGL), and PAT-domain
family (perilipin, adipophilin and TIP47) (Tauchi-Sato et al.,
2002; Ohsaki et al., 2006; Wilfling et al., 2014a). Despite being
present in nearly all cell types across different organisms, LDs
are highly heterogeneous and dynamic with varied numbers and
sizes (ranging from 100 nm to 100mm in diameter) in otherwise
identical cells. Even within the same cell, LDs expand or shrink
in response to cellular signals.

Biogenesis of LDs
In eukaryotes, LDs respond to increased cellular fatty acid levels
and emerge from the accumulation of neutral lipids in the ER,
which harbors enzymes necessary for neutral lipid synthesis
in most cell types (Buhman et al., 2001; Pol et al., 2004). First
established as an oil-in-water emulsion, the small nascent LDs
undergo a series of well-organized processes and grow into
larger, mature LDs. The final steps of TAG and CE synthesis
are catalyzed by ER-localized diacylglycerol acyltransferases
(DGATs) and acyl-CoA:cholesterol acyltranserases (ACATs),
respectively. The continuous accumulation of the newly
synthesized TAGs and CEs at specific sites at the ER results
in separation of two phases, where globules of TAGs arise
between the two leaflets of the bilayer and eventually dissociate.
DGAT2, which is inserted into one leaflet of the ER membrane,
is transported to LDs where it continues to catalyze synthesis of
TAGs, hence promoting further growth of LDs (Kassan et al.,
2013; Wilfling et al., 2013). This process is thermodynamically
enabled by the unique phospholipid monolayer structure of LDs.

tick-borne encephalitis virus; TOFA,5-tetradecyl-oxy-2-furoic acid; U0126,
1,4-Diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene; U18666A, 3β-
(2-Diethylaminoethoxy)androst-5-en-17-one; VAP, vesicle-associated membrane
protein-associated protein; VLDL, very low-density lipoprotein; WNV, West Nile
virus; YFV, yellow fever virus; ZIKV, Zika virus.
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The Multifunctionality of LDs
Long been regarded as simple and passive lipid storage
compartments, LDs are currently considered highly dynamic and
complex. They play a central role in lipid metabolism and are
connected to diverse cellular processes like fatty acid trafficking,
cellular signaling, protein storage, autophagy, immunity, and
virus replication (Singh et al., 2009; Saka and Valdivia, 2012;
Rambold et al., 2015; Welte, 2015; Velázquez et al., 2016).

LDs as the Central Regulator for Cellular

Homeostasis
As metabolically active organelles, LDs regulate the balance
between host lipid synthesis and mobilization to maintain
cellular homeostasis. Catalyzed by DGAT1 and DGAT2, cellular
fatty acids together with diacylyglycerols (DAGs) are converted
into TAGs and stored in LDs. TAGs can be further hydrolyzed
to generate DAGs or phosphatidic acid (PA) for membrane
phospholipid synthesis and free fatty acids (FFAs) for energy
production (Pol et al., 2014).

LDs as Transient Protein Storage Compartments for

Degradation
Due to unique structural features and proximity to the ER,
the surface of LDs can also serve as transient storage depots
for proteins that are destined for degradation via the ER-
associated degradation (ERAD) pathway (Gao and Goodman,
2015). Misfolded proteins in the ER are removed and degraded
by the ubiquitin–proteasome system. Current evidence suggests
that ubiquitinated apolipoprotein B100 (ApoB100) (Ohsaki
et al., 2008) and 3-hydroxy-3-methylglutaryl CoA reductase
(HMGCR) (Hartman et al., 2010) are likely degraded on the
surface of LDs through proteasomal and autophagic pathways
(Ohsaki et al., 2006). HMGCR is one of the rate-limiting enzymes
for cholesterol synthesis in mammalian cells. Ubiquitination of
HMGCR is mediated by ancient ubiquitous protein 1 (AUP1),
a highly conserved monotopic membrane protein localized to
both LDs and the ER membrane (Spandl et al., 2011). AUP1
recruits the ubiquitin-conjugating enzyme UBE2G2 to LDs and
facilitates its binding with the ER ubiquitin ligases gp78 and Trc8,
which subsequently initiates the ubiquitination/degradation of
HMGCR resulting in inhibition of cholesterol synthesis (Jo et al.,
2013). Apart from providing a molecular link between LDs
and the ubiquitinationmachinery, monoubiquitinated AUP1 was
reported to induce LD clustering, a widespread phenomenon
observed in multiple cell types across all species (Lohmann et al.,
2013). LDs may also provide sequestration platforms for protein
storage (Cermelli et al., 2006), such as during the synthesis of
eicosanoids, a class of signaling molecules that use LDs as distinct
sites for eicosanoid generation (Bozza et al., 2011).

Mobilization of Lipids from LDs
Depending on the cell type, starvation and/or physiological
conditions, eukaryotic cells mobilize lipids stored in LDs via two
major pathways termed lipolysis and lipophagy. In mammalian
adipocytes, lipolysis is activated in response to changes in cellular
energy and hormone levels. This allows transient docking and
activation of three major lipolytic enzymes, ATGL, HSL, and

monoglyceride lipase (MGL) which co-ordinate the hydrolysis of
TAGs for energy production (Karlsson et al., 1997; Zimmermann
et al., 2004; Dugail and Hajduch, 2007; Lass et al., 2011).
Perilipins localize to LD surfaces and under basal conditions
shield TAGs from cytosolic lipases. During starvation, perilipins
are degraded via the chaperone-mediated autophagy (CMA)
pathway to facilitate lipolysis by HSL and ATGL (Brasaemle,
2007; Sztalryd and Kimmel, 2014; Kaushik and Cuervo, 2015).
Apart from LD-associated proteins, the ADP-ribosylation factor-
coat protein I (ARF1-COPI) vesicular trafficking machinery
is likely to play an important role in mediating lipolysis by
regulating LD composition and targeting ATGL to LDs (Soni
et al., 2009; Wilfling et al., 2014b).

