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Colorectal cancer (CRC) is the second most common cancer in Europe and a leading cause of death worldwide. Patient-derived
xenograft (PDX)models maintain complex intratumoral biology and heterogeneity and therefore remain the platform of choice for
translational drug discovery. In this study, we implanted 37 primary CRC tumors and five CRC cell lines into NU/J mice to develop
xenograft models. Primary tumors and established xenografts were histologically assessed and surveyed for genetic variants and
gene expression using a panel of 409 cancer-related genes and RNA-seq, respectively. More than half of CRC tumors (20 out of 37,
54%) developed into a PDX.Histological assessment confirmed that PDXgrading, stromal components, inflammation, and budding
were consistent with those of the primary tumors. DNA sequencing identified an average of 0.14 variants per gene per sample. The
percentage of mutated variants in PDXs increased with successive passages, indicating a decrease in clonal heterogeneity. Gene
Ontology analyses of 4180 differentially expressed transcripts (adj. p value < 0.05) revealed overrepresentation of genes involved
in cell division and catabolic processes among the transcripts upregulated in PDXs; downregulated transcripts were associated
with GO terms related to extracellular matrix organization, immune responses, and angiogenesis. Neither a transcriptome-based
consensusmolecular subtype (CMS) classifier nor three other predictors reliablymatched PDXmolecular subtypeswith those of the
primary tumors. In sum, both genetic and transcriptomic profiles differed between donor tumors and PDXs, likely as a consequence
of subclonal evolution at the early phase of xenograft development, making molecular stratification of PDXs challenging.

1. Introduction

Patient-derived xenografts (PDXs) are established by trans-
ferring tumor tissue from patients into immunosuppressed
mice. After a period of dormancy, xenografts enter a loga-
rithmic growth phase and may be reimplanted in subsequent
generations of mice. PDXs are the most useful experimental
models for predicting therapeutic responses and the final
filters for selection of drug candidates for clinical trials and

may also serve as an important source of new predictive
biomarkers [1]. For these reasons, the US National Cancer
Institute (NCI) is switching to PDX models from the NCI-
60 panel of cell lines that have been used for nearly three
decades in drug discovery [2]. To ascertain whether pre-
clinical findings are translatable to clinical practice, PDXs
must recapitulate the cellular and molecular characteristics
of the donor tumors. As exemplified by a recently published
study from the OncoTrack consortium [1], the use of PDXs
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in preclinical studies should be preceded by deep molecular
evaluation of each PDX model.

Colorectal cancer (CRC) is the second most common
cancer in Europe and a leading cause of death worldwide [3].
Although CRC mortality can be reduced by prevention and
early detection, survival of patients with advanced disease
depends on adjuvant therapies. Treatment strategies for CRC
depend on cancer stage and location. For stage III colon
cancer, wide surgical resection and anastomosis with a stan-
dard adjuvant chemotherapy (CHT) are routinely performed,
whereas neoadjuvant radiochemotherapy is recommended
for patients with locally advanced rectal cancer [4]. The
combination of CHT with new targeted therapies, such
as inhibitors of epidermal growth factor receptor (EGFR)
and immunotherapies, further increases median survival
[5]. However, therapeutic responses vary significantly due
to primary and secondary mechanisms of resistance, which
reflect inter- and intratumor heterogeneity. Although tumor
heterogeneity can be measured based on detection of mutant
allele frequencieswithin a given tumor anddifferences in can-
cer cell–intrinsic gene expression profiles, both approaches
may be challenging, for example, due to loss of human
immune signatures and stromal components or selection of
preexisting cancer minor clones during PDX development
and propagation [6–8].

