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Abstract

Prevalent in approximately 20% of the worldwide human population, the rs6265 (also called 

‘Val66Met’) single nucleotide polymorphism (SNP) in the gene for brain-derived neurotrophic 

factor (BDNF) is a common genetic variant that can alter therapeutic responses in individuals with 

Parkinson’s disease (PD). Possession of the variant Met allele results in decreased activity-

dependent release of BDNF. Given the resurgent worldwide interest in neural transplantation for 

PD and the biological relevance of BDNF, the current studies examined the effects of the rs6265 

SNP on therapeutic efficacy and side-effect development following primary dopamine (DA) 

neuron transplantation. Considering the significant reduction in BDNF release associated with 

rs6265, we hypothesized that rs6265-mediated dysfunctional BDNF signaling contributes to the 

limited clinical benefit observed in a subpopulation of PD patients despite robust survival of 

grafted DA neurons, and further, that this mutation contributes to the development of aberrant 

graft-induced dyskinesias (GID). To this end, we generated a CRISPR knock-in rat model of the 

rs6265 BDNF SNP to examine for the first time the influence of a common genetic polymorphism 

on graft survival, functional efficacy, and side-effect liability, comparing these parameters between 

wild-type (Val/Val) rats and those homozygous for the variant Met allele (Met/Met). Counter to 

our hypothesis, the current research indicates that Met/Met rats show enhanced graft-associated 

therapeutic efficacy and a paradoxical enhancement of graft-derived neurite outgrowth compared 

to wild-type rats. However, consistent with our hypothesis, we demonstrate that the rs6265 
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genotype in the host rat is strongly linked to development of GID, and that this behavioral 

phenotype is significantly correlated with neurochemical signatures of atypical glutamatergic 

neurotransmission by grafted DA neurons.
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1. Introduction

While there are various therapeutic options for individuals with Parkinson’s disease (PD), 

these therapies do not work uniformly well in all patients and eventually most are plagued 

with waning efficacy and significant side-effects as the disease progresses. Indeed, there is 

growing consensus surrounding the contention that PD is a complex and heterogeneous 

neurodegenerative process, the molecular underpinnings and clinical presentation of which 

vary greatly among individuals. For example, while the mainstay pharmacotherapy for PD, 

oral levodopa, is generally effective in treating the motor symptoms of PD, the clinical 

response can be variable. In accordance, a retrospective analysis of the ‘Earlier versus Later 

Levodopa Therapy in Parkinson Disease’ (ELL-DOPA) study reported that early-stage PD 

subjects receiving equivalent levodopa doses experienced a magnitude of response ranging 

from a 100% improvement to a 242% worsening as assessed with the United Parkinson’s 

Disease Rating Scale part III (UPDRS-III, motor subscore) (Hauser et al., 2009). This 

inherent heterogeneity is a significant hindrance to the overall therapeutic goal of 

“implementing safe, effective, and individually tailored interventions with minimal 

complications” (Sieber et al., 2014) for those afflicted with PD.

In an effort to increase the number of therapeutic options for persons afflicted with PD, for 

more than three decades experimental therapies in the field of regenerative medicine have 

examined means of restoring lost dopamine (DA) terminals within the striatum, whether 

through grafting replacement neurons (primary DA neurons or stem cells) (Stoker et al., 

2017; Towns, 2017; Barker and Consortium, 2019) or vector-mediated delivery of trophic 

factors to induce terminal sprouting from remaining DA neurons (Tenenbaum and Humbert-

Claude, 2017; Olanow et al., 2015). The approach that has had most success clinically is 

embryonic ventral mesencephalic (VM) DA neuron engraftment into the caudate/putamen, 

which clearly shows efficacy in a subpopulation of individuals with PD (e.g., (Stoker et al., 

2017; Olanow et al., 2009; Steece-Collier et al., 2012)). As recently reviewed (Stoker et al., 

2017; Collier et al., 2019), despite strong biological rationale, a lack of consistent benefit 

and the occurrence of significant graft-derived side-effects (Piccini et al., 2005; Freed et al., 

2001; Hagell et al., 2002; Olanow et al., 2003; Soderstrom et al., 2008; Lindvall, 2015) have 

tempered enthusiasm regarding the clinical utility of DA neuron grafting for PD. However, 

after more than a decade of refinement, more rigorously designed grafting studies are 

ongoing or planned for the near future (e.g., (Barker and Consortium, 2019), Clinical Trial 

Identifiers NCT01898390, NCT03309514, NCT03119636, NCT04146519).
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While the field has gained an understanding of the role of global risk factors (e.g., disease 

severity, host age, etc.), the role that specific genetic risk factors might play in neural 

transplantation studies remains entirely unexplored. With this in mind, one approach to 

deconstructing the complexity of PD and response to therapy is the identification of 

common genetic variants that influence these variables in order to predict disease 

characteristics and tailor treatments to those most effective for subpopulations of patients. 

We recently identified one genetic variant which may prove useful in this regard. 

Specifically, we have found that the single nucleotide polymorphism (SNP) rs6265 in the 

brain-derived neurotrophic factor gene (BDNF) reduces the therapeutic efficacy of oral 

levodopa in two distinct cohorts of PD patients (Sortwell et al., 2017; Fischer et al., 2020). 

The rs6265 SNP, which is also commonly known as ‘Val66Met’ results in a methionine 

(Met) amino acid substitution for valine (Val) at codon 66. The rs6265 Met allele variant has 

a prevalence of 15–20% in the general worldwide population, though estimates vary 

between studies and between populations (e.g., the estimated prevalence of the variant allele 

in African communities is <5%, whereas in East Asian populations, this estimate is as high 

as 72%) (dbSNP, 2020; Petryshen et al., 2010). Both the heterozygous major allele (Val/Met) 

and homozygous minor allele (Met/Met) of the BDNF SNP result in a dose dependent 

(homozygous > heterozygous) decreased activity-dependent release of BDNF by disrupting 

BDNF transport and packaging into secretory vesicles, whereas constitutive levels of BDNF 

secretion remain unaffected (Chen et al., 2006; Egan et al., 2003; Wu et al., 2010; Baj et al., 

2013; Mallei et al., 2015). Importantly, the majority of BDNF in the adult brain is released 

from neurons via the regulated secretory pathway; therefore, the impact of the rs6265 SNP 

leads to a significant decrease in available BDNF (Chen et al., 2006; Egan et al., 2003) in 

approximately 15–20% of the general human population.

The rs6265 SNP is not associated with PD incidence (Mariani et al., 2015). However, based 

on the prevalence of this SNP, the known influential role of BDNF on embryonic VM grafts 

(Hoglinger et al., 2001; Yurek et al., 1996; Yurek et al., 1998; Zhou et al., 1997), and the 

critical role that BDNF plays in promoting dendritic spine growth and formation of synapses 

in the central nervous system (Adachi et al., 2014), we hypothesized that this genetic risk 

factor might underlie the variability in clinical response to DA neuron grafting in PD 

patients. To examine this hypothesis, we generated a knock-in rat model of the human 

rs6265 BDNF variant and used this novel tool to characterize, for the first time, the effects of 

this polymorphism on the function and synaptic integration of new DA terminals into the 

parkinsonian striatum using neural grafting as a model system. Specifically, we were 

interested in testing the overarching hypothesis that the rs6265 BDNF variant expressed by 

the graft recipient is an unrecognized contributor to the lack of behavioral efficacy despite 

robust survival of grafted neurons and/or induction of graft-induced dyskinesias (GID) 

reported in a subpopulation of PD patients (Piccini et al., 2005; Freed et al., 2001; Hagell et 

al., 2002; Olanow et al., 2003; Soderstrom et al., 2008; Lindvall, 2015). To test this 

hypothesis we have compared rats homozygous for this SNP (Met/Met), the genotype that 

would produce the largest reduction in BDNF release, with wild-type (Val/Val) rats to 

maximize the chances of observing any potential effect associated with the Met allele.

In the current studies, we shifted focus from the grafted cells to the environment into which 

the cells are grafted. In this context, we provide novel and compelling evidence that, 
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contrary to one aspect of our hypothesis, parkinsonian rats homozygous for the Met Met 

allele show a paradoxical enhancement of grafted DA neurite outgrowth and graft-derived 

efficacy despite equivalent survival of grafted DA neurons compared to wild-type rats. This 

enigmatic finding of enhanced functional recovery in Met allele carriers is corroborated by 

previous clinical and preclinical evidence (Krueger et al., 2011; Qin et al., 2014; Fischer et 

al., 2018). However, consistent with our hypothesis, only the Met/Met subjects exhibited an 

induction of GID behavior demonstrating for the first time that an individuals’ genetic 

profile, specifically the rs6265 SNP, is uniquely linked to development of aberrant 

behavioral side-effects following DA neuron grafting. While the mechanism(s) underlying 

these findings associated with the Met/Met genotype remain uncertain, the current 

investigations described here suggest that an atypical neurochemical phenotype of the 

grafted neurons and atypical graft-host circuitry may contribute to GID expression.