The role of autophagy in regulating lipid metabolism
has been intensively studied in recent years (Singh et al.,
2009; Singh and Cuervo, 2012). Various cell types have been
used to demonstrate the process of LD mobilization via the
autophagy pathway, such as hypothalamic neurons (Kaushik
et al., 2011), glial cells (Martinez-Vicente et al., 2010), and
enterocytes (Narabayashi et al., 2015). Autophagy is a conserved
cellular process that delivers cytoplasmic contents, including
dysfunctional proteins, and excess or damaged organelles to lytic
compartments for degradation and recycling. The process can
be induced by a number of factors such as ER stress, cellular
starvation, and pathogenic infection. Available data support that
three distinct types of autophagy can be triggered: macro-,
micro- and chaperone-mediated autophagy , amongst which,
macroautophagy is the best characterized (Yoshimori, 2004;
Mizushima, 2007). Upon activation, cytoplasmic components
are first enclosed by a double-layered vesicular structure
termed autophagosome, which fuse with lysosomes where
internal cargos are degraded (Mizushima, 2007). Multiple
factors such as nutrient deprivation, virus infection, and sterol
(cholesterol) depletion, can trigger degradation of LDs through
the autophagic machinery (Ouimet and Marcel, 2012). LC3II, a
structural component of the autophagosomes, and autophagy-
related proteins Atg2, Atg5, and Atg7 are recruited to the
surface of LDs to form autophagosomes. LDs are engulfed for
lysosomal degradation to release stored lipids, which undergo
mitochondrial β-oxidation for energy production. This process
is frequently manipulated by flaviviruses to promote their
replication (see Usage of LD as an energy reservoir during
viral life cycle) (Singh et al., 2009; Heaton and Randall, 2010;
Fujimoto and Parton, 2011; Velikkakath et al., 2012). The level
and distribution of cellular cholesterol is tightly regulated; excess
free cholesterol stored as cholesteryl esters in LDs are hydrolyzed
during sterol starvation through autophagy (Cheng et al., 2006;
Ouimet and Marcel, 2012). Sterol regulatory element-binding
proteins (SREBPs) are the central transcriptional regulators of
cholesterol metabolism and lipogenesis. In the presence of high
cholesterol content in the cytoplasm, SREBP binds to sterol
regulatory element-binding protein cleavage-activating protein
(SCAP) and the ER-associated protein Insig. Upon reduction of
cellular cholesterol below a threshold, Insig is degraded through
the ERAD pathway, the SCAP-SREBP complex is transported to
the Golgi, where SREBP undergoes intramembrane proteolysis
and translocates to the nucleus. This mature form of SREBP
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initiates transcription of a series of down-stream genes involved
in the biosynthesis of cholesterol (Brown and Goldstein, 1997;
Yang et al., 2002).

THE FLAVIVIRIDAE FAMILY

Viruses of the Flaviviridae family are enveloped single-strand
positive-sense RNA viruses, with the nucleocapsids surrounded
by two or more types of envelope glycoproteins and lipid
bilayers (Lindenbach et al., 2007; Paul and Bartenschlager,
2015). It comprises several different genera includingHepacivirus
(e.g., HCV), Flavivirus [e.g., Zika virus (ZIKV), dengue virus
(DENV)], Pegivirus, and Pestivirus.

Persistent infection with HCV in humans can develop into
serious liver diseases, including fibrosis and liver cirrhosis,
which could further progress into hepatocellular carcinoma
(Bartenschlager et al., 2013). Medically-relevant flaviviruses,
including yellow fever virus (YFV), ZIKV, DENV, West Nile
virus (WNV), and Japanese encephalitis virus (JEV), are usually
arboviruses (viz., transmitted by arthropods, mainly mosquitoes
and ticks) that are responsible for severe mortality in humans
and animals worldwide. DENV and YFV infections are known to
cause vascular leakage and hemorrhage in some infected patients
(Siqueira et al., 2005; Garske et al., 2014; Thanachartwet et al.,
2015). JEV and WSN infections on the other hand, tend to
cause neurological diseases (Sarkari et al., 2012; Samaan et al.,
2016). ZIKV infection is associated with serious birth defects—
microcephaly in particular—and other neurological disorders
(Petersen et al., 2016). Although there has been significant
progress in therapeutic interventions for HCV and some other
flaviviruses (for example YFV), there is still an urgent need
for vaccines and medications against others such as DENV
and ZIKV. Additionally, the ever-increasing geographical spread
and number of outbreaks caused by these pathogens pose a
considerable threat to public health (Gould and Solomon, 2008).

Despite significant differences in transmission, tissue tropism
and pathogenesis, viruses of the Flaviviridae family employ
similar intracellular replication strategies. After receptor-
mediated endocytosis, the acidic environment in the endosomes
triggers fusion between the virion lipid envelope and cellular
membranes, followed by viral uncoating. The viral RNA is
subsequently released into the cytoplasm and used directly
as mRNA for translation of the viral polyprotein. Host and
viral proteases cleave the newly synthesized viral polyprotein
to generate the structural and non-structural (NS) proteins
(Lindenbach et al., 2007). Viral replicase proteins together with
other host factors induce massive rearrangements of intracellular
membranes to form organelle-like membrane-delineated
compartments for efficient RNA replication. At the replication
sites, the positive-sense RNA is used as template to generate the
negative-sense RNA intermediate, while multiple positive-sense
progeny RNAs are produced to be incorporated into nascent
virus particles (Paul and Bartenschlager, 2015). Progeny virions
are assembled in close proximity to the ER and LDs, and appear
to bud into the ER-lumen, followed by transport through the
host secretory pathway where they undergo further maturation,

and are eventually released from the cell surface (Lindenbach
et al., 2007; Paul and Bartenschlager, 2015; Figure 1).

INFLUENCE OF LD METABOLISM ON THE
VIRUS LIFE CYCLE

HCV has historically been used for studying interactions between
LD metabolism and the viral life cycle. Others from the same
family, such as DENV, have recently started receiving more
attention in this regard. The magnitude and complexity of
these interactions underscore the significance of targeting LD
metabolism to control viral infection. As a dynamic cellular
lipid storage organelle, LDs participate in the viral life cycle by
providing intracellular membrane surface area, lipids, energy,
and proteins.

Contribution of LDs in Virus Replication
and Assembly
Upon infection massive intracellular membrane rearrangements
are induced by perturbing lipid biosynthetic pathways to spatially
segregate the replication and assembly sites (Welsch et al., 2009;
Romero-Brey et al., 2012). On the one hand, the two sites need to
be separated to avoid competition between the capsid protein and
the viral replicase complex at the level of RNA binding. On the
other hand, newly synthesized positive-sense progeny RNAs need
to be transported from the replication to the assembly sites, where
the capsid protein is concentrated. For maximum efficiency in
virus assembly the two sites require close proximity to each other
(Welsch et al., 2009; Romero-Brey et al., 2012; Figure 2).