Here, we compared the histological, genetic, and tran-
scriptomic properties of PDXs and xenografts established
from CRC cell lines (CLXs). Primary tumors, cell lines, and
their corresponding P2 xenografts were surveyed for genetic
variants and gene expression using a panel of 409 cancer-
related genes and RNA sequencing (RNA-seq), respectively.
Although most histological parameters remained stable
between donor tumors and PDXs derived from them, both
primary tumors and PDXs significantly differed from CLXs.
In turn, both genetic and transcriptomic profiles differed
between donor tumors and PDXs, likely as a consequence of
subclonal evolution of PDXs at the early phase of xenograft
development.

2. Materials and Methods

2.1. Xenograft Models. NU/J (nude) athymic mice were pur-
chased from The Jackson Laboratory and maintained in a
specific pathogen-free (SPF) facility.The core of the breeding
colony consisted of a group of brother × sister mated animals
kept in an internal bank of inbred strains. Mice intended
for experiments were produced according to Lane–Petter’s
“traffic-light” system.

To establish PDXs, pieces (∼10–20mm3) of fresh colorec-
tal carcinoma specimens, obtained after surgical resection,
were implanted subcutaneously into both flanks of NU/J
mice (passage 0, P0). Growth was monitored until the tumor
reached a volume of about 1 cm3, at which point the tumor
was excised and dissociated, and pieces (∼10–20 mm3) were
again implanted into a new set of mice (passage 1, P1). This
procedure was repeated a second time. To establish a CLX,
1–5 × 106 cells from human CRC cell lines were injected sub-
cutaneously into one or both flanks.When the tumor volume

reached 500mm3, retransplants were performed as above. All
animal work was performed in accordance with a protocol
approved by the Local Ethics Committee (decision 59/2013).

2.2. Histological Evaluation. Both primary tumors and PDXs
were evaluated in regard to several histological features.
Tumor gradewas assessed based on the ability of cancer tissue
to form glands resembling colonic crypts and the percentage
of undifferentiated solid epithelial neoplastic cell nests with
division forwell differentiated (G1),moderately differentiated
(G2), and poorly differentiated (G3) colonic adenocarci-
noma. The stromal component was measured based on the
surface area of fibrotic material between cancerous tissues,
given as a percentage of the whole histological image. Within
the stromal component, inflammatory infiltrate was assessed
as absent, mild, moderate, or intense, with cut-off points at
25% and 50% of the area occupied by inflammatory cells.
The characteristics of these infiltrates were also evaluated,
and the predominant inflammatory cells were described as
mononuclear (lymphocytes and monocytes). In addition,
tumor budding was identified as small groups of neoplastic
cells (fewer than five) separating from the glands and invad-
ing the stroma.The intensity of tumor budding wasmeasured
semiquantitatively, as described previously in literature: the
areas of most pronounced budding were selected under low
power, and then tumor budding foci were counted under
a 20× objective lens, with < 5 indicating low-grade and
≥ 5 high-grade budding. Immunohistochemistry staining
with human leukocyte antigen was performed on each tissue
section to identify cells originating within both the epithelial
and stromal components of the tumor. Kidney tissuewas used
as a negative control.

2.3. Next-Generation Sequencing. RNA and DNA were
extracted using the RNeasyMini Kit andQIAampDNAMini
Kit (Qiagen), respectively. DNA concentration was measured
fluorescently using a Qubit instrument (Thermo). DNA
was subjected to library preparation for the Ion AmpliSeq
Comprehensive Cancer Panel, which allows analysis of the
coding regions of 409 oncogenes and tumor suppressor
genes. Quality assessment and quantitation of total RNA
were performed using Agilent RNA kits on a Bioanalyzer
2100 (Agilent), followed by library preparation with the Ion
AmpliSeq Transcriptome Human Gene Expression Panel
(Thermo) as described previously [9]. DNA libraries were
sequenced on an Ion Proton sequencer.