2. Materials and methods

2.1. Animals

Rats were derived from a heterozygous female Sprague-Dawley rat (CD® International 

Genetic Standardization Program, Charles River Laboratories, Wilmington, MA, USA) 

carrying the valine to methionine polymorphism (Val68Met) in the rat Bdnf gene (GenBank: 

NM_001270630; Ensembl: ENSRNOG00000047466). Note that rats have two additional 

threonine amino acids at positions 57 and 58, making the rat Val68Met equivalent to the 

human Val66Met SNP; the rat Bdnf gene is 96.8% homologous with the human BDNF gene 

(BLAST queries: P23560 and P23363). This Bdnf knock-in rat model was generated, under 

contract and guidance by our group, by Cyagen Biosciences (Santa Clara, CA, USA) using 

CRISPR/Cas-mediated homologous recombination (Supplementary Fig. 1). Cas9, guide 

RNA (gRNA) targeting vector (target sequence: 5’-

GCACGTGATCGAAGAGCTGCTGGATG-3’; gRNA sequence: 3’-

GCAGGGACCGACTGTGAAAACTCGTGCAC-5’), and a Val68Met template donor 

(template sequence: 5’-ACGTCCCTGGCTGACACTTTTGAGCACATGATC 

GAAGAGCTGCTGGATGA-3’) were injected into zygotes to generate the Val68Met 

Sprague-Dawley rat (Supplementary Fig. 1a,b). Polymerase chain reaction followed by 

DNA sequencing (DNA sequencing primer: 5’-AGGTCTGAAATTACAAGCAGATGG-3’) 

were performed to confirm that the founder female rat was carrying the valine to methionine 

polymorphism (Supplementary Fig. 1c,d). Next, the founder female was bred once with a 

wild-type Val68Val male Sprague-Dawley rat to generate heterozygous Val68Met offspring 

of both sexes. Subsequent breeding of heterozygous Val68Met rats produced offspring of all 

genotypes (wild-type Val68Val, heterozygous Val68Met, and homozygous Met68Met) for 

colony maintenance and experimentation. Offspring were genotyped using a custom 

Taqman® SNP genotyping assay (Supplementary Fig. 1e). Furthermore, we confirmed that 

in vitro BDNF release was reduced in cultured neurons from Met68Met rats without altering 

total BDNF brain tissue content (Supplementary Fig. 2). Colonies of Val68Val, Val68Met, 

and Met68Met rats were established with no breeding issues. Both heterozygous Val68Met 

and homozygous Met68Met rats are viable for at least 22 months, the longest we have aged 

them.
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For the current experiments, mature adult male rats (6 m.o. at time of lesion, N = 24 rs6265 

rats, N = 23 wild-type rats) were produced in-house within our Val68Met colony as 

described above. In these initial proof-of-principle studies, wild-type (Val68Val) and 

homozygous SNP (Met68Met) rats were used to maximize the chances of observing any 

potential effect associated with the variant allele. Rats were housed on a 12 hour light/dark 

cycle (lights on at 06:00) and given access to food and fresh water ad libitum. Rats were 

housed two per cage until initiation of levodopa treatment and dyskinesia rating when they 

were then individually housed with environmental enrichment to allow accurate behavioral 

assessment in their home cage. All experimental procedures were approved by the Michigan 

State University Institutional Animal Care & Use Committee. Further, “principles of 

laboratory animal care” (NIH publication No. 86–23, revised 1985) were followed, as well 

as specific national and international laws in accordance with the ethical standards 

established by the 1964 Declaration of Helsinki and its later amendments or comparable 

ethical standards.

2.2. Experimental design overview

Briefly, as shown in the experimental timeline (Fig. 1) and detailed in the paragraphs below, 

rats were rendered unilaterally parkinsonian via stereotaxic injection of 6-hydroxydopamine 

(6-OHDA). Two weeks following 6-OHDA surgery, lesion success was verified with 

amphetamine-induced rotational behavior. Two weeks later, rats were primed with daily 

levodopa to induce stable levodopa-induced dyskinesias (LID). After 5 weeks of levodopa 

priming, all rats received an intrastriatal graft of embryonic VM DA neurons from wild-type 

(Val68Val) rats or a cell-free sham graft. Levodopa was withdrawn for one week following 

graft surgery, after which levodopa treatment was reinitiated. Parkinsonian rats were 

evaluated for amelioration of LID behavior for 9 weeks following engraftment. At 7 weeks 

post-engraftment, amphetamine-induced rotational behavior was assessed once again as a 

secondary measure of graft function. As an indicator of graft dysfunction, GID were 

evaluated following the last week of LID assessment (i.e., 10 weeks post-grafting). 

Following the conclusion of the study, all rats were genotyped to confirm Val68Met SNP 

genotype.

2.3. Nigrostriatal 6-OHDA lesion surgery

Rats were anesthetized with inhalant isoflurane (2–3%; Sigma, St. Louis, MO, USA) and 

secured in a stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA). Each rat 

received 2 μl of 6-OHDA (5mg/ml) using a 5 μl Hamilton syringe with a 26-gauge needle. 6-

OHDA was administered at a flow rate of 0.5 μl/min into the substantia nigra pars compacta 

(SNc; 4.8 mm posterior, 1.7 mm lateral, 8.0 mm ventral, relative to bregma) and the medial 

forebrain bundle (MFB; 4.3 mm posterior, 1.6 mm lateral, 8.4 mm ventral, relative to 

bregma). These lesioning parameters result in greater than 90% SNc DA neuron death, 

which is required in this model to produce reliable LID and significant parkinsonian motor 

deficits (Zhang et al., 2013; Konradi et al., 2004; Morin et al., 2014; Cenci and Crossman, 

2018). After surgery completion, rats received carprofen (as Rimadyl®; 5 mg/kg) as 

analgesic treatment. Nigral lesion status was confirmed histologically postmortem with 

medial terminal nucleus DA cell enumeration, as described previously (Gombash et al., 

2014).
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2.4. Amphetamine-induced rotational behavior

Amphetamine-induced rotational behavior is a reliable measure of nigrostriatal DA 

depletion and graft function (e.g., (Soderstrom et al., 2008; Collier et al., 2015; Collier et al., 

1999; Dunnett et al., 1981)). Accordingly, amphetamine-induced rotational asymmetry was 

assessed 2 weeks following lesion surgery to confirm successful lesion status, and again at 7 

weeks post-engraftment as a secondary endpoint to assess DA neuron graft function per 

(Collier et al., 2015). Rats were injected with amphetamine sulfate [5 mg/kg, intraperitoneal 

(i.p.)] and rotational behavior was monitored using an automated Rotometer System (TSE-

Systems, Chesterfield, MO, USA) for 90 min. Rats rotating at a rate of ≥7 ipsilateral turns 

per minute over 90 min 2 weeks post-lesion were included for further study.

2.5. Levodopa administration

Beginning 4 weeks after 6-OHDA surgery, rats were primed for 5 weeks with once daily (M-

Fr) injections of levodopa plus benserazide [12 mg/kg, 1:1; subcutaneous (s.c.)]. Levodopa 

was withdrawn for one week following graft surgeries to prevent any potential toxic 

interaction of the drug with grafted cells (Collier et al., 2015; Steece-Collier et al., 1990) and 

was then reinitiated and continued daily (M-Fr) throughout the remainder of the experiment 

(Fig. 1).

2.6. Levodopa-induced dyskinesia rating

LID are abnormal involuntary movement (AIM) side-effects of levodopa therapy (e.g., 

(Bastide et al., 2015)). In the current studies we have used the well-validated rat model of 

LID as our primary indicator of graft function because this complex behavioral malady can 

be ameliorated by DA neuron grafts in parkinsonian rats (Soderstrom et al., 2008; Lane et 

al., 2006; Maries et al., 2006; Soderstrom et al., 2010; Lee et al., 2000) and PD patients 

(Hagell and Cenci, 2005). To date, all PD patients that have received a DA cell graft have 

been on long-term daily levodopa replacement therapy. For these reasons, behavioral 

assessment of LID was the primary behavioral endpoint used in our recent study 

demonstrating discordance between DA graft survival and behavioral efficacy in aged 

parkinsonian rats (Collier et al., 2015).

In the current study, LID were evaluated on pre-graft days 1, 6, 12, 20, and 25, and at five 

post-graft timepoints (weeks 3, 5, 6, 8, and 9 post-engraftment). AIMs induced by levodopa 

were rated according to a LID severity rating scale for rats developed in our laboratory based 

on specific criteria reflective of the nature and occurrence of multiple behavioral attributes of 

dyskinesia as previously detailed (e.g., (Maries et al., 2006; Steece-Collier et al., 2003; 

Steece-Collier et al., 2019)). On behavioral rating days, food and water were removed from 

the home cage to prevent interference or distractions from these sources during behavior 

evaluation. LID behavior was evaluated in one-minute intervals at 20, 70, 120, 170, and 220 

minutes following s.c. levodopa/benserazide (12 mg/kg, 1:1). All rats were rated by the same 

blinded investigator throughout the duration of the study.

2.7. Preparation of donor tissue

VM tissue containing developing A8–A10 DA cell groups was dissected from wild-type 

(Val68Val) embryonic day 14 (E14) Sprague-Dawley dams. The VM tissue was collected in 

Mercado et al. Page 6

Neurobiol Dis. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cold calcium-magnesium free (CMF) buffer, then immediately dissociated into a 

homogenous cell suspension, as described previously (Collier et al., 2015). Briefly, dissected 

tissue was incubated in CMF buffer containing 0.125% trypsin in a bead warmer set to 37°C 

for 10 min. Next, the cells were triturated in 0.005% DNase using a Pasteur pipette of 2.0 

mm tip diameter, followed by a sterile 3cc 22-gauge syringe. The resulting suspension was 

carefully layered into a conical tube containing 5 ml sterile fetal bovine serum, then pelleted 

by centrifugation at 190 × g for 10 min at 4°C. The pellet was resuspended in 1.0 ml of 

Neurobasal™ medium (Gibco®; Thermo Fisher Scientific, Waltham, MA, USA). The trypan 

blue exclusion test was used to estimate cell number and viability. Final suspensions were 

prepared at a density of 33,333 cells/μl. Cells were kept on wet ice during transplantation 

surgery and used within 4 h of preparation. Cell-free Neurobasal™ medium was used for 

sham grafts.

2.8. Cell transplantation

After 5 weeks of levodopa priming, rats were assigned to DA graft or sham graft groups 

such that the mean pre-graft LID severity scores were statistically similar between groups. 

Rats designated to the DA graft group received an intrastriatal transplantation of 200,000 

VM cells from E14 timed pregnant wild-type donors. This number of cells is known to result 

in robust behavioral improvement in amphetamine rotational asymmetry and amelioration of 

LID severity in young, wild-type parkinsonian rats (Collier et al., 2015; Maries et al., 2006). 

Cells were deposited at a single rostral-caudal striatal site (0.2 mm anterior, 3.0 mm lateral, 

relative to bregma), distributed along three dorsal-ventral coordinates at this site 

corresponding to 5.7, 5.0, and 4.3 mm ventral to the bottom edge of the skull (Collier et al., 

2015). Each dorsal-ventral coordinate was injected with 2 μl (0.5 μl/min) of the VM cell 

suspension for a total volume of 6 μl. Sham grafted rats received a total of 6 μl of cell-free 

vehicle using the same stereotaxic coordinates. The needle was left in place for 4 min 

following the last injection of cells or cell-free media before being retracted. Levodopa 

treatment was discontinued for 1 week post-grafting to prevent any potential toxic 

interaction of the drug with grafted cells (Collier et al., 2015), after which levodopa 

treatment was reinitiated.