Association of LDs to Viral Replication Compartments
LDs have been reported to associate with virus-induced
membrane bound compartments believed to be replication
sites. Despite belonging to the same family, HCV and DENV
induce morphologically distinctive replication compartments.
In the case of HCV infection, the double-membrane vesicles
(DMVs) are derived from the ER (Romero-Brey et al., 2012;
Figure 2A). DMVs are composed of active viral replicase proteins
and double-stranded RNA (dsRNA), along with several host
components including vesicle-associated membrane protein-
associated protein A (VAP-A) and VAP-B that are crucial for viral
RNA replication (Evans et al., 2004; Gao et al., 2004). The highly
hydrophobic NS4B of HCV, together with NS5A, are the major
viral factors that contribute to DMV formation (Lundin et al.,
2006). These virus-induced compartments use cholesterol as a
structural component and can be visualized in close proximity
to LDs (Romero-Brey et al., 2012; Paul et al., 2013). While DMVs
are considered as replication factories of HCV, their association
to LDs is still unclear. The interferon-induced antiviral protein
viperin, which inhibits HCV RNA replication, localizes to LDs
using a similar mechanism as HCV NS5A, indicating the
importance of LD-NS5A association during HCV replication
(Jiang et al., 2008; Hinson and Cresswell, 2009). LDs release free
cholesterol from the esterified form for membrane biogenesis as
per the host cellular requirements (Maxfield and Tabas, 2005)
and, therefore, may serve as reservoirs for lipids required for
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FIGURE 1 | Intracellular life cycle of flaviviruses. Viral particles are internalized via receptor-mediated endocytosis (1). After the uncoating of viral particles (2), viral RNA

is released into cytosol for translation and replication (3,4). Progeny virions are assembled in close proximity to the ER and LDs (5). Virions are transported through the

host secretory pathway and undergo maturation (6,7). Mature virions are released from the cell surface (8).

expanding the intracellular membrane surface to form DMVs
(see Association of LDs to Viral Replication Compartments).
Besides, HCV replication triggers the activation of the cellular
SREBP pathway for de novo synthesis of membrane lipids,
which, in turn, regulate biogenesis of LDs (see Manipulation
of LD Reserves during Viral life Cycle) (Li et al., 2013).
Another possibility is that LDs themselves provide a platform
for virus assembly and, therefore, require close proximity to the
replication sites for efficient recruitment of newly synthesized
viral proteins and subsequent virion packaging (see LDs as a
Platform for Virion Assembly) (Miyanari et al., 2007).

Unlike HCV, DENV infection induces formation of single-
membrane in-folding into the ER lumen and unstructured
convoluted membranes (Welsch et al., 2009; Figure 2B). These
DENV-induced vesicle-like structures contain viral replicase and
dsRNA. Pore-like openings on these structures enable release of
newly synthesized viral RNA, facilitating replication and efficient
encapsidation (Welsch et al., 2009). Other flaviviruses, such as
WNV and tick-borne encephalitis virus (TBEV) share similar
features of intracellular membrane rearrangements (Gillespie
et al., 2010; Miorin et al., 2013). DENV replication activates
the autophagy pathway to mobilize FFAs from LDs and co-opts
FA synthase (FASN). FFAs released from LDs are consumed by
oxidation in mitochondria to generate ATP, which is required for
viral RNA replication (see Usage of LD as an Energy Reservoir
during Viral life Cycle) (Heaton and Randall, 2010). Moreover,
DENV NS3 recruits FASN to virus replication sites during
membrane remodeling in a Rab18-dependent fashion, engaging

both LDs and the viral replication complexes in the process
(Heaton et al., 2010; Tang et al., 2014). Regardless of the distinct
membrane compartmentalization strategies of HCV and DENV
both require close juxtaposition of LDs for energy supply and
subsequent virion assembly, as reviewed below.

LDs as a Platform for Virion Assembly
In the case of HCV infection, after being generated at the
ER, the capsid protein localizes to LDs via its domain 2 in a
time-dependent manner. They accumulate on discrete regions
of LDs before fully covering the surface of LDs (Boulant et al.,
2007; Shavinskaya et al., 2007). Host DGAT1 that synthesizes
triglycerides stored within LDs, binds to the HCV capsid
protein, which in turn acquires access to DGAT1-generated LDs.
Viral RNA replication complexes are subsequently recruited to
appropriate sites of virus assembly. LD-localized capsid protein
provides stability to these structures via interfering with TAG
turnover and inducing aggregation of LDs (Boulant et al.,
2008; Herker et al., 2010; Harris et al., 2011). Additionally,
by replacing LD-localized ADRP, the capsid protein induces
imbalance between the minus-end-directed and the plus-end-
directed motors, causing movement of LDs on microtubules
toward the nucleus so as to enhance interactions between sites
of HCV RNA replication and virion assembly (Boulant et al.,
2008). The capsid protein recruits viral NS5A, while the N-
terminal of NS5A engages viral replication complexes to LD-
associated membranes (Boulant et al., 2007; Appel et al., 2008).
HCV NS5A also associates with Rab18, a member of the Rab
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FIGURE 2 | LDs as platforms for virion assembly in (A) HCV and (B) DENV infection. (A) (1) ADRP-coated LDs are able to interact with microtubules and move toward

both plus and minus ends. (2) During HCV infection, viral capsid protein replaces ADRP from LD surface with the assistance of DGAT1. (3) As the consequence of

losing ADRP, LD losses the balance of mobility, moving toward MTOC and nucleus. (4) Clustering of LDs at the peripheral of nucleus enables the contact between LDs

and the replication complex of HCV. HCV RNA is delivered from ER-bound replication complexes to NS5A, obtaining access to LD surface, followed by nucleocapsid

formation (gray-dashed frame and enlarged panel). (5) The nucleocapsid fuses with VLDL to form viral lipoviroparticle in ER. (B) (1) At the ER–Golgi intermediate

compartment (ERGIC), ARF1 and its guanine nucleotide exchange factor (GEF) GBF1 together with COPI deliver ATGL and ADRP from ER export sites (ERES) to the

surface of LD. DENV subverts this process for the transportation of capsid protein to LD surface. (2) The accumulation of DENV capsid protein on LDs associates with

cellular perilipin 3 and intracellular K+ concentration. (3) Replicated DENV genomes are released through the vesicle pore and then engaged into nucleocapsids that

bud through the ER membrane in close proximity. (4) Capsid protein can be released from LDs to the cytosol or other cellular compartments for subsequent viral

assembly (gray-dashed frame and enlarged panel). (5) Packed virions accumulate within the lumen of the vesicle packets-containing ER network before transported to

Golgi (Boulant et al., 2008; Chatel-Chaix and Bartenschlager, 2014).