2.4. Variant Calling. Sequencing results were mapped sepa-
rately to the human (hg19) andmouse (mm10) genomes using
TMAP. Two datasets were created using samtools (10): one
containing reads that mapped to the human genome with
MAPQ ≥ 30 (“relaxed dataset”), and the other containing
reads that mapped to the human genome with MAPQ ≥
30 but did not map to the mouse genome with MAPQ ≥
17 (“strict dataset”). Variant calls were made with Torrent
Variant Caller, using default parameters for somatic variants.
Called variants were first filtered with bcftools with the
following parameters: DP ≥ 20, QUAL ≥ 20, and GQ >
5 for all variants; FDP > 6, FAO > 2, and STB < 0.9 for
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SNPs; and FDP > 10, HRUN < 6, and FAO > 4 for indels.
The resultant variants were then filtered with fpfilter with
default parameters except as follows: min-strandedness =
0.05, max-mapqual-diff = 10, max-readlen-diff = 10, and
max-mm-qualsum-diff = 50. Only variants with at least five
alternate reads from each strand and at least 10% alternate
reads were selected. To exclude any artifact arising from
homologousmapping ofmouseDNA to the human reference,
all variants arising more frequently in the PDX than in
the initial samples (N > 3) in the relaxed dataset were
excluded. Variants detected in more than 25% of samples
in the relaxed or strict dataset were also removed. Finally,
“strict” and “relaxed” datasets were merged. Annotation of
variants and prediction of their consequences for mature
proteins were conducted using Annovar [10], and delete-
riousness was assessed using the SIFT [11]. Only variants
not present in more than 0.1% of the population (germline),
according to the ExAC and 1000 Genomes databases, were
considered. Variants previously linked to CRC development
were imported from the COSMIC database (version 20170411
[12]).

2.5. Expression Analysis. Transcripts were quantified using
HTseq-count (version 0.6.0 [13]), run with default options.
Differential gene expression was evaluated with DESeq2 [14].
The 20% of genes with the lowest normalized read counts
across all samples were discarded before comparisons were
made. Gene Ontology (GO) analysis was performed with
the clusterProfiler package [15]. For the purpose of GO
analysis, the selected gene set consisted of genes with adjusted
p values lower than 0.05 according to DESeq2, and the
background consisted of all genes taken to pairwise compar-
isons. All calculations were performed in the R environment
[16].

3. Results

3.1. Xenograft Establishment. Fresh colorectal carcinoma
specimens from 37 surgical resections and five human CRC
cell lines (Colo-205, HCT-116, HT-29, SW-480, and Caco2)
were grafted subcutaneously into the dorsal region of nude
mice. Tumor sizes were measured once a week, and tumors
were allowed to grow until they reached ∼500 mm3. The gen-
eration harboring the patient- or culture-derived material,
termed P0, was subsequently propagated in consecutively
numbered generations (P1, P2, P3, and so on). Altogether,
20 of the 37 tumor samples and all given cell lines yielded
growing tumors at graft sites. Engraftment rates of PDXs
and CLXs were 54% and 100%, respectively. The times
between implantation and the development of progressively
growing PDXs and CLXs were 50–162 days and 18–202 days,
respectively; the median times for development of P0, P1, P2,
and P3 xenografts were 105, 51, 52, and 55 days (PDXs) and
35, 33, 26, and 24 days (CLXs), respectively. Portions of each
fresh parental tumor and all xenografts were fixed in formalin
and paraffin-embedded for pathological assessment, and
other portions were cryopreserved for genetic and molecular
surveys.