2.9. Graft-induced dyskinetic behavior

To provide a comprehensive assessment of GID behavior, which is an indicator of graft 

dysfunction in both PD patients and parkinsonian animal models, we employed two 

previously established approaches for modeling this malady: levodopa- and amphetamine-

mediated GID. In rats, levodopa-mediated GID behaviors, similar to GID in PD patients, are 

novel (not present prior to grafting) and focal (generally localized as orolingual and forelimb 

stereotypy) dyskinetic behaviors that develop with graft maturation as detailed previously 

(Soderstrom et al., 2008; Maries et al., 2006; Soderstrom et al., 2010; Steece-Collier et al., 

2003).

The alternative approach of amphetamine-mediated GID capitalizes on the finding that DA 

grafted, but not sham grafted, rats display dyskinetic behavior in response to low-dose 

amphetamine, which appears phenotypically similar in appearance to LID (Lane et al., 

2009a; Lane et al., 2009b; Shin et al., 2012a; Smith et al., 2012a; Smith et al., 2012b). To 
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assess amphetamine-induced GID, rats received a single dose of amphetamine sulfate (2 

mg/kg, i.p.) and were then returned to the home cage for behavioral assessment. The 

resulting dyskinetic behavior was evaluated by a blinded investigator using the same method 

and rating scale described above for LID rating.

Both levodopa- and amphetamine-mediated GID were examined after the final week 9 post-

grafting LID assessment (i.e., week 10 post-grafting), with amphetamine-mediated GID 

rated 24 hours after levodopa-mediated GID, and approximately 24 hours prior to sacrifice 

to allow relevant comparisons of these two behavioral readouts and the neurochemical 

endpoints to which they were compared.

2.10. Necropsy

Rats were deeply anesthetized with phenytoin/pentobarbital euthanasia solution (250 mg/kg 

pentobarbital, i.p.; VetOne, Boise, ID, USA) then perfused intracardially with 200 ml room 

temperature heparinized 0.9% saline followed by 200 ml cold 4% paraformaldehyde in 0.1 

M phosphate buffer. Brains were removed and post-fixed in 4% paraformaldehyde for 24 

hours at 4°C, submersed in 30% sucrose solution, then stored at 4°C until time of sectioning. 

Brains were sectioned coronally at 40-μm thickness using a sliding microtome and stored in 

a cryoprotectant solution at −20°C. Ear clippings were collected during necropsy and stored 

at −80°C for automated genotype confirmation (Transnetyx Inc., Cordova, TN, USA).

2.11. Histology

2.11.1. Tyrosine Hydroxylase (TH) immunohistochemistry—A 1:6 series of 40-

μm sections through the rostrocaudal extent of the brain was used for TH immunolabeling. 

All steps were performed at room temperature. Sections were rinsed thoroughly in tris-

buffered saline containing 0.3% Triton X-100 (TBS-Tx) before incubating in 0.3% hydrogen 

peroxide for 15 min, then blocking in 10% normal goat serum (NGS) for 90 min. The 

sections were then incubated with rabbit anti-TH primary antibody (Table 1) for 24 hours. 

The next day, sections were incubated with biotinylated goat anti-rabbit secondary antibody 

with 1% NGS (Vector Laboratories, Inc., Burlingame, CA, USA; Cat No. BA-1000) for 90 

min, then developed with avidin/biotin enzyme complex (Vector Laboratories, Inc., 

Burlingame, CA, USA; Cat No. PK6100) and 3,3’-diaminobenzidine (DAB; 0.5 mg/ml).

2.11.2. Stereological quantification of graft cell number & graft volume—A 

blinded investigator quantified TH-immunoreactive (THir) cells in the grafted striatum using 

the Stereo Investigator® Optical Fractionator workflow for total enumeration estimation 

(MBF Bioscience, Williston, VT, USA), similar to what we have previously reported 

(Collier et al., 2015). Briefly, THir cells were systematically counted within a 200 μm × 200 

μm counting frame superimposed on a 200 μm × 200 μm grid using a 20x oil immersion 

objective (numerical aperture 0.75) on a Nikon Eclipse 80i microscope. This was completed 

in 5–7 serial (1:6) TH-immunolabeled sections throughout the striatum. The optical disector 

height was 22 μm, with guard zones of 2.5 μm.

The same sections used for graft cell counts were used for quantification of graft volume. 

Graft volumes were estimated using the Cavalieri Estimator probe from Stereo 
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Investigator®. Contours were traced around the central portion of the graft containing THir 

cell bodies (Fig. 4e, central black oval) in serial tissue sections by a blinded investigator. The 

Cavalieri probe was applied, superimposing a grid of randomly placed sampling sites (50-

μm spacing) over the contours. Graft volume data are expressed as total estimated volume 

corrected for over-projection (mm3).

2.11.3. Stereological quantification of neurite outgrowth—Graft-derived 

innervation of the host striatum was measured stereologically via the Stereo Investigator® 

Spaceballs workflow. For each animal, the TH-immunolabeled tissue section containing the 

largest portion of the graft was chosen for analysis. Rectangular contours measuring 345 μm 

× 265 μm were drawn around regions of interest both proximal and distal to the graft, in all 

directions relative to the graft (i.e., medial, dorsal, lateral, ventral to the graft), for a total of 

eight contours. The “proximal” region was defined as a distance of 100–500 μm from the 

edge of the graft, with 0–100 μm from the graft serving as a “buffer zone.” Similarly, the 

“distal” zone was defined as 700–1100 μm from the edge of the graft, with 500–700 μm 

serving as an additional “middle buffer” zone. The Spaceballs workflow was applied to the 

contours, using systematic random sampling of sites within a grid superimposed over the 

contours. The probe was spherical with a radius of 5.0 μm and guard zones of 1.0 μm. 

Additional sites were sampled in the intact striatum using two contours of the same 

dimensions described above. All neurite density measurements were collected by a blinded 

investigator using the 60x oil immersion objective (numerical aperture 1.40) on a Nikon 

Eclipse 80i microscope. Data are expressed as estimated neurite length per probe volume 

(μm/mm3).

2.11.4. Brightfield In Situ Hybridization (ISH)—To examine the impact of rs6265 on 

host striatal mRNA for the BDNF receptor, tyrosine receptor kinase B (TrkB), we performed 

in situ hybridization (ISH) for Trkb mRNA on 1–2 tissue sections per animal at 40-μm 

thickness using the manual RNAscope® 2.5 HD assay (Advanced Cell Diagnostics Inc., 

Hayward, CA, USA) according to manufacturer instructions, then counterstained with cresyl 

violet. Images (2880 × 2048) were acquired in the dorsolateral striatum adjacent to the graft 

using the 20x objective on a Nikon Eclipse Ni microscope, maintaining identical light 

settings across all images. The images were imported into the image visualization and 

analysis software, Imaris® (v. 9.3.1, Oxford Instruments) using the ImageJ (FIJI) extension. 

The Imaris® spots function was used to reconstruct Trkb mRNA puncta in a two-

dimensional field of view, using the same parameters for all images, and the resulting data 

were exported. Data are represented as the average of values collected from two to four 

images per striatal hemisphere.

2.12. Immunofluorescence (IF)

In each IF assay that was performed, 1–2 representative tissue sections were used per 

animal. Full series tissue sections containing DAB-developed TH as described above were 

used as guides when choosing striatal tissue sections for IF studies, as we endeavored to 

select sections that contained a central portion of the DA graft in each grafted animal. To 

fluorescently label mRNA targets1 (Table 2), the manual RNAscope® Multiplex Fluorescent 

V2 assay was used with Opal dyes (Akoya Biosciences, Marlborough, MA, USA) according 
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to manufacturer instructions. Following RNAscope®, IF staining for TH protein was 

completed using the Alexa Fluor™ 488 Tyramide SuperBoost™ Kit (goat anti-mouse IgG; 

Invitrogen®; Thermo Fisher Scientific, Waltham, MA, USA) according to manufacturer 

instructions to enhance TH fluorescence and produce bright, distinct THir fibers.

For protein-only IF assays (no mRNA), Alexa Fluor™ 488 Tyramide SuperBoost™ Kits 

(goat anti-rabbit IgG and goat anti-mouse IgG) were used first with TH primary antibodies 

pertinent to each assay (Table 1). Additional target antigens were labeled as follows after 

completion of the enhancement step. Briefly, TH-enhanced tissue was rinsed in TBS-Tx, 

then blocked in 10% serum for 1 hour at room temperature. Next, the tissue was incubated 

with primary antibodies pertinent to each assay (Table 1) for 24 hours at room temperature 

(except for synaptopodin (SP), which was incubated for 48 hours at 4°C). The tissue was 

then incubated with the corresponding Alexa Fluor® secondary antibodies (1:400 dilution; 

Table 1) for 90 min at room temperature in the dark, then mounted onto 2% subbed slides 

and coverslipped with Vecta-shield® anti-fade mounting medium (Vector Laboratories Inc., 

Burlingame, CA, USA).

2.13. Fluorescent image acquisition

Confocal images (1024 × 1024) were acquired on a Nikon A1 laser scanning confocal 

system equipped with a Nikon Eclipse Ti microscope and Nikon NIS-Elements AR software 

(v. 5.02). For synaptic characterization experiments, z-stacks were acquired through the 

entire thickness of the mounted tissue sections using the 60x oil-immersion objective 

(numerical aperture 1.40) with a digital zoom of 1.67x for a final magnification of 100x. A 

z-step of 0.3 μm was used per (Belmer et al., 2017) with a scan speed of 1/8 frame/sec. In the 

synaptic characterization analyses using TH, postsynaptic density protein 95 (PSD95), and 

vesicular glutamate transporters 1 and 2 (VGLUT1 and VGLUT2) described below, two 

images (125 μm × 125 μm) were collected in the striatum proximal to the lateral edge of the 

graft. The “proximal” region was defined as described above. In the TH-SP analysis, two 

images were collected using these same parameters, except one image was acquired in the 

“proximal” zone while the second image was acquired in the “distal” zone lateral to the graft 

border, as described above. In all experiments, additional images were collected in the intact 

contralateral striatum using the same parameters. Images of intact striatum were captured in 

striatal regions comparable to those of images collected in the grafted striatum.