GTPase family that plays an essential role in membrane traffic
(Salloum et al., 2013). Rab18 localizes directly to the monolayer
surface of LDs in response to lipolytic stimulation (Martin
et al., 2005), and facilitates association of NS5A and other
replicase components with LDs (Salloum et al., 2013; Figure 2A).
HCV infection increases the expression of apolipoprotein J,
which further stabilizes LD-associated capsid protein and NS5A,
thereby facilitating virion assembly (Lin et al., 2014). Cellular
CD2 associated protein (CD2AP) also regulates HCV assembly
by interacting with HCV NS5A while modulating LD biogenesis
at the same time (Li, 2017). Dissociation of HCV capsid protein
from LDs has no effect on viral RNA replication but decreases
production of infectious virions, indicating that LDs either
directly provide a platform for HCV assembly or facilitate

transport of the capsid protein from RNA translation/replication
to the assembly sites (Boulant et al., 2007, 2008; Miyanari et al.,
2007). Additionally, during chronic HCV infection, LDs in
liver tissues increase in number and size, causing pathological
accumulation of liver lipids, also known as hepatic steatosis.
The interaction between the HCV capsid protein and LDs is
critical for this development. An LDmembrane protein, perilipin
3, regulates the capsid-induced steatosis, indicating host LD-
associated proteins as an effective preventive measure of HCV-
induced pathology (Ferguson et al., 2017).

The DENV capsid protein also interacts with LDs but in a
mechanistically distinct manner as compared to HCV. DENV
capsid protein accumulates on the surface of LDs via its center
domain and the N-terminal disordered region (Samsa et al., 2009;
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Martins et al., 2012). Additionally, the binding between DENV
capsid protein and LDs may also be attributed to the association
between capsid protein and LD membrane protein perilipin 3 in
a potassium ion-dependent fashion. Changing the concentration
of potassium ion concentration regulates the binding and release
of capsid protein from LDs. This phenomenon indicates that
DENV may manipulate specific intracellular ion concentrations
to favor viral replication (Carvalho et al., 2012). HCV may use
the same potassium ion-dependent strategy to interact with LDs
via its p7 and NS5A proteins (Carvalho et al., 2012). Contrary
to DGAT1-dependent trafficking to LDs, the DENV capsid
protein utilizes host Golgi-specific brefeldin A-resistance guanine
nucleotide exchange factor 1 (GBF1)-ARF-COPI pathway to
localize to the surface of LDs (Iglesias et al., 2015; Figure 2B).
Similar to HCV infection, inhibiting the association between
DENV capsid protein and LDs results in attenuated infectious
virion production but not viral RNA replication, underscoring
the function of LDs as a scaffold for DENV assembly through
exposure of the protein cationic surface toward the aqueous
environment (Carvalho et al., 2012).

DENV and HCV capsid proteins use distinct mechanisms for
LD association. The process by which LDs gain or release viral
capsid proteins remain unknown. However, current evidence
on the involvement of LDs provides several possible targets for
developing antiviral approaches (Table 1) (section Targeting LD
Metabolism as Antiviral Strategies).

Usage of LD as an Energy Reservoir during
Viral Life Cycle
Replication of the viral genome is an energy-consuming
process. In HCV infected cells, cytoplasmic ATP levels
decrease dramatically, as a result of active energy consumption.
Meanwhile, elevated ATP levels at replication compartments
within infected cells have also been reported (Ando et al.,
2012). This would involve either incorporation of ATP-
generating machinery into the membrane-associated replication
site, or transport of ATP though membrane-to-membrane
communication between mitochondria and replication
compartments (Ando et al., 2012). The C terminus of Flaviviridae
NS3 encodes a DExH/D-box RNA helicase that functions to
unwind dsRNA molecules through ATP-hydrolysis (Tai et al.,
1996; Dumont et al., 2006). Many of the cellular signaling
events activated during viral infection are also regulated by
ATP levels (Hardie, 2011). Given the highly reduced and
hydrophobic lipids at the core, LDs serve as an efficient storage
for energy (Walther and Farese, 2012). FA hydrolysis releases
2.5 times more ATPs per gram compared to glucose, which
provides a tremendous reservoir for supplying energy during
viral replication. Not surprisingly, many other pathogens also
manipulate LD metabolism to acquire fuel for replication.

Energy stored in LDs is released through lipolysis.
Mobilization of TAG stores from LDs by lipases produces
significant amounts of FFAs that can be used in β-oxidation,
generating ATP and other intermediates for the cell. In addition
to lipolysis, an alternative route through autophagy, commonly
referred to as lipophagy, can also take up and deliver LDs to lytic

compartments for lipid hydrolysis (see Mobilization of Lipids
from LDs) (Wang, 2016).

A model proposed by Randall and Heaton suggested that
DENV infection triggers lipophagy to deplete LDs, releasing
FFAs. DENV also induces cellular β-oxidation to consume
the FFAs released from lipophagy for energy production.
Exogenously supplemented FAs can replace the need for
lipophagy during DENV replication, suggesting that flaviviruses
manipulate cellular lipid metabolism to create an environment
that favors virus replication (Heaton and Randall, 2010). Our
own data support this model. AUP1, a monotopic membrane
protein localized to both LDs and ER membranes, was identified
as a key component in DENV biogenesis. Expression of AUP1
was up-regulated during DENV infection and was found to be
necessary for virus-triggered lipophagy to proceed (Zhang et al.,
2016). The requirement of lipophagy during other flavivirus
infections is still to be investigated.

Virus-induced lipophagy for energy production remains
unclear in the context of HCV infection. HCV uses membranes
of autophagic vacuoles for viral RNA replication. The induction
of autophagosomes is nutrient starvation-independent. An
impaired autophagy pathway results in attenuated virion
production (Dreux et al., 2009; Sir et al., 2012). Proteomic and
lipidomic studies showed an up-regulation of lipogenic enzymes
and proteins related to β-oxidation, such as 3,2-trans-enoyl-
CoA isomerase (DCI) (Diamond et al., 2010). In line with this
study, DCI was reported to be essential for productive HCV
infection through regulation of mitochondrial FA oxidation
(Rasmussen et al., 2011). Another microarray analysis revealed a
down-regulation of genes involved in degradation and oxidation
of FAs, and an elevation of genes that control metabolism
and transport of FAs (Blackham et al., 2010). Although a
direct experimental evidence of lipophagy induced by HCV
is still missing, data from several indirect sources strongly
suggest the utilization of cellular pathways for β-oxidation of
FFAs.

Manipulation of LD Reserves during Viral
Life Cycle
Apart from providing FFAs for β-oxidation during Flaviviridae
infection, LDs also function as a reservoir for lipids that are
essential for viral replication.