3.2. Xenograft Histology. As assessed by an experienced
pathologist (M.A.), most histological parameters remained
stable between the original tumors and engrafted and passage
PDXs displayed (Figure 1). Tumor grade did not change
except in one case, in which a G2 adenocarcinoma evolved
into a mucinous subtype of colonic adenocarcinoma or the
tumor grade increased from G2 to G3. Specific analysis of
the minor G3 component in tumors confirmed that this
feature remained stable in subsequent passages. Similarly, the
percentage of the stromal component was nearly identical in
the original and transplanted tumors: the variation was less
than 10%, near the discrimination limit of the measurement
technique. Interestingly, no necrotic areas were observed
in engrafted or transplanted tumors unless necrosis was
also present in the original tumor. Evaluation of inflamma-
tory infiltrate revealed that the intensity of inflammation
remained generally stable, whereas the predominant type of
inflammatory cells varied with no obvious pattern. Tumor
budding was consistent in terms of presence and intensity
in five cases, whereas in another five cases the intensity
of budding decreased. Together, these observations confirm
that PDXs at early passages (P0–P3) are closely related
to clinical cases. Immunohistochemical staining revealed
the epithelial component of each tumor, including the foci
of tumor budding. In addition, in some engrafted tumors
several stromal cells with fibroblast morphology expressed
humanHLA. In these cases, the number ofHLA-positive cells
decreased in subsequent passages (Figure S1).

Among the xenografts derived fromhumanCRC lines, all
of the tumors were of G3 histological grade with a small (≤
15%) stromal component (Figure 2).The stroma in CLXs was
less dense and contained some inflammatory cells, mostly on
the edges of the specimen. In most cases, the percentage of
necrosis was significant at the engraftment site and increased
in subsequent passages, reaching 60–85% of the whole tumor
area. Due to the high histological grade in all cases, it was not
possible to assess tumor budding. The stromal compartment
was likely mobilized from elements of murine tissues.

We also assessed 17 surgical specimen tumors from
patients in whom part of the tissue was harvested, and
the engrafted tumor failed to grow. These tumors were
comparable to those previously described, i.e., similar rates
of G2 and G3 tumors with similar stromal components.
Thirteen cases exhibited tumor budding, and inflammatory
infiltrate was present in all tumors.

3.3. Single-Nucleotide Variants of Xenografts. Primary
tumors, cell lines, and the corresponding P2 xenografts were
surveyed for genetic variants within a panel of 409 cancer-
related genes. We identified a total of 2832 single-nucleotide
variants (SNVs) and short indels, and average coverage was
1701× (Table S1). Variants were found in 366 genes, with
an average of 0.14 variants per gene per sample. Mutations
occurred most frequently in SYNE1 (64% of samples), TP53
(60%), APC (58%), CSMD3 (52%), LRP1B (46%), PTPRD
(36%), KRAS (34%), MAGI1 (32%), and RNF213 (30%)
(Figure 3). 287 variants, with an average of 0.23 variants per
gene per sample, impacted CRC driver genes, as defined by
the Cancer Gene Census [17]. Of these, 228 variants were
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Figure 1: Morphological features observed in xenograft tumors are preserved. Examples show hematoxylin–eosin (H&E) staining of
representative primary CRC tumor (GO) and PDX P0 and P2 samples belonging to the one of consensus molecular subtypes (CMS) as
determined in transcriptomic survey (10x objective).

LX1 Colo205 LX4 SW480LX3 HT-29LX2 HCT116 LX5 Caco2

P0

P2

Figure 2: Hematoxylin–eosin staining of CRC cell lines COLO 205, HCT 116, HT29, SW480, Caco-2 (G0), and their second passage in mice
(P2) (10x objective).

shared, while 48 and 11 were unique for primary tumors or
cell line and P2 xenografts, respectively; therefore most of
these mutations (79%) were retained in xenografts tissues.
For example, KRAS driver mutations were concordant in six
primary tumors, PDX P2 pairs with the exception of X49
sample where KRAS p.G12D emerged in PDX only (Figure
S3).

We then used the drivermutations as input for annotation
using the KEGG signaling pathway database. As shown in
Figure 4, the selected signaling pathways that were commonly
affected by mutations (Wnt, MAPK, PI3K-Akt, VEGF, and
TGF-beta) overlapped extensively between primary tumors
or cell lines and the corresponding xenografts. The allele
frequency of mutated variants compared with reference vari-
ants within these private mutations was usually elevated in
xenografts, sometimes reaching 100% (Figure S2). Addition-
ally, the median number of mutations per MB was 10.9 and
14.7 for primary tumors or cell lines and the corresponding
xenografts, respectively (Figure S4).