For general mRNA detection and cell counts, z-stacks of the entire graft region were 

acquired using a 10x or 20x objective (numerical aperture 0.45 or 0.75, respectively), with a 

z-step of 2 μm and a scan speed of 1/8 frame/sec. In most cases, multiple images were 

collected in order to capture the entire graft region present in the striatal tissue section.

1With regard to Bdnf mRNA, the Bdnf gene is transcribed into a variety of mRNA transcripts containing different 5’ untranslated 
regions that regulate regional, stimulus-specific, and cell type-specific expression of the final protein product encoded by a single 
protein coding exon (Aid et al., 2007; Zuccato and Cattaneo, 2007). Accordingly, to simplify Bdnf mRNA detection, the ISH probe 
used in the current study was designed to target only the protein coding sequence (RNAscope® Probe Rn-Bdnf-CDS, Cat No. 
409031).

Mercado et al. Page 10

Neurobiol Dis. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.14. Imaris® fluorescent image quantification

2.14.1. Dual-label protein analysis: TH and SP—Three-dimensional (3D) z-stacks 

of tissue immunolabeled for TH and SP proteins were imported into Imaris® and converted 

into native Imaris® file format. The surface function was used with semi-automatic 

thresholding to create an accurate 3D reconstruction of TH fibers within each image. Then, 

the spots function was used to reconstruct SP puncta, using the same parameters across all 

images. The MATLAB® “Find Spots Close to Surface” Imaris® XT plugin was then 

applied to the TH surface, setting the distance of putative TH-SP synapses to 0.6 μm per 

(Belmer et al., 2017). Data are represented as the number of SP puncta located ≤0.6 μm from 

TH fibers and normalized to TH surface volume (μm3).

2.14.2. Dual-label protein & mRNA Analysis: TH protein and Vglut2 mRNA—
Z-stacks of tissue labeled for TH protein and Vglut2 mRNA were imported into Imaris® and 

a TH surface was created manually using the marching cubes function so that all THir cell 

bodies were accurately reconstructed with a 3D surface object. Next, the spots function was 

used to reconstruct Vglut2 mRNA puncta, using the same parameters across all images. A 

binary mask was applied to the TH surface. The Vglut2 mRNA spots were then filtered 

using the masked channel so that only Vglut2 mRNA puncta inside TH surface objects were 

included in the analysis. Finally, the MATLAB® “Split into Surface Objects” plugin was 

applied to the filtered spots and the resulting data were exported. In cases where multiple 

images were acquired to include the entire graft region, the data are expressed as the sum of 

the values from all images collected per animal. Care was taken to ensure that the same cells 

were not counted twice in adjacent images. Only THir cells with ≥ 2 Vglut2 mRNA puncta 

were included for analysis.

2.14.3. Triple-label protein analysis: TH, VGLUT2, & PSD95 proteins—Z-stacks 

of tissue immunolabeled for TH and VGLUT2 (presynaptic markers) combined with PSD95 

(postsynaptic marker) were imported into Imaris®. The surface function was used with 

semi-automatic thresholding to create accurate 3D reconstructions of TH fibers and PSD95. 

The spots function was applied to reconstruct VGLUT2 protein puncta within each image, 

using the same parameters across all images. Next, a binary mask was applied to the TH 

surface object. PSD95 surfaces were filtered using the masked channel to obtain PSD95 

surfaces located outside of the TH surface (PSD95(out)). Similarly, VGLUT2 spots were 

filtered using the masked channel to select VGLUT2 spots with centers located inside the 

TH surface (VGLUT2(in)). Then, the MATLAB® “Find Spots Close to Surface” plugin was 

used to find VGLUT2(in) ≤ 0.6 μm from PSD95(out). Finally, the MATLAB® “Distance 

Transformation” plugin was used to find PSD95(out) surfaces located ≤ 0.6 μm from the TH 

surface. Data are represented as the number of VGLUT2 (in) puncta, number of 

VGLUT2(in)-PSD95(out) appositions, and total volume of PSD95(out) surfaces, all 

normalized to TH surface volume (μm3).

2.14.4. Triple-label protein analysis: TH, VGLUT1, & PSD95 proteins—Z-stacks 

of tissue immunolabeled for TH, VGLUT1, and PSD95 proteins were imported into Imaris® 

and deconvolved using Imaris Clear-View™ Deconvolution to improve image clarity 

(iterative algorithm with 10 iterations, pinhole = 15.3 μm, specimen refractive index = 1.37, 
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distance from coverslip = 7.97 μm). Next, 3D surface objects of TH and PSD95 were created 

using semi-automatic thresholding, as described above. The spots function was used to 

create VGLUT1 protein puncta, maintaining the same parameters across all images. As 

before, a binary mask was applied to the TH surface object, and VGLUT1 spots were 

filtered using the masked channel to find VGLUT1 puncta located outside of the TH surface 

(VGLUT1(out)). Similarly, the PSD95 surface objects were filtered by the masked channel 

to find PSD95 structures located inside the TH surface (PSD95(in)). Then, the MATLAB® 

“Find Spots Close to Surface” plugin was used to find VGLUT1(out) located ≤ 0.6 μm from 

the TH surface and VGLUT1(out) located ≤ 0.6 μm from PSD95(in). Data are represented as 

the number of VGLUT1(out) puncta near (≤ 0.6 μm) the TH surface and the number of 

VGLUT1(out)-PSD95 (in) appositions, all normalized to TH surface volume (μm3).

2.14.5. Dual-label protein & mRNA analysis: TH protein & tryptophan 
hydroxylase 2 (Tph2) mRNA—Z-stacks of tissue labeled for TH protein and tryptophan 
hydroxylase 2 (Tph2) mRNA (i.e., an isozyme of tryptophan hydroxylase, the rate-limiting 

enzyme in the synthesis of serotonin (5-hydroxytryptamine (5-HT) and marker for 5-HT 

neurons) were imported into Imaris®. Surface objects for TH protein and Tph2 mRNA 

(which presented as a soma-filling, rather than punctate, stain) were created manually with 

the marching cubes function so that all cell bodies containing Tph2 mRNA or TH protein 

were accurately reconstructed in 3D. The number of surface objects for each cell type was 

recorded. Because of limited amount of striatal tissue containing grafted neurons and 

extensive analyses done in our study, data are expressed as the number of Tph2 mRNA-

containing cells (i.e., 5-HT neurons) relative to the number of THir cells (i.e., DA neurons) 

in each image (Tph2/TH ratio) in 2 striatal sections. Care was taken to ensure that the same 

grafted cells were not counted twice in adjacent images.

2.14.6. Dual-label protein & mRNA analysis: TH protein & Bdnf mRNA—
Because of limited amount of striatal tissue containing grafted neurons and the extensive 

analyses done in our study, tissue from only 3 Val68Val subjects was available for examining 

Bdnf mRNA in grafted DA neurons, while grafted tissue from 9 Met68Met subjects was 

available for this assay. Z-stacks of tissue immunolabeled for TH protein and Bdnf mRNA 

were imported into Imaris®. Surface objects for TH were created manually with the 

marching cubes function so that all THir cells were accurately reconstructed in 3D. Next, the 

spots function was used to reconstruct Bdnf mRNA puncta, using the same parameters 

across all images. The MATLAB® “Split into Surface Objects” plugin was applied to the 

Bdnf mRNA spots and the resulting data were exported. As described above, in cases where 

multiple images were acquired to include the entire graft region, the data are expressed as 

the sum of the values from all images collected per animal. Care was taken to ensure that the 

same grafted cells were not counted twice in adjacent images. Only THir cells with ≥ 2 Bdnf 
mRNA puncta were included for analysis.

2.15. BDNF release and tissue content in rs6265 rats

2.15.1. BDNF release in hippocampal cultures—Timed pregnant (embryonic day 

18) female Val68Val or Met68Met rats were deeply anesthetized with pentobarbital (50 

mg/kg, i.p.). Hippocampi were dissected using a Leica dissecting microscope and pooled in 
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cold, sterile, CMF buffer (pH 7.3). Cell suspensions were prepared through a series of CMF 

rinses, incubation in 0.125% trypsin for 10 minutes at 37°C, rinsing in CMF again, and 

trituration in 0.004% DNase to disperse the cells into solution. Trypan blue was used to 

assess cell viability. Cell suspensions of ≥95% viability were plated at a density of 1,000,000 

cells/well on poly-D-lysine coated 6-well plates in Neurobasal™ medium supplemented with 

B27.

For determining basal BDNF release, 72 hours after plating, all culture media was removed 

and replaced with artificial cerebrospinal fluid (aCSF: 125 mM NaCl, 2.5 mM KCl, 1.25 

mM NaH2PO4, 25 mM NaHCO3, 2 mM CaCl2, 1 mM MgCl2, 25 mM glucose). Thirty 

minutes later aCSF was collected for analysis of BDNF via ELISA as per manufacturer’s 

instructions (BDNF Emax ELISA, Promega, Madison, WI) using samples loaded in 

triplicate.

2.15.2. BDNF tissue content in rs6265 rats—For determination of BDNF tissue 

content, tissue punches from the hippocampus, striatum, and M1 cortex were collected from 

3-month-old male Val68Val, Val68Met, and Met68Met rats. Samples were thawed on ice 

and 250 μl of RIPA Lysis Buffer System was added to each sample (sc-249–48, Santa Cruz 

Biotechnology, Dallas, TX). Samples were homogenized by sonication on ice, followed by a 

30-minute incubation after which a portion of the sample was taken for total protein 

determination via Pierce BCA Assay (ThermoFischer, Waltham, MA) per manufacturer’s 

instructions. The remaining sample was centrifuged and the supernatant collected. A BDNF 

ELISA was completed on triplicate samples as per manufacturer’s instructions. BDNF levels 

in tissue lysates (picogram (pg)) were calculated per milligram (mg) total protein.

2.16. Statistical Analysis

All LID and GID behavioral data were analyzed by non-parametric statistics including 

Kruskal-Wallis with Dunn’s multiple comparison tests or Mann-Whitney U tests (between 

subject comparisons) and Friedman tests with Dunn’s multiple comparison tests (within 

subjects comparisons). Amphetamine rotations were analyzed using an unpaired two-tailed 

t-test with Welch’s correction to account for unequal variances and one-way ANOVA with 

Šídák’s multiple comparisons test.