Flaviviridae replication organelles consist of FAs, specific
phospholipids, sphingolipids, and cholesterol (Heaton et al.,
2010; Perera et al., 2012; Paul et al., 2013; Martín-Acebes
et al., 2016a). While DENV obtains FAs by breakdown of
LDs via lipophagy (Heaton and Randall, 2010), HCV controls
the transcriptional induction of lipid biosynthetic and related
genes through SREBP signaling (Olmstead et al., 2012). HCV
infection activates the SREBP precursor that localizes to the ER,
and triggers its trafficking to the Golgi. Thereafter, the SREBP
precursor is proteolytically processed by site 1 protease (S1P) and
S2P at Golgi, releasing its N-terminal fragment that is transported
into the nucleus and initiates transcription of lipogenic factors
such as FASN and 3-hydroxy-3-methylglutaryl CoA (HMGCoA).
The 3′ untranslated region of the HCV RNA genome with DEAD

Frontiers in Microbiology | www.frontiersin.org 7 November 2017 | Volume 8 | Article 2286

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zhang et al. Viral Exploitation of Lipid Droplet Metabolism

T
A
B
L
E
1
|
E
xa

m
p
le
s
a
n
tiv
ira

ls
tr
a
te
g
ie
s
a
g
a
in
st

H
C
V
a
n
d
fla
vi
vi
ru
se

s
in
te
rf
e
rin

g
w
ith

lip
id

m
e
ta
b
o
lis
m
-r
e
la
te
d
p
ro
c
e
ss
e
s.

S
te
p

H
C
V

F
la
v
iv
ir
u
s
e
s

L
ip
id

b
io
g
e
n
e
s
is

p
ro
c
e
s
s

In
h
ib
it
o
ry

ta
rg

e
t

D
ru
g
/i
n
h
ib
it
o
r

R
e
fe
re
n
c
e
s

L
ip
id

b
io
g
e
n
e
s
is

p
ro
c
e
s
s

In
h
ib
it
o
ry

ta
rg

e
t

D
ru
g
/i
n
h
ib
it
o
r

R
e
fe
re
n
c
e
s

R
e
p
lic
a
tio

n
FA

sy
n
th
e
si
s

FA
S
N

C
7
5

Y
a
n
g
e
t
a
l.,

2
0
0
8

FA
sy
n
th
e
si
s

FA
S
N

C
e
ru
le
n
in
,
C
7
5

H
e
a
to
n
e
t
a
l.,

2
0
1
0
;

M
a
rt
ín
-A
c
e
b
e
s
e
t
a
l.,

2
0
1
1
;
P
e
re
ra

e
t
a
l.,

2
0
1
2
;

P
o
h
e
t
a
l.,

2
0
1
2

A
C
C

T
O
FA

K
a
p
a
d
ia
a
n
d
C
h
is
a
ri
,
2
0
0
5

A
C
C

T
O
FA

,
M
E
D
IC
A
1
6

M
e
ri
n
o
-R

a
m
o
s
e
t
a
l.,

2
0
1
6

FA
β
-o
xi
d
a
tio

n
D
C
I

E
to
m
o
xi
r

R
a
sm

u
ss
e
n
e
t
a
l.,

2
0
1
1

FA
β
-o
xi
d
a
tio

n
C
P
T-
1

E
to
m
o
xi
r

H
e
a
to
n
a
n
d
R
a
n
d
a
ll,

2
0
1
0

S
p
h
in
g
o
lip
id
s

sy
n
th
e
si
s

S
P
T

N
A
8
0
8
,
m
yr
io
c
in
,

N
A
2
5
5
,
IS
P
-1
,
H
P
A
-1
2

S
a
k
a
m
o
to

e
t
a
l.,

2
0
0
5
;
U
m
e
h
a
ra

e
t
a
l.,

2
0
0
6
;
A
iz
a
k
ie
t
a
l.,

2
0
0
8
;
A
m
e
m
iy
a
e
t
a
l.,

2
0
0
8
;
W
e
n
g
e
t
a
l.,

2
0
1
0
;
H
ir
a
ta

e
t
a
l.,

2
0
1
2
;
K
a
ts
u
m
e
e
t
a
l.,

2
0
1
3

S
p
h
in
g
o
lip
id
s

sy
n
th
e
si
s

S
M
a
se

D
6
0
9
,
M
S
-2
0
9

M
a
rt
ín
-A
c
e
b
e
s
e
t
a
l.,

2
0
1
6
a

S
P
T

M
yr
io
c
in

A
k
te
p
e
e
t
a
l.,

2
0
1
5

C
e
rS

F
u
m
o
n
is
in

B
1

A
k
te
p
e
e
t
a
l.,

2
0
1
5

S
p
h
K

S
K
I/
S
K
1
-I
I

C
a
rr
e
t
a
l.,

2
0
1
3
;
C
la
rk
e

e
t
a
l.,

2
0
1
6

C
H
O

sy
n
th
e
si
s

O
S
B
P

O
S
W
-1

W
a
n
g
e
t
a
l.,

2
0
1
4

C
H
O

sy
n
th
e
si
s

S
C
P
-2

S
C
P
I-
1

F
u
e
t
a
l.,

2
0
1
5

P
I4
K
A

A
L
-9

W
a
n
g
e
t
a
l.,

2
0
1
4

S
Q
S

Z
a
ra
g
o
zi
c
a
c
id

A
R
o
th
w
e
ll
e
t
a
l.,

2
0
0
9

S
R
E
B
P
s

B
A
P
TA

-A
M
,
p
yr
ro
lid
in
e

d
ith

io
c
a
rb
a
m
a
te

W
a
ri
s
e
t
a
l.,

2
0
0
7

H
M
G
C
S

H
ym

e
g
lu
si
n

R
o
th
w
e
ll
e
t
a
l.,

2
0
0
9

P
I3
K

LY
2
9
4
0
0
2

W
a
ri
s
e
t
a
l.,

2
0
0
7
;
P
a
rk

e
t
a
l.,

2
0
0
9

O
S
C

U
1
8
6
6
6
A

P
o
h
e
t
a
l.,

2
0
1
2

C
H
O

M
β
C
D

S
a
g
a
n
e
t
a
l.,

2
0
0
6

H
M
G
C
R

L
o
va
st
a
tin

,

p
a
ra
va
st
a
tin

,

h
ym

e
g
lu
si
n
,

flu
va
st
a
tin

M
a
c
k
e
n
zi
e
e
t
a
l.,

2
0
0
7
;

R
o
th
w
e
ll
e
t
a
l.,

2
0
0
9
;

S
o
to
-A
c
o
st
a
e
t
a
l.,

2
0
1
3

H
M
G
C
R

2
5
-h
yd

ro
xy
c
h
o
le
st
e
ro
l,

c
e
ru
le
n
in
,
lo
va
st
a
tin

,

si
m
va
st
a
tin

,
m
e
va
st
a
tin

,

flu
va
st
a
tin

Y
e
e
t
a
l.,

2
0
0
3
;
S
a
g
a
n
e
t
a
l.,

2
0
0
6
;