3.4. Transcriptome Survey. We analyzed gene expression in
all cell lines, P2 CLXs, tumor tissues, and P2 PDXs by
RNA-seq. A pairwise comparison revealed that 3262/222

and 918/216 genes were downregulated and upregulated,
respectively, in P2 PDX/CLX samples relative to the corre-
sponding source material (Table S2). Because the number of
differentially expressed genes was higher in PDX samples, we
performed downstream functional analyses for this dataset
only. Among the significantly upregulated genes in P2 PDX,
GO analysis of Biological Process category revealed overrep-
resentation of genes involved in cell division and catabolic
processes, consistent with the stabilization and accelerated
growth of PDXs (Table S3). On the other hand, significantly
downregulated transcripts in xenografts were enriched inGO
Biological Process terms associated with extracellular matrix
organization, immune response, and angiogenesis, in line
with the loss of transcripts primarily expressed in stromal
cells.

To further characterize our set of xenografts at the
molecular level, we applied the recently proposed consensus
molecular subtype (CMS) classification of CRC tumors,
which enables the categorization of most tumors into one
of four CRC subtypes [18]. Among primary colon cancers
that gave rise to a PDX, the CMS classifier based on the
single sample predictor (SSP) assigned two, seven, four, and
seven into the CMS1 (MSI-immune), CMS2 (epithelial and
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Figure 3: Mutational waterfall plot of genes mutated in > 10% of samples. Mutation frequency, shown in the top panel, is calculated relative
to the assayed DNA length (1.29 Mb).

canonical), CMS3 (epithelial and metabolic), and CMS4
(mesenchymal) subtypes, respectively (Figure 5). On the
other hand, among primary tumors that did not develop
into a PDX, the CMS classifier allocated one, four, five,
and seven to CMS1, CMS2, CMS3, and CMS4, respectively.
CMS frequencies did not differ significantly among primary
tumors that did and did not develop into a PDX (noPDX).
Interestingly, 324 (133/191 up-/downregulated in noPDX vs.
PDX) transcripts were significantly altered between these two
types of primary tumors (Table S4). GO analysis of the set of
downregulated genes revealed enrichment in Biological Pro-
cess terms related to ribonucleoprotein complex biogenesis
and rRNA processing, in tumors that did not develop into a
PDX (Table S5).

The CMS predictor assigned all PDXs to two molecular
subtypes, CMS2 or CMS3 (Figure 5). The failure of the CMS
classifier to identify CMS1 and CMS4 subtypes has been
described previously [19]. To address this deficiency, several
alternative classifiers have been recently proposed, including
the cancer cell–adapted CMScaller [20], the CRC intrinsic
subtypes (CRIS) classifier [21], and the PDX classifier [19].
All of these classifiers aim to enrich molecular classification
with cancer cell–intrinsic gene expression signals and ignore
gene expression signatures connected to stromal compo-
nents, which are replaced by their murine counterparts

during xenotransplantation [1]. The original CMS classifier,
CMScaller, the PDX classifier, and CRIS failed to correctly
match 10, 17, 5, and 9 PDXs, respectively, to themolecular sub-
type of the corresponding primary tumors as determined by
the same classifier. Thus, out of the four classifiers employed,
the PDX classifier proposed by Linnekamp and colleagues
[19] performed the best, matching 15 out of 20 PDXs (75%) to
the molecular subtype of their primary tumors. In sum, none
of the classifiers tested faithfully recapitulated PDXmolecular
subtype and therefore must be considered imperfect tools
for the molecular classification of xenografts; however, each
of them did identify molecular differences between donor
tumors/cell lines and the xenografts derived from them.