Unpaired two-tailed t-tests were used to compare the following data between genotypes: 

grafted DA neuron cell counts, graft volumes, 5-HT/DA neuron ratios, Vglut2 mRNA 

expression in naïve SNc and ventral tegmental area (VTA) separately, and DA neuron Bdnf 
mRNA expression (expressed as percentage of total DA neurons). Unpaired one-tailed t-tests 

were used to compare neurite outgrowth in each direction (dorsal, ventral, medial, lateral) 

surrounding the DA graft between genotypes. An unpaired two-tailed t-test with Welch’s 

correction was used to analyze the level of Bdnf transcript in grafted DA neurons.

Two-way ANOVAs were used to compare Vglut2 mRNA expression between naïve and 

grafted animals of both genotypes (2 × 2: genotype × treatment) and VGLUT2 protein 

content in DA neuron fibers (2 × 3: genotype × treatment), combined with Šídák’s multiple 

comparisons test and Tukey’s multiple comparisons test, respectively. Two-way repeated 

measures ANOVAs were used with Šídák’s multiple comparisons test to analyze the 
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following data: grafted neurite outgrowth (2 × 2: genotype × distance from graft), neurite 

density vs intact contralateral striatum (2 × 2: genotype × treatment), proximal and distal 

TH-SP contact densities within each genotype (2 × 2: genotype × distance from graft), 

PSD95 volume near DA fibers (2 × 2: genotype × treatment), VGLUT1-PSD95 appositions 

(2 × 2: genotype × treatment), VGLUT1 input onto DA neurons (2 × 2: genotype × 

treatment), total VGLUT1 innervation (2 × 2: genotype × treatment), and Trkb mRNA 

expression in host striatum (2 × 2: genotype × treatment).

A one-way mixed-effects model with repeated measures was used with the post-hoc Holm-

Šídák’s multiple comparisons test to analyze distal neurite density separated by region for 

each genotype. TH-SP contact density comparisons between lesioned and intact striatum, 

and between genotypes, were analyzed using a two-way mixed-effects model with repeated 

measures and Šídák’s and Dunnett’s multiple comparisons tests (2 × 3: genotype × 

treatment). VGLUT2(in)-PSD95 (out) apposition data were analyzed using a two-way 

mixed-effects model with repeated measures (2 × 2: genotype × treatment) and Šídák’s 

multiple comparisons test.

Non-parametric Spearman correlation tests were used for all correlations with LID and GID 

behavior. Correlations with amphetamine rotational behavior were analyzed using Pearson 

correlation. Statistical outliers, though uncommon, were identified using ROUT and Grubbs’ 

outlier tests. Parametric statistical tests were chosen for analysis only when data met 

assumptions for normality and homogeneity of variances. All statistical analyses were 

completed using GraphPad Prism® software for Windows (v. 8.4.2).

3. RESULTS

3.1. Impact of the Met allele on behavioral measures of DA graft function

3.1.1. Met68Met rats show enhanced behavioral efficacy compared to wild-
type Val68Val rats—We hypothesized that as a consequence of reduced BDNF release in 

Met68Met rats, these subjects would experience reduced graft-mediated improvement of 

LID. In contrast to this hypothesis, Met68Met rats showed enhanced functional benefit from 

VM DA grafts compared to wild-type subjects as indicated by a more rapid and overall 

greater decrease in LID severity. Specifically, parkinsonian DA grafted Met68Met rats 

showed a significant reduction in LID severity compared to DA grafted Val68Val and sham 

grafted subjects beginning 5 weeks post-grafting (Fig. 2a; Week 5: p = 0.0015 Met68Met-

DA vs Sham, p = 0.0302 Met68Met-DA vs Val68Val-DA; Week 6: p = 0.0284 Met68Met-

DA vs Sham, p = 0.0475 Met68Met-DA vs Val68Val-DA; Week 8: p = 0.0198 Met68Met-

DA vs Sham; Week 9: p = 0.0003 Met68Met-DA vs Sham). In contrast, the DA grafted 

Val68Val rats required 8 weeks to display a similar level of reduction in LID severity; 

however, a statistically meaningful reduction was not apparent until 9 weeks post-

engraftment (Fig. 2a,c; p = 0.0312 Val68Val DA graft; p = 0.0078 Met68Met DA graft; 

p=0.0078 sham graft; vs pre-graft baseline, Wilcoxon matched-pairs signed rank test). At the 

final 9 week post-graft timepoint, the DA grafted Met68Met rats showed a 73.92 ± 12.51% 

(mean ± SEM) reduction and the DA grafted Val68Val rats a 55.21 ± 2.22% reduction in 

total LID severity (Fig. 2a,c).
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While it has been reported that PD patients with the Met allele show a significantly higher 

risk of developing LID earlier in the time course of treatment (Foltynie et al., 2009), to the 

best of our knowledge no information is available on whether this results in enhanced 

severity over time. In contrast to this clinical report, we found no significant impact of 

genotype on LID in the sham grafted rats using high dose levodopa (Kruskal-Wallis, p ≥ 

0.12 for all time points post-engraftment). Accordingly, for the post-graft time period, the 

sham groups were combined.

Evidence of enhanced benefit in DA grafted Met68Met compared to Val68Val rats was also 

observed using amphetamine-induced rotational asymmetry examined at 7 weeks post-

engraftment (one-way ANOVA with Šídák’s post-hoc test, p = 0.0301; Fig. 2diii). 

Interestingly, while there was a difference in pre-graft amphetamine rotational rate with 

Met68Met rats showing significantly fewer rotations per minute than Val68Val rats (Fig. 

2dii; p = 0.0023, Val68Val vs Met68Met, Unpaired t-test with Welch’s correction), there was 

no significant difference between genotypes in the sham grafted rats at the 7 week post-graft 

timepoint (Fig. 2diii; p = 0.5620, Val68Val vs Met68Met; two-way ANOVA with Šídák’s 

multiple comparisons test). Of note was the homogeneity of response to amphetamine, both 

pre- and post-graft, in Met68Met subjects (Fig. 2dii, iii).

3.2. Impact of the Met allele on behavioral measures of DA graft dysfunction

3.2.1. The Met allele is associated with the development of GID in response 
to levodopa and amphetamine—In keeping with our hypothesis that Met68Met rats 

would experience elevated graft-derived side-effects, GID behavior was manifest only in 

Met68Met rats under the current grafting protocol which resulted in wide-spread striatal 

reinnervation (Maries et al., 2006) (Fig. 3a–d). There was a single Val68Val DA grafted rat 

that displayed a low level of amphetamine-mediated GID and a moderate level of levodopa-

mediated GID. While both of these behaviors have been reported to be uniquely associated 

with DA grafting in parkinsonian rats (Soderstrom et al., 2008; Maries et al., 2006; 

Soderstrom et al., 2010; Steece-Collier et al., 2003; Lane et al., 2009a; Lane et al., 2009b; 

Shin et al., 2012a; Smith et al., 2012a; Smith et al., 2012b), we provide here the first direct 

comparison of these behavioral assays. While both methods of GID assessment support that 

the Met risk allele is associated with induction of aberrant GID-like behaviors, based on 

differences in their phenotype (see “Graft-Induced Dyskinetic Behavior” section above) it is 

not necessarily surprising that there is a lack of correlation of these behaviors with each 

other (Fig. 3e). Future investigations may be warranted for understanding mechanistic 

differences between amphetamine- and levodopa-mediated GID behaviors in this rat model 

of neural grafting.

3.3. Impact of the Met allele on graft survival and neurite outgrowth

3.3.1. Despite equal numbers of surviving grafted DA neurons, graft-derived 
reinnervation is more extensive in Met68Met than in Val68Val striatum—Large, 

THir grafts of DA neurons were observed in all VM grafted subjects, extending neurites into 

the surrounding striatal parenchyma (Fig. 4a). TH-immunoreactivity in the lesioned striatum 

is presumed to be derived from grafted DA neurons based on the fact that there was a near-

complete depletion of host nigral DA neurons in animals of both genotypes. The mean 
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percent lesion was similar between genotypes (mean percent SNc DA neuron loss compared 

to intact hemisphere ± SEM: Val68Val: 96.31 ± 0.60% depletion with a range of 92.5–

98.5%; Met68Met: 96.59 ± 0.32% depletion with a range of 94.00–99.4%; Fig. 4b and 

Supplementary Fig. 3). Stereological quantification indicated that the number of surviving 

transplanted DA neurons was not different between genotypes (mean estimated total number 

of grafted DA neurons ± SEM: Val68Val: 2922.63 ± 694.46; Met68Met: 2978.86 ± 592.43; 

t(11) = 0.0604, p = 0.9529, Fig. 4c). Accordingly, graft volumes also did not differ 

significantly (mean volume ± SEM: Val68Val: 0.5835 ± 0.1254 mm3; Met68Met: 0.5394 ± 

0.0940 mm3; t(11) = 0.2858, p = 0.7803; Fig. 4d).

In contrast to what would be expected in an environment of reduced activity-dependent 

BDNF release, but in keeping with the functional evidence described above, stereological 

quantification (Fig. 4e) demonstrated that neurite outgrowth was significantly more 

extensive in Met68Met than in Val68Val subjects (Fig. 4a, higher magnification images). 

While both genotypes exhibited similarly robust neurite density proximal to the graft (Fig. 

4f), there was a significant impact of the Met68Met genotype on graft-derived neurite 

outgrowth observed at regions distal to the graft (Fig. 4a,f; mean distal neurite density ± 

SEM: Val68Val: 0.3189 ± 0.0363 μm/mm3; Met68Met: 0.4655 ± 0.0303 μm/mm3; two-way 

repeated measures ANOVA F(1,11) = 5.958, p = 0.0328; Šídák’s multiple comparisons test: 

Proximal: t(22) = 2.011, p = 0.1103; Distal: t(22) = 2.424, p = 0.0475). Notably, in 

Met68Met subjects, the more robust distal neurite outgrowth was evenly distributed in all 

regions surrounding the graft (i.e., dorsal, ventral, lateral, medial; mixed-effects model 

F(1.168, 5.449) = 0.6657, p = 0.4723; Fig. 4g). This contrasts with that observed in the 

striatum of Val68Val subjects, where the densest neurite growth was restricted to the dorsal 

striatum. While neurite density in the dorsal region of Val68Val striatum was not 

significantly different from other regions surrounding the graft (mixed-effects model 

F(1.551, 7.756) = 1.970, p = 0.2037), neurite outgrowth was significantly less in ventral and 

medial regions when compared to Met68Met subjects (Ventral: t(8) = 2.244, p = 0.0275; 

Medial: t(9) = 2.054, p = 0.0351).