A
m
e
m
iy
a
e
t
a
l.,

2
0
0
8
;
D
e
la
n
g
e
t
a
l.,

2
0
0
9

S
1
P

P
F
-4
2
9
2
4
2

U
c
h
id
a
e
t
a
l.,

2
0
1
6

D
H
C
R
7

A
Y
-9
9
4
4

M
a
c
k
e
n
zi
e
e
t
a
l.,

2
0
0
7

G
G
Ta
se

I
G
G
T
I-
2
8
6

S
a
g
a
n
e
t
a
l.,

2
0
0
6

G
G
Ta
se

I
G
G
T
I-
2
9
8

M
a
c
k
e
n
zi
e
e
t
a
l.,

2
0
0
7

G
ly
c
o
sp

h
in
g
o
lip
id
s

sy
n
th
e
si
s

FA
P
P
2

N
B
-D

N
J
,
P
D
M
P

K
h
a
n
e
t
a
l.,

2
0
1
4

L
ip
o
p
h
a
g
y

P
I3
K

3
-m

e
th
yl
a
d
e
n
in
e

H
e
a
to
n
a
n
d
R
a
n
d
a
ll,
2
0
1
0

TA
G

a
n
d
C
H
O

sy
n
th
e
si
s

P
P
A
R

α
B
A

Ly
n
e
t
a
l.,

2
0
0
9

L
ip
id

b
io
sy
n
th
e
si
s

A
M
P
K

M
e
tf
o
rm

in
,
A
IC
A
R
,

A
7
6
9
6
6
2

M
a
n
k
o
u
ri
e
t
a
l.,

2
0
1
0

(C
o
n
ti
n
u
e
d
)

Frontiers in Microbiology | www.frontiersin.org 8 November 2017 | Volume 8 | Article 2286

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zhang et al. Viral Exploitation of Lipid Droplet Metabolism

T
A
B
L
E
1
|
C
o
n
tin

u
e
d

S
te
p

H
C
V

F
la
v
iv
ir
u
s
e
s

L
ip
id

b
io
g
e
n
e
s
is

p
ro
c
e
s
s

In
h
ib
it
o
ry

ta
rg

e
t

D
ru
g
/i
n
h
ib
it
o
r

R
e
fe
re
n
c
e
s

L
ip
id

b
io
g
e
n
e
s
is

p
ro
c
e
s
s

In
h
ib
it
o
ry

ta
rg

e
t

D
ru
g
/i
n
h
ib
it
o
r

R
e
fe
re
n
c
e
s

A
ss
e
m
b
ly

L
D
-v
ir
a
lc
a
p
si
d

p
ro
te
in

b
in
d
in
g

D
G
A
T
1

D
G
A
T
1
in
h
ib
ito

r
H
e
rk
e
r
e
t
a
l.,

2
0
1
0
;
H
a
rr
is
e
t
a
l.,

2
0
1
1

L
D
-v
ir
a
lc
a
p
si
d

p
ro
te
in

b
in
d
in
g

P
e
ri
lip
in

3
O
u
a
b
a
in

C
a
rv
a
lh
o
e
t
a
l.,

2
0
1
2

M
A
P
K
,
P
L
A
2
G
4
A

U
0
1
2
6

M
e
n
ze
le
t
a
l.,

2
0
1
2

M
A
P
K
,
P
L
A
2
G
4
A

U
0
1
2
6

M
e
n
ze
le
t
a
l.,

2
0
1
2

C
H
O

sy
n
th
e
si
s

S
R
B
1

P
E
R
L

P
o
llo
c
k
e
t
a
l.,

2
0
1
0

G
B
F
1

B
re
fe
ld
in

A
Ig
le
si
a
s
e
t
a
l.,

2
0
1
5

L
D
s
fo
rm

a
tio

n
IK
K

W
e
d
e
lo
la
c
to
n
e
,

In
h
ib
ito

r
X
II

L
ie
t
a
l.,

2
0
1
3

S
K
I-
1
/S
1
P

S
p
n
4
A
-R

R
L
L

O
lm

st
e
a
d
e
t
a
l.,

2
0
1
2

L
D
s
re
d
is
tr
ib
u
tio

n
M
ic
ro
tu
b
u
le

N
o
c
o
d
a
zo

le
B
o
u
la
n
t
e
t
a
l.,

2
0
0
8

B
u
d
d
in
g

V
L
D
L
p
a
th
w
a
y,

L
D
s
lip
id
s
tr
a
n
sf
e
r

C
yc
lo
p
h
ili
n
s

N
IM

8
1
1

A
n
d
e
rs
o
n
e
t
a
l.,

2
0
1
1

S
p
h
in
g
o
lip
id
s

sy
n
th
e
si
s

S
m
a
se

A
m
itr
ip
ty
lin
e

Ta
n
ie
t
a
l.,

2
0
1
0

A
p
o
lip
o
p
ro
te
in
s

M
T
P

B
M
S
-2
0
0
1
5
0

P
e
rl
e
m
u
te
r
e
t
a
l.,

2
0
0
2
;
G
a
st
a
m
in
za

e
t
a
l.,

2
0
0
8

n
S
m
a
se
2

G
W
4
8
6
9

M
e
n
ze
le
t
a
l.,

2
0
1
2
;

M
a
rt
ín
-A
c
e
b
e
s
e
t
a
l.,

2
0
1
4

M
T
P
/
A
C
A
T
2
/

H
M
G
C
R

N
a
ri
n
g
e
n
in

N
a
h
m
ia
s
e
t
a
l.,

2
0
0
8

U
n
d
e
rl
in
e
d
,
a
n
ti
vi
ra
ls
tr
a
te
g
ie
s
ta
rg
e
ti
n
g
h
o
s
t
lip
id
s
a
n
d
lip
id
b
io
g
e
n
e
s
is
p
ro
c
e
s
s
e
s
th
a
t
d
ir
e
c
tl
y
re
la
te
to
L
D
s
.

box polypeptide 3 X-linked (DDX3X) further activates IκB
kinase (IKK)-α, which translocates to the nucleus and stimulates
SREBP transcriptional activity, thus modulating LD biogenesis
(Olmstead et al., 2012; Li et al., 2013).