4. Discussion

Chemotherapeutics and targeted therapies are the two main
groups of drugs used for antineoplastic treatment. Although
most cytotoxic anticancer drugs were discovered through
random screening of synthetic compounds and natural prod-
ucts in in vitro cytotoxicity assays, targets for therapeutics
directed against the specific signaling pathways responsible
for cancer growth and maintenance are mostly identified
by high-throughput technologies in studies conducted ex
vivo and in vivo. During the early steps of novel therapy
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development, cell line panels are commonly used as a part of
the biology discovery phase, and to screen the activity of new
compounds in vitro. However, cell lines rarely recapitulate
the biology and histology of parental tumors either in vitro
or in vivo, even when reimplanted as CLXs. Instead, PDXs
better recapitulate the substantial molecular heterogeneity
of human tumors and therefore remain the recommended
models for target searching and proof-of-concept studies [22,
23].

Ultimate therapeutic response varies significantly
between cancer patients due to the high inter- and intratumor
genetic and molecular heterogeneity underlying the primary
and secondary mechanisms of resistance. Although tumor
classification might increase efficacy and diminish the
side effects of new therapies, only RAS mutation status
is used routinely as a negative predictive marker to avoid

treatment with anti-EGFR agents in patients with metastatic
CRC. In turn, mismatch repair status can guide the use of
adjuvant CHT in patients with early-stage colon cancer [5].
Since the establishment of PDXs as a basic procedure for
evaluating therapeutic responses in preclinical studies, the
standardization of PDX models has become particularly
important [1]. Although a great deal of effort has been
devoted to standardizing preclinical CRC models [24–28],
differences still exist in the way assessments are made.This is
particularly true of evaluations carried out at the molecular
level.

PDXs are established by transferring tumor tissue into
immunosuppressed mice, but usually not at the original
anatomical site. In addition, loss of human immune sig-
natures and stromal components [20] may limit the value
of PDX models for studies of the role of the tumor
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microenvironment aimed at optimizing cancer treatment. In
fact, the original CMS classifier fails to identify the CMS1
(immune) and CMS4 (mesenchymal) groups in cell lines,
patient-derived organoids, and PDXs [20]. Furthermore, a
selection of preexisting minor clones during PDX develop-
ment and propagation can substantially change themolecular
characteristics of PDXs in comparison with their parental
tumors [6–8]. As a consequence, simultaneous molecular
classification of both primary tumors and their correspond-
ing PDXs may yield superior animal models for preclinical
studies of new anticancer agents.

In this study, we compared histology, genetics, and
gene expression profiles between CRC primary tumors and
xenografts derived from them, with the goal of determin-
ing which elements of the primary tumor tissue remain
unchanged and which evolve. Most histological param-
eters remained stable between the original tumors and
engrafted/passaged PDXs. For example, PDX grade, stromal
component, intensity of inflammation, and budding were
consistent in terms of presence and intensity with those of
the donor tumor, indicating that PDXs at early passages
are closely related to their parental colon cancers. Although
at early passages some engrafted tumors contained stromal
cells of fibroblast morphology that expressed human HLA,
these cells became less abundant in subsequent passages. All
five CLXs exhibited G3 histological grade with a reduced
proportion of dense stromal components. Although PDXs
contained little or mild tissue necrosis, in CLXs necrosis
reached up to 85% of the whole tumor area. The stromal
compartment of CLXs was likely murine. In accordance with
these histological differences, both the timeframe required
for xenograft engraftment and the average time of P1–P3
generation growth were significantly longer for PDXs than
for CLXs. Thus, although PDXs are closer representations
of the disease than CLXs, the longer timeframe required for
engraftment is an obstacle for their use in co-clinical trials,
and individual patients with rapidly progressing disease
could not benefit from PDX studies [29].