In proximal regions, graft-derived reinnervation of the parkinsonian striatum was 

statistically similar to the intact striatum regardless of genotype (two-way repeated measures 

ANOVA F(1,11) = 1.041, p = 0.3295; Šídák’s multiple comparisons test: Val68Val: t(11) = 

2.097, p = 0.1163 vs intact; Met68Met: t(11) = 1.007, p = 0.5586 vs intact; Supplementary 

Fig 4). Specifically, graft-derived reinnervation proximal to the graft reached 80.98 ± 4.05% 

and 87.56 ± 4.49% of THir neurite density observed in the intact hemisphere for Val68Val 

and Met68Met rats, respectively. This was not observed distal to the graft, where THir 

neurite density was significantly less than that of the intact striatum for animals of both 

genotypes (two-way repeated measures ANOVA F(1,11) = 73.22, p < 0.0001; Šídák’s 

multiple comparisons test: Val68Val: t(11) = 5.650, p = 0.0003 vs intact; Met68Met: t(11) = 

6.650, p < 0.0001 vs intact; Fig. 4h). Indeed, graft-derived reinnervation distal to the graft 

reached only 35.43 ± 5.56% and 48.21 ± 7.40% of that observed in the intact hemisphere in 

Val68Val and Met68Met rats, respectively. Notably, though distal reinnervation was 

significantly less than in the intact striatum for both genotypes, the percentage of 

reinnervation distal to the DA graft was significantly higher in Met68Met subjects (t(11) = 

3.058, p = 0.0109).
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3.4. Impact of the Met allele on presumed graft connectivity with host medium spiny 
neurons (MSNs)

3.4.1. Presumed graft-host synaptic connections are correlated with LID 
behavior in Val68Val but not Met68Met rats, despite similar contact densities—
Synaptopodin/SP is an actin-associated structural protein found in mature dendritic spines 

(Vlachos et al., 2009; Segal et al., 2010). We used dual-label immunofluorescence (TH to 

label striatal DA fibers; SP to label host MSN dendritic spines) with confocal microscopy 

and Imaris® 3D reconstruction to quantify the number of presumed synaptic contacts 

formed between THir fibers and their preferential target, the dendritic spines of striatal 

MSNs (Fig. 5a,b) per (Collier et al., 2015).

Val68Val and Met68Met rats had similar TH-SP synaptic contact densities, both proximal 

(TH-SP appositions per μm3 TH ± SEM: Val68Val: 0.3532 ± 0.0840; Met68Met: 0.2731 ± 

0.0230; mixed effects model F(1,12) = 0.4762, p = 0.5033; Šídák’s multiple comparisons 

test: t(4.606) = 0.9205, p = 0.7872; Fig. 5c) and distal to the graft (Val68Val: 0.4596 ± 

0.1093; Met68Met: 0.3433 ± 0.0338; mixed effects model F (1,12) = 0.4762, p = 0.5033; 

Šídák’s multiple comparisons test: t(4.784) = 1.025, p = 0.7308; Fig. 5c). Moreover, the 

density of TH-SP appositions in the reinnervated striatum was statistically similar to that of 

the intact contralateral striatum, except for the proximal region in parkinsonian Met68Met 

striatum, which was significantly lower than that of the intact contralateral striatum (TH-SP 

contact density versus intact striatum; mixed-effects model F(1.523, 16.00) = 3.649, p = 

0.0596; Dunnett’s multiple comparisons test: Val Proximal: q(4) = 2.464; p = 0.1148; Val 

Distal: q(4) = 0.0599, p = 0.9974; Met Proximal: q(6) = 3.234, p = 0.0313; Met Distal: q(6) 

= 1.134, p = 0.4642).

As expected, TH-SP connectivity was negatively correlated with total LID severity on the 

final rating day in wild-type (Val68Val) rats (Fig. 5d). Specifically, Val68Val subjects with 

more TH-SP synaptic appositions showed a greater reduction in the severity of LID 

behavior, consistent with previous data from our group (Collier et al., 2015). This correlation 

was statistically significant for synaptic appositions located in the region with more dense 

reinnervation proximal to the graft (Proximal: Spearman r = −1.00, p = 0.0167; Distal: 

Spearman r = −0.90, p = 0.0833; Fig. 5d,e). Surprisingly, there were no significant 

correlations of these appositions with total LID severity in Met68Met rats (Proximal: 

Spearman r = −0.50, p = 0.2162; Distal: Spearman r = −0.0714, p = 0.8820). Additionally, 

TH-SP synaptic contact density did not correlate with amphetamine-mediated GID, 

levodopa-mediated GID, or post-graft amphetamine-induced rotational behavior for either 

genotype (data not shown).

3.5. Atypical glutamatergic phenotype in grafted dopamine neurons

3.5.1. Grafted DA neurons maintain an immature phenotype, as evidenced by 
elevated Vglut2 mRNA and corresponding protein expression compared to 
the naïve adult midbrain—Preclinical electron microscopic data from rat studies in our 

lab (Soderstrom et al., 2008), together with evidence from grafted parkinsonian non-human 

primates (Leranth et al., 1998) and postmortem clinical evidence in grafted PD patients 

(Kordower et al., 1996), show that grafted DA neurons make asymmetric (presumed 
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excitatory/glutamatergic) synapses onto unlabeled dendrites and dendritic spines in the host 

striatum. Accordingly, we sought to characterize the expression of vesicular glutamate 

transporter in embryonic DA neurons transplanted into the parkinsonian striatum by 

quantifying levels of Vglut2 mRNA and protein in this cell population. We demonstrate 

here, to the best of our knowledge, the first evidence that grafted THir neurons show 

colocalization with Vglut2 mRNA (TH+/Vglut2+; Fig. 6b,c). We also demonstrate that VM-

derived grafts contain TH-only (TH+/Vglut2-) neurons, and an abundance of centrally-

located TH-/Vglut2+ cells (Fig. 6b,c). Overall, in VM grafts transplanted into animals of 

both genotypes, we observed TH-only, Vglut2-only, and combined TH+/ Vglut2+ cells, 

similar to what has been observed in the naïve midbrain (Morales and Margolis, 2017; 

Morales and Root, 2014) (Fig. 6d).

Remarkably, nearly 60% of grafted DA neurons contained Vglut2 mRNA in host animals of 

both genotypes at 10 weeks post-engraftment (percent of grafted DA neurons containing 

Vglut2 mRNA: Val68Val: 57.34 ± 5.13%; Met68Met: 57.96 ± 4.34%), a time at which 

midbrain DA neurons should be fully mature (Prakash and Wurst, 2006). In contrast, we 

found that naïve (endogenous) midbrain DA neurons in both genotypes had significantly less 

Vglut2 mRNA compared to grafted DA neurons (percent of naïve midbrain DA neurons 

expressing Vglut2 mRNA: Val68Val: 12.4 ± 1.95%; Met68Met: 33.13 ± 6.42%; two-way 

ANOVA F(1,18) = 38.00, p < 0.0001; Šídák’s multiple comparisons test: Val68Val: t(18) = 

4.996, p = 0.0002, naïve vs grafted; Met68Met: t(18) = 3.615, p = 0.0040, naïve vs grafted; 

Fig. 6e).

It is noteworthy that although grafted DA neurons expressed similar levels of Vglut2 mRNA, 

this was not the case when comparing endogenous DA neurons located in the naïve 

midbrain. Specifically, SNc and VTA DA neurons in naïve adult Met68Met midbrain 

expressed significantly more Vglut2 mRNA than their wild-type counterparts (SNc: t(7) = 

3.062, p = 0.0183; VTA: t(7) = 2.524, p = 0.0396; Fig. 6e).

To corroborate that grafted DA neurons maintained an immature DA/glutamate co-

expression phenotype, we sought evidence of VGLUT2 protein in the grafted TH neurites. 

VGLUT2 protein was indeed found to be colocalized within grafted THir neurites in the 

grafted parkinsonian striatum (Fig. 7a). This is in contrast to the naïve brain, where there 

was sparse evidence of TH-VGLUT2 colocalization in the striatum (Fig. 7b). Indeed, grafted 

THir neurites contained significantly more VGLUT2 protein than nigrostriatal THir fibers in 

the naïve striatum (two-way ANOVA F(2,32) = 14.44, p < 0.0001; Tukey’s multiple 

comparisons test, naïve vs grafted striatum: Val68Val: q(32) = 5.497, p = 0.0014; Met68Met: 

q(32) = 4.897, p = 0.0043; Fig. 7b). Unexpectedly, TH-VGLUT2 colocalization was also 

increased in the intact contralateral striatum of grafted parkinsonian rats compared to 

experimentally naïve animals (two-way ANOVA F(2,32) = 14.44, p < 0.0001; Tukey’s 

multiple comparisons test, naïve vs intact striatum: Val68Val: q(32) = 4.462, p = 0.0095; 

Met68Met: q(32) = 3.564, p = 0.0435; Fig. 7b). The implications of this plasticity response 

in the intact striatum contralateral to the lesioned/grafted striatum remains to be determined, 

though we contend that this finding speaks to the importance of including additional controls 

for comparison beyond just the unlesioned hemisphere, which has historically been used as a 

within-subject control in this hemiparkinsonian rat model. There were no significant 

Mercado et al. Page 18

Neurobiol Dis. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differences in VGLUT2 protein content within striatal THir fibers between genotypes (Fig. 

7b).