HCV replication organelles use cholesterol as a structural
component (Romero-Brey et al., 2012; Paul et al., 2013). Cellular
oxysterol-binding protein (OSBP) and phosphatidylinositol 4-
kinases (PI4KA) facilitate trafficking of cholesterol to the
HCV-rearranged membrane-like structures during replication,
highlighting the need for both factors in supporting HCV
replication (Wang et al., 2014). OSBPs are speculated to be sterol
carriers and might function to transport sterols out of the ER
and incorporate them into LDs in a phosphatidylinositol 4-
phosphate (PI(4)P)-dependent manner. Sterols and cholesterol
are exchanged by OSBP at the ER-Golgi interface (Mesmin
et al., 2013). OSBP-related protein 2 that resides on the
surface of LDs may also participate in the process of lipid
exchange (Hynynen et al., 2009). Notwithstanding its cellular
function, the activity of OSBP appears to be dispensable for
DENV replication (Hynynen et al., 2009). DENV replication
is regulated by endogenous cholesterol production that is
controlled by mevalonate (diphospho) decarboxylase (MVD)
and exogenous cholesterol uptake (Rothwell et al., 2009).
Similarly, WNV also hijacks cellular cholesterol and redistributes
it to viral RNA replication compartments (Mackenzie et al.,
2007).

Besides cholesterol, sphingomyelin is another essential
membrane component of HCV replication organelles. An
active role for sphingolipids in HCV RNA replication has
been reported. Sphingomyelin enhances binding of the RNA
dependent RNA polymerase NS5B to the template RNA and
is therefore important for HCV replication (Weng et al.,
2010; Hirata et al., 2012). Expression of genes that encode
sphingomyelin synthases 1 and 2 is up-regulated upon HCV
infection, resulting in enhanced synthesis of sphingomyelin
(Hirata et al., 2012). Dynamic pools of sphingomyelin were
observed in LDs, with the high affinity sphingomyelin-binding
protein ADRP on the surface of LDs (McIntosh et al., 2010). It
is likely that LDs participate in the biogenesis of sphingolipids
necessary for HCV replication.

In addition to consumption of lipids that are stored in
LDs, HCV can also obstruct the turnover of LDs to establish
a microenvironment that is more favorable to viral infection.
Release of infectious HCV particles relies on secretion of hepatic
very low-density lipoprotein (VLDL)—a TAG-rich lipoprotein.
For hijacking VLDL secretion, HCV inhibits the function of
the putative TAG lipase, arylacetamide deacetylase (AADAC),
thus, further impairing TAG lipolysis (Nourbakhsh et al.,
2013). Moreover, HCV capsid protein that localizes to LDs
through the activity of DGAT1 (Harris et al., 2011), restrains
lipolysis of TAG by interacting with ATGL and its activator
comparative gene identification-58 (CGI-58) (Camus et al.,
2014).

As with LD association, distinct strategies are employed
by HCV and DENV for mobilizing lipids within LDs, hence
providing insights into LD catabolism and cellular factors as
possible targets (Table 1).
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TARGETING LD METABOLISM AS
ANTIVIRAL STRATEGIES

Although viruses of the Flaviviridae family cause severe human
diseases, there are currently no clinically approved drugs
available for treatment against them, other than for HCV.
Historically, the development of antiviral therapy has largely
focused on directly targeting viral components involved in
multiple stages of the virus life cycle.

Entry of flaviviruses is mediated by fusion of the viral envelope
(E) protein with the host membrane. Blocking virus entry via
targeting the viral E protein offers a means to suppress the onset
of infection. A few heterocyclic compounds, such as compound
6, NITD-448 and P02, have been identified to directly bind
to the hydrophobic pocket of viral E protein and block its
conformational change, which is essential for virus-host fusion
(Modis et al., 2003, 2004; Zhou et al., 2008; Poh et al., 2009;Wang
et al., 2009). Due to the multifunctional nature of the E protein,
its inhibitors may potentially block multiple steps in the viral
life cycle, including entry and virion assembly/maturation. More
importantly, these inhibitors can exert their effect through direct
binding to virions without the need to cross the hydrophobic
membrane bilayer and be delivered into infected cells. However,
due to the complexity and high variability of flaviviral E protein,
it is challenging to develop pan-serotype inhibitors (Wang and
Shi, 2015).

During replication, the viral genome is translated into a single
polyprotein which is cleaved into individual proteins by a viral
protease complex. Since polyprotein processing is a prerequisite
for viral replication and assembly, these virally encoded proteases
are one of the most attractive antiviral targets (Chambers et al.,
1990, 1993; Luo et al., 2015). Two HCV NS3/4A serine protease
inhibitors, boceprevir and telaprevir, have been approved in
combination with PEG-interferon plus ribavirin for treatment of
chronic HCV genotype 1 (Ghany et al., 2011). Recent study by
Shiryaev and colleagues have identified a group of small molecule
antiviral inhibitors that interfering with the productive fold of
the NS2B cofactor in the two-component protease, inhibit its
cleavage activity and therefore suppress ZIKV infection. The
most potent inhibitor NSC157058 was shown to inhibit ZIKV
infection in both cultured hfNPCs and mice without significant
toxicity (Shiryaev et al., 2017). Despite these advances, resistance
to protease inhibitors can occur rapidly, especially for chronic
infections such as HCV due to the genetic variability of the virus
and high mutation rate (Rong et al., 2010; Wu et al., 2013).
Another concern in developing protease-based antiviral therapy
is toxicity. Similarities in viral and host cellular serine proteases
would presumably create problems in specificity while targeting
the virus.

The flaviviral NS3 RNA helicase is located adjacent to the C
terminal of the NS3 protease (Luo et al., 2008). The RNA helicase
is believed to be required for several different functions such as
initiation of RNA synthesis, separating dsRNA structures formed
during viral RNA synthesis and as a translocase that eliminates
proteins bound to the viral RNA (Sampath and Padmanabhan,
2009). Viruses with amutated NS3 helicase are unable to replicate

properly (Matusan et al., 2001). Several RNA helicase inhibitors
have been identified. The antiparasitic drug ivermectin was
shown to inhibit WNV, YFV, and DENV at submicromolar
levels, and a small molecule inhibitor ST-610 was found to
potently and selectively inhibit all four serotypes of DENV in vivo
(Mastrangelo et al., 2012; Lim et al., 2013). However, due to a lack
of specific binding pockets for RNA and NTPs, molecules that
target the RNA helicase via these binding sites might also non-
selectively bind to other cellular proteins with helicase/NTPase
activities, resulting in significant toxicity (Luo et al., 2015).