Among 409 cancer-related genes, SNVs were identified
in 366. Of these, 287 variants impacted CRC driver genes,
with mutations occurring most commonly in APC, KRAS,
CTNNB1, PIK3CA, FBXW7, UBR5, PTPRT, and TP53. Sev-
eral mutations were comparably deleterious. Of note, the
driver mutations that affected CRC signaling pathways were
mostly represented by private variants that exhibited almost
complete concordance between the primary tumors or cell
lines and their respective xenografts, with the fraction of
nonreference reads usually increasing in xenografts. Thus,
while the mutational profiles reflected significant intertumor
differences, the prevalence of mutated variants relative to
reference variants was typical for PDXs. Moreover, the donor
cell lines and the CLXs derived from them revealed not
only virtually identical mutation patterns but also identical
ratios between mutated and reference variants. Although our
preclinical models likely capture only part of the genetic
heterogeneity of CRC donor tumors, these differences might
reflect subclonal selection during the process of engrafting or
propagation of the growing xenografts. However, we cannot
rule out the possibility that the increase in the frequency

of mutant variants in xenografts represents DNA extracted
mostly from neoplastic cells, whereas the DNA isolated from
primary tumors was also derived from noncancerous cells.

Loss of human immune signatures and stromal com-
ponents and selection of preexisting minor clones during
PDX development and propagation represent specific chal-
lenges for the processes of transcriptome survey and PDX
sample classification by CMS. In the transcriptome survey,
we attempted to assign the gene expression of primary
tumor/cell lines and their corresponding xenografts to CRC
molecular subtypes using four classifiers: the original CMS
classifier [18], CMScaller [20], the CRIS classifier [21], and
the PDX classifier [19]. None of them can be considered as a
gold standard, although each identifiedmolecular differences
between donor tumors/cell lines and xenografts. In particu-
lar, the original CMS classifier failed to identify CMS1 and
CMS4 in PDX samples. On the other hand, the proposed
alternative classifiers are likely not completely independent of
tumor stroma; filtering of the stromal component, although
it reduces the influence of stromal gene expression on
final classification, may significantly affect assignment of
a PDX to a molecular subtype. For example, surprisingly,
CMScaller assigned 13 out of 20 primary tumors to CMS4,
whereas according to this classifier this subtype was absent
in PDXs. Thus, for accurate standardization of preclinical
studies, we need a more robust molecular classifier that is
insensitive to differences in stromal components between
human cancer tissues and their corresponding xenografts. It
should be highlighted that the original CMS classifier and its
alternatives were proposed and tested on the transcriptome
datasets generated by applying microarray technology to
material from primary tumors. It is to be expected that
the xenotransplantation process itself interferes with the
transcriptome of cancer cells in several ways, including
dominant clone selection upon engraftment, limited cross-
talk between human and mouse cellular components, and
lack of a functional immune system in the host animals
[18]. Recent work showed that PDX propagation causes
changes in DNA copy number, allowing clones with a minor
representation in the xenograft to obtain a fitness advantage
over the course of PDX passage [6]. On the other hand,
murine stroma cells adapt a human-like metabolome profile
in PDXs [30]. Given the divergent and common features
of PDX models and primary tumors, an extended PDX-
tailored classifier that includes multiple molecular features
should be developed and trained on the growing number of
thoroughly characterized CRC PDX samples. Ultimately, the
purpose of the classification system, like those for primary
tumors, is to provide guidance for PDX stratification in
co-clinical trials and subtype-based targeted interventions.
However, because PDX molecular profiling still has serious
limitations, selection of these models for preclinical studies
should also take into account more stable parameters, such
as the presence of targeted genetic variants, along with
evaluation of the response to standard anticancer therapies.

In summary, we have described our experience with CRC
xenografts, one of the molecularly best-characterized models
of solid tumors. Despite their limitations, the continuously
growing collection of CRC PDXs constitutes a valuable tool



8 BioMed Research International

for preclinical and translational research.The development of
new “humanized” preclinical CRCmodels, with engraftment
of human immune systems into immunodeficient mice [31],
introduction of human gut microbiota [32], or the in vivo
reconstruction of the human colon epithelium [33], is a
promising approach to filling the translational gap between
PDX models and primary CRC tumors.
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