Interestingly, TH-VGLUT2 colocalization was significantly and positively correlated with 

amphetamine-mediated GID behavior in Met68Met subjects that displayed this aberrant 

graft-associated behavior (GID+ rats, i.e., total GID score >10; Spearman r = 1.00, p = 

0.0167; Fig. 7c). In contrast, significant correlations were not observed in Val68Val subjects 

that expressed very low levels of this GID behavior (Spearman r = 0.70, p = 0.2333; Fig. 7c) 

or in the smaller subset of Met68Met subjects that did not display GID behavior (GID-rats, 

i.e., total GID score ≤10; Spearman r = 0.80, p = 0.3333). No significant correlations were 

found between TH-VGLUT2 colocalization and levodopa-mediated GID, LID, or post-graft 

amphetamine rotational behavior.

3.5.2. Grafted DA neurons show neurochemical signatures of excitatory 
synapses in the parkinsonian striatum—Next, we examined whether grafted DA 

neurons containing VGLUT2 protein showed neurochemical evidence of atypical, presumed 

neurochemically active, excitatory synapses. To address this question, we used triple-label 

immunofluorescence for TH, VGLUT2, and PSD95, a post-synaptic scaffolding protein 

found in excitatory synapses and a potent regulator of synaptic strength (e.g., (Chen et al., 

2011)). We define here a putative “neurochemically active” excitatory synapse as 

presynaptic VGLUT2 protein present within a THir neurite (VGLUT2(in); i.e., pre-synaptic) 

and in close proximity (≤ 0.6 μm) to PSD95 protein located outside of the THir fibers 

(PSD95(out); i.e., post-synaptic; Fig. 7d) per (Belmer et al., 2017). Similar synaptic 

mapping approaches involving confocal microscopy and computational software paired with 

electro-physiology have shown correlation of these “putative” synapses with neuronal firing 

output (Iascone et al., 2020). In the present study, putative excitatory synapses made by DA 

neurons in the grafted striatum were observed in DA grafted animals of both genotypes, 

though the number of excitatory synapses did not differ significantly between Val68Val and 

Met68Met subjects (mixed-effects model F(1,12) = 1.737, p = 0.2121; Fig. 7e). The number 

of VGLUT2(in)-PSD95(out) appositions, however, was increased in grafted striatum 

compared to the intact contralateral striatum in animals of both genotypes (mixed-effects 

model F(1,10) = 28.70, p = 0.0003; Šídák’s multiple comparisons test: Val68Val: t(10) = 

4.054, p = 0.0046; Met68Met: t(10) = 3.544, p = 0.0106; Fig. 7e).

We have previously reported (Soderstrom et al., 2008) a positive trend between atypical 

THir asymmetric contacts onto host striatal cells and levodopa-mediated GID behavior using 

immunoelectron microscopy, though a statistically significant correlation was not found. In 

the present study, the number of THir asymmetric synaptic contacts (i.e., TH-normalized 

VGLUT2(in)-PSD95(out) synaptic appositions) was significantly, positively correlated with 

amphetamine-mediated GID in Met68Met subjects (Spearman r = 0.74, p = 0.0458), but not 

in Val68Val subjects that displayed very low levels of this behavior (Spearman r = 0.80, p = 

0.1333; Fig. 7f). Furthermore, in the current study, the number of THir asymmetric contacts 

showed a positive trend in Met68Met rats but did not significantly correlate with levodopa-

mediated GID, similar to (Soderstrom et al., 2008). They also did not correlate with LID or 

post-graft amphetamine rotational behavior (Supplementary Fig. 5).
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Postsynaptically, there was significantly more PSD95 in close proximity (≤ 0.6 μm) to THir 

fibers in the grafted striatum (vs intact striatum) only in Met68Met rats, indicating an 

increase in asymmetric synaptic contacts made by DA neurons in the grafted striatum in Met 

allele carriers (two-way repeated measures ANOVA F(1,10) = 15.72, p = 0.0027; Šídák’s 

multiple comparisons test: Val68Val: t(10) = 2.168, p = 0.1077; Met68Met: t(10) = 3.577, p 
= 0.0100; Supplementary Fig. 6a). This was found to be true despite similar total PSD95 

volumes between intact and grafted Met68Met striatum (two-way repeated measures 

ANOVA F(1,10) = 1.037, p = 0.3326; Šídák’s multiple comparisons test: t(10) = 1.267, p = 

0.4132; Supplementary Fig. 6b).

3.6. Excitatory corticostriatal synaptic input onto grafted dopamine neurons

3.6.1. Atypical glutamatergic (VGLUT1) input onto striatal THir fibers is 
significantly increased in the grafted striatum only in Met68Met rats—Previous 

studies have identified unlabeled asymmetric synapses (presumed corticostriatal afferents) 

onto somas and dendrites of grafted primary DA neurons in the parkinsonian striatum (Fig. 

8a; (Soderstrom et al., 2008; Kordower et al., 1996)). Importantly, previous evidence from 

our lab indicated that these atypical synaptic connections correlated with levodopa-mediated 

GID behavior in grafted parkinsonian rats (Soderstrom et al., 2008). To assess whether this 

phenomenon is associated with GID in -Met allele carrying subjects, we employed triple-

label immunofluorescent staining for VGLUT1 (a marker for pre-synaptic corticostriatal 

afferents), PSD95, and TH (Fig. 8b,c) and then quantified the number of these synaptic 

triads (VGLUT1+PSD95+TH; Fig. 8d). Pre-synaptic VGLUT1 puncta (VGLUT1(out)) in 

close apposition (≤ 0.6 μm) to PSD95 positioned inside THir fibers (PSD95(in)), which we 

defined as putative excitatory synapses onto grafted DA neurons, were exceedingly rare. 

Though the number of VGLUT1(out)-PSD95(in) appositions appeared to increase in grafted 

striatum, this finding was not statistically significant for either genotype (two-way repeated 

measures ANOVA F(1,10) = 5.317, p = 0.0438; Šídák’s multiple comparisons test: 

Val68Val: t(10) = 1.346, p = 0.3728; Met68Met: t(10) = 1.980, p = 0.1460; Fig. 8d) or 

between genotypes (two-way repeated measures ANOVA F(1,10) = 5.341, p = 0.0434; 

Šídák’s multiple comparisons test: Grafted: t(20) = 0.9922, p = 0.5551; Intact: t(20) = 1.419, 

p = 0.3133; Fig. 8d). Moreover, the number of these synaptic triads did not correlate with 

GID, LID, or post-graft amphetamine rotational behavior (data not shown).

While these excitatory neurochemical triads were rare, there was, as expected, an abundance 

of VGLUT1 protein (indicating corticostriatal afferents) in the intact and grafted striatum. 

There also was a relative abundance of VGLUT1 making apparent appositions onto THir 

fibers, defined as VGLUT1 puncta located ≤ 0.6 μm from THir fibers (Belmer et al., 2017) 

in both the intact and grafted striatum. While there was no difference in the total amount of 

VGLUT1 in the striatum between genotypes or between intact and grafted striata (two-way 

repeated measures ANOVA F(1,10) = 2.862, p = 0.1215), we did find that the VGLUT1 

corticostriatal afferents showed increased apposition onto TH fibers in grafted striatum (vs 

intact striatum) in Met68Met but not Val69Val rats (two-way repeated measures ANOVA 

F(1,10) = 8.929, p = 0.0136; Šídák’s multiple comparisons test: Val68Val: t(10) = 0.1938, p 
= 0.9776; Met68Met: t(10) = 4.858, p = 0.0013; Fig. 8e).
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While DA grafted Met68Met rats (a group displaying significant GID behavior) were found 

to have significantly higher levels of corticostriatal VGLUT1-TH appositions in grafted 

compared to the intact striatum, statistical correlations were not found between these 

appositions and amphetamine-mediated GID, levodopa-mediated GID, or post-graft 

amphetamine rotational behavior for either genotype.

3.7. Impact of the Met allele on presence of 5-HT neurons in VM grafts

3.7.1. VM grafts contain modestly, but significantly more 5-HT neurons when 
transplanted into Met68Met striatum—Serotonergic neurons (i.e., cells containing 

Tph2 mRNA) were observed in VM grafts in host subjects of both genotypes (Fig. 9a). 

However, these grafts in Met68Met hosts contained a modest but significantly higher 

proportion of 5-HT neurons relative to the number of transplanted DA neurons (expressed 

here as the 5-HT/DA cell ratio) compared to Val68Val hosts (mean 5-HT/DA cell ratio ± 

SEM: Val68Val: 0.2559 ± 0.0262; Met68Met: 0.355 ± 0.0274; t(12) = 2.378, p = 0.0349; 

Fig. 9b).

3.7.2. 5-HT neurons in VM grafts are not associated with amphetamine-
mediated or levodopa-mediated GID behavior—The presence of 5-HT neurons in 

VM grafts transplanted into parkinsonian striatum was not associated with GID behavior in 

the current study. Specifically, there was no correlation between the 5-HT/DA cell ratio and 

amphetamine-mediated GID (Val68Val: Spearman r = 0.60, p = 0.3500; Met68Met: 

Spearman r = −0.18, p = 0.6436; Fig. 9c) or levodopa-mediated GID (Val68Val: Spearman r 
= 0.67, p = 0.2667; Met68Met: Spearman r = −0.29, p = 0.4421; Fig. 9d). Furthermore, we 

found no significant correlation between the 5-HT/DA cell ratio and LID severity, though 

both groups exhibited moderately strong correlations in opposite directions (i.e., increasing 

5-HT/DA ratio, increasing LID severity in Val68Val rats; increasing 5-HT/DA ratio, 

decreasing LID severity in Met68Met rats) (Val68Val: Spearman r = 0.70, p = 0.2333; 

Met68Met: Spearman r = −0.53, p = 0.1475; Fig. 9e). There also was no correlation between 

post-graft amphetamine rotational behavior and the 5-HT/DA cell ratio in VM grafts for 

either genotype (data not shown).

3.8. Impact of the Met allele on Bdnf mRNA expression in grafted DA neurons and Trkb 
mRNA expression in host striatum

3.8.1. Bdnf mRNA is abundant in DA grafts transplanted into both Val68Val 
and Met68Met hosts—As the present study emphasizes a shift in focus to the 

environment into which embryonic cells are transplanted, we sought to characterize the 

effects of host genotype on expression of Bdnf mRNA within wild-type grafted DA neurons. 

Under normal conditions, Bdnf mRNA is rarely observed in the striatum (e.g., (Altar et al., 

1997; Altar and DiStefano, 1998; Baydyuk and Xu, 2014)). Instead, BDNF protein is ante-

rogradely transported to the striatum primarily from the motor cortex and SNc DA neurons 

(Altar et al., 1997). As such, grafted DA neurons may be an important source of BDNF to 

the denervated, parkinsonian striatum (Fig. 10a). Thus, we examined whether the disparate 

levels of extracellular host striatal BDNF in Met68Met and Val8Val rats differentially 

impacted Bdnf mRNA expression in grafted DA neurons. We found that approximately 87% 

of transplanted DA neurons expressed Bdnf mRNA in host subjects of both genotypes (Fig. 
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10b,c). Indeed, there was no difference in the percentage of grafted DA neurons expressing 

Bdnf mRNA between genotypes (mean percentage of DA neurons containing Bdnf mRNA ± 

SEM: Val68Val: 87.55 ± 3.408%; Met68Met: 87.27 ± 1.751%; t(10) = 0.07763, p = 0.9397; 

Fig. 10c). There also was no difference in the level of Bdnf mRNA transcript in grafted DA 

neurons when transplanted into either Met68Met or Val68Val hosts (t(9) = 0.2020, p = 

0.8444).

3.8.2. Met68Met host striatal neurons contain more Trkb mRNA than Val68Val 
striatal neurons in sham grafted subjects, but not in DA grafted subjects—We 

next examined the impact of host genotype and the presence of grafted DA neurons on 

mRNA expression for the high affinity BDNF receptor, TrkB, in the host striatum. Trkb 
mRNA expression was quantified in the dorsolateral region of both the intact and lesioned 

striatum. In DA grafted subjects, Trkb mRNA expression was measured in the dorsolateral 

striatum adjacent to the grafts. As might be anticipated, in sham grafted subjects, striatal 

Trkb mRNA expression was significantly higher in Met68Met hosts than in their wild-type 

counterparts (Fig. 10d, e). This finding was consistent for intact and 6-OHDA lesioned 

striatum (two-way ANOVA F(1,8) = 11.56, p = 0.0094; Šídák’s multiple comparisons test: 

Intact: t(16) = 3.318, p = 0.0087; Lesion: t(16) = 2.553, p = 0.0421). With the loss of nigral 

DA input to the striatum (a primary source of BDNF), there was an increase in Trkb mRNA 

expression with 6-OHDA lesion in Val68Val subjects (two-way ANOVA F(1,8) = 10.42, p = 

0.0121; Šídák’s multiple comparisons test: Val68Val: t(8) = 2.818, p = 0.0446; Met68Met: 

t(8) = 1.746, p = 0.2238). In the striatum of DA grafted rats there was no significant 

difference in Trkb mRNA expression between genotypes; curiously, this was also found to 

be true in the contralateral intact striatum (two-way ANOVA F(1,9) = 0.2564, p = 0.6247; 

Šídák’s multiple comparisons test: Intact: t(18) = 0.6221, p = 0.7899; Lesion: t(18) = 

0.3204, p = 0.9387); Fig. 10f,g).

4. Discussion

4.1. Renewed interest in clinical grafting trials: Are we ready?

Recent preclinical data from our laboratories (Collier et al., 2015) together with that from 

two milestone clinical reports (Li et al., 2016; Kordower et al., 2017) provide compelling 

and sobering evidence demonstrating that despite robust survival and extensive neurite 

outgrowth from grafted DA neurons, obstacle(s) remain that interfere with functional circuit 

restoration within the aged, parkinsonian brain. Currently, clinical grafting trials, refined by 

decades of research, are ongoing or planned for the near future (e.g., (Barker and 

Consortium, 2019), Clinical Trial Identifiers NCT01898390, NCT03309514, 

NCT03119636, NCT04146519). However, as the primary clinical objective is to provide an 

additional treatment option for PD patients that is safe and effective, the question remains 

whether our current understanding of this experimental regenerative therapy is sufficient for 

safe and informed clinical practice. While the field of regenerative medicine has gained an 

understanding of the role of global risk factors in cell transplantation for PD, the current 

study is the first indicating the importance of understanding the role of individual genetic 
risk factors for this therapeutic approach.
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4.2. The potential role of personalized medicine in clinical grafting trials

The potential importance of the findings reported here related to the rs6265 SNP and the 

clinical regenerative approach of cell transplantation in PD, whether it be through primary 

embryonic or stem cells, lies in the fact that it is estimated that approximately 20% of the 

worldwide human population possesses the Val66Met/rs6265 SNP in the BDNF gene, 

though there is much variability between populations (dbSNP, 2020). For example, while 

this SNP is uncommon in African populations (<5% Met allele frequency), it is extremely 

common in East Asian populations (up to 72% Met allele frequency) (dbSNP, 2020; 

Petryshen et al., 2010). Important to the current topic, BDNF promotes dendritic spine 

integrity as well as synapse development and maturation within the striatum (Lai and Ip, 

2013; Zagrebelsky and Korte, 2014). It is also known to significantly impact graft-derived 

innervation following engraftment of embryonic VM neurons into parkinsonian rats (Yurek 

et al., 1996; Yurek et al., 1998) and differentiation and maturation of embryonic and adult 

neural stem/progenitor cells (Numakawa et al., 2017).

Given the relevant biology of this trophic factor and the prominence of rs6265 in the human 

population, we asked the question: Since there is a subpopulation of PD patients that does 

not respond well to DA neuron transplantation, and there is a subpopulation of PD patients 

that carries this SNP, could the Met risk allele make the striatum a less hospitable 

environment for transplanted DA neurons to make normal/meaningful connections? As 

detailed above, our data using the rs6265 knock-in rat model to test the hypothesis that 

dysfunctional BDNF associated with this SNP is an unrecognized contributor to suboptimal 

clinical benefit and development of graft-derived side-effects suggests that this common 

human SNP may undoubtedly impact functional outcome in clinical grafting trials in PD. In 

the following discussion, we highlight how the current data integrate with the current 

understanding of the biology of this SNP and provide novel insight on how this SNP might 

impact cell replacement strategies in PD.

4.3. Paradoxical enhancement of neurite outgrowth associated with the Met allele

Contrary to one aspect of our hypothesis, we found that parkinsonian Met68Met rats showed 

enhanced therapeutic efficacy evidenced by an earlier and more robust amelioration of LID 

behavior post-engraftment compared to wild-type Val68Val rats. In line with this, we 

discovered that rats homozygous for the Met allele displayed significantly enhanced neurite 

outgrowth derived from wild-type embryonic DA neurons compared to that seen in Val68Val 

hosts. While this discovery seemed paradoxical to what would be expected in an 

environment of diminished BDNF availability, the rs6265 risk allele has previously been 

indicated in enhanced recovery following stroke and traumatic brain injury (TBI) (Krueger 

et al., 2011; Qin et al., 2014; Failla et al., 2015). Interestingly, in a study using a rs6265 

mouse model, Qin and colleagues (Qin et al., 2014) found, contrary to their hypothesis, that 

mice homozygous for the variant Met allele displayed better motor recovery after receiving a 

transient middle cerebral artery occlusion when compared to their wild-type counterparts. 

Further, Krueger and colleagues (Krueger et al., 2011) examined the recovery of executive 

functioning in Vietnam veterans who had sustained combat-related TBI. Though the authors 

initially hypothesized that the Val allele would promote recovery of executive functioning, it 

was the Met allele carriers who experienced better recovery of this behavioral measure. The 
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rs6265 SNP was also found to predict mortality in a longitudinal study in patients with 

severe TBI (Failla et al., 2015). In this study, Failla and colleagues examined patients 

receiving care for a closed-head injury, both acutely (0–7 days post-injury) and post-acutely 

(8–365 days post-injury). Unexpectedly, they found that Met allele carriers had greater 

survival probability at the acute timepoint compared to Val66Val subjects. Most recently, the 

Met allele has been found to be associated with enhanced neurite outgrowth of human 

induced pluripotent stem cell (iPSC)-derived spinal motor neurons (personal 

communication, Dr. Colin K. Franz, https://www.abstractsonline.com/pp8/#!/7883/

presentation/69599) and excitatory cortical projection neurons (personal communication, Dr. 

Colin K. Franz, https://www.abstractsonline.com/pp8/#!/7883/presentation/68155) in vitro. 

In addition, neurite regeneration was enhanced following transection injury in human iPSC-

derived motor neurons cultured in microfluidic chambers (personal communication, Dr. 

Colin K. Franz; https://www.abstractsonline.com/pp8/#!/7883/presentation/69599). In 

keeping with this observation in human iPSCs, enhanced peripheral axon regeneration has 

been observed in association with rs6265 both in vivo and in cultured dorsal root ganglion 

neurons in a mouse model of this SNP (McGregor and English, 2018).

Ultimately, considering the abundance of the rs6265 Met allele in the human population, it 

would seem illogical that such a common genetic variant is entirely disadvantageous (Di 

Pino et al., 2016). While an increasing collection of evidence suggests a beneficial role for 

the variant Met allele in axonal growth and regeneration, we show here that even wild-type 

neurons can be induced to develop this enhanced phenotype when transplanted ectopically 

into a Met allele-carrying host. In addition, despite the Met allele being associated with 

enhanced neurite outgrowth and enhanced functional benefit in our grafting study and in 

other conditions (Krueger et al., 2011; Qin et al., 2014; Failla et al., 2015), we provide the 

first evidence that an individual’s genotype may also underlie development of aberrant 

mechanisms associated with GID behavioral phenotype.

4.4. The BDNF prodomain as a biologically active ligand: implications for maturation of 
neuronal circuitry

Historically, BDNF has been shown to have a direct impact on the morphological 

development of neurons, typically by promoting growth and branching of axon terminals 

and facilitating the establishment of mature neuronal circuitry (reviewed in (Cohen-Cory et 

al., 2010)). Why, then, a host environment with significantly reduced activity-dependent 

BDNF release would promote neurite outgrowth is a mystery. Indeed, the molecular 

mechanism underlying the paradoxical phenomena of increased neurite outgrowth and 

enhanced recovery from injury in association with the rs6265 Met allele is currently 

unknown. However, the extensive outgrowth that we observed from grafted DA neurons is 

reminiscent of the formation of extraneous neuronal processes and synapses during