The NS5 RNA-dependent RNA polymerase (RdRp) is the
most conserved amongst the flavivirus proteins, and is essential
for viral RNA synthesis. Since host cells lack these enzymes, the
specificity makes them one of the most promising and intensively
studied classes of antiviral targets. RdRp can be targeted by non-
nucleoside inhibitors (NNIs) and nucleoside/nucleotide analog
inhibitors (NIs) (Malet et al., 2008). NNIs directly target the
binding pocket of the polymerase and block its conformational
change from its inactive to active form (Biswal et al., 2005).
Although a number of NNI candidates for HCV are under
clinical development, there hasn’t been any FDA approved NNIs
for flaviviruses yet. The major challenge in the use of NNIs
in antiviral therapy is the structural variability of the binding
pockets across different serotypes or genotypes as well as the
resistant mutation in or near the binding pocket which results
in resistance to the NNIs (Sofia et al., 2012). NIs have been
widely used in clinics for treatment of hepatitis, HIV and
herpesvirus infections (Jordheim et al., 2013; Menéndez-Arias
et al., 2014). Compared to other classes of inhibitors, NIs have a
higher threshold for developing resistance, and a relatively broad-
antiviral spectrum due to the relatively conserved polymerase
structure (Delang et al., 2011; Lim et al., 2013). Unlike NNIs
which directly bind to RNA polymerase, NIs have to convert
into its triphosphate form inside cells by host kinases before
exerting their antiviral effects (Stein and Moore, 2001). However,
the kinase activity varies significantly in different cell types/hosts,
causing variable efficacy of the same NI. Another major issue
associated with NIs is the unpredictable toxicity in vitro.
Although the toxicity of NIs is often associated with the
inhibition of mitochondrial polymerases (Arnold et al., 2012),
other mitochondrial perturbations may also attribute to toxicity
(Selvaraj et al., 2014).

The N-terminal domain of NS5 contains one
methyltransferase (MTase) that catalyzes guanine N-7
and ribose 2′-O-methylations using S-adenosylmethionine
(SAM) as a methyl donor during viral cap formation (Zhou
et al., 2007). Non-selective competitive inhibitors, such as
S-adenosylhomocysteine and sinefungin bind to SAM binding
sites and inhibit its function (Boldescu et al., 2017). Using
virtual screening, a group of small compound molecules have
been identified with broad-spectrum activity against the MTase
proteins of multiple flaviviruses, including DENV2, DENV3,
and YFV (Brecher et al., 2015). Apart from the most important
antiviral targets such as E protein, NS3 protease and NS5
polymerase, other viral targets such as capsid protein, NS1 and
NS4 proteins are also under evaluation. The details of different
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viral targets have been reviewed elsewhere (Boldescu et al., 2017;
García et al., 2017).

Due to extensive dependence of viruses (replication, assembly,
and budding) on host LDs, the interface of virus-host interactions
with LDs and/or LD metabolism provides a rich source for
potential antiviral interventions (Table 1). First, targeting host
factors may produce potential broad-spectrum activity against
multiple viral infections due to similar intracellular pathways
employed by viruses within the same genus or family. Second,
given the high replication and mutation rates of viruses, long-
term antiviral therapy against chronic infections inevitably selects
for the resistant variants which alter the drug target and therefore
are less susceptible to the inhibitory effects of the treatment. The
resistant mutants eventually become the dominant species and
lead to treatment failure and persistent infection. Development of
drug-resistance has become a major challenge with direct-acting
antivirals when treating chronic infections (Rong et al., 2010).
Unlike viral elements, host cellular factors are much less prone
to mutation; thus targeting host lipid metabolism provides an
attractive approach for long-term treatment of diseases caused by
viral infection. However, since LDs play a role in lipidmetabolism
in-vivo, manipulating a major metabolic pathway may have a
more pleiotropic impact on cellular homeostasis (Georgel et al.,
2010). Such consequences need to be carefully assessed to hit
the right balance between causing host toxicity while preventing
viral pathogenesis. Third, several inhibitors targeting host lipid
metabolic pathways are well characterized, which can greatly
accelerate the process of drug development. Moreover, targeting
specific steps of LD biosynthesis, distribution, trafficking, and
metabolism which viruses routinely exploit, allows us to design
antiviral strategies with an enhanced therapeutic window. For
example, triglyceride-synthesizing enzyme DGAT1 has been
identified as an important host factor which is required for
trafficking of viral capsid protein to LDs, facilitating early
steps of viral assembly. Of note, RNAi-mediated silencing of
DGAT1 resulted in impaired viral particle production without
affecting LD composition (Herker et al., 2010). Currently, novel
classes of pharmacological inhibitors targeting DGAT1 have been
developed for clinical applications (DeVita and Pinto, 2013). In
addition, regulating enzymes in the FA synthesis pathway has
been shown to inhibit production of different viruses. C75, a
FA synthase inhibitor, displayed a strong inhibitory effect on
HCV replication (Yang et al., 2008), DENV production (Samsa
et al., 2009), as well asWNV and YFV replication (Martín-Acebes
et al., 2011) without causing significant toxicity to host cells. A
series of chemical probes (ML-206, ML-219 and ML-220) has
been shown to reduce the biogenesis and consumption of LDs
without toxicity to mammalian cells (Boxer et al., 2013). These
probes may prove to be beneficial in inhibiting virus production.
A noteworthy and indirect strategy to interrupt the association
between virus and LDs during viral replication and assembly
is to target involved viral proteins. During the biosynthesis of
the HCV polyproteins, an internal signal sequence between the

capsid protein and envelope protein E1 can be preceded by
cellular signal peptide peptidase (SPP). This process releases the
capsid protein from the ER, followed by its transport to LDs.
SPP inhibitor (Z-LL)2-ketone abolishes the cleavage of capsid
protein by SPP and thereby inhibits production of infectious
HCV (McLauchlan et al., 2002).

Ideally, antiviral treatments should exert their effects as early
as possible after infection. This is particularly true for acute
flaviviral infections such as DENV. Targeting intracellular host
factors, however, is perhaps less effective in preventing the onset
of an infection compared to other inhibitors, which block viral
entry. The advantages and disadvantages of antiviral strategies
against HCV and flaviviruses by targeting viral components and
host factors including those involved in LD metabolism are
summarized in Table 2.

CONCLUSION

Despite being an immense global health problem, there are no
affordable and efficient prophylactic or therapeutic treatments
for some pathogenic flaviviruses. It is imperative to have
alternative therapeutic strategies of inhibiting specific steps in
the intracellular virus life cycle to combat infection. Viruses
from the Flaviviridae family often cause perturbations in cellular
energy and lipid homeostasis during infection. This has been
reported for DENV, WNV, and HCV infection. Therefore,
targeting cellular LDs offers possibilities for such interventions,
including inhibition of lipid metabolism and disruption of
interactions with viral components. Although knowledge on the
participation of LDs during infection of HCV and flaviviruses
has significantly progressed, comparative studies that aim to
determine the shared or specific requirements of LD components
for these pathogens are still lacking. In addition, much of the
information available is from in-vitro studies, while the in-vivo
relevance remains unexplored. Therefore, a more comprehensive
understanding of the molecular biology of viruses and their
dependence on host LD metabolism is of utmost priority
for development of broad-spectrum and specific anti-flaviviral
strategies.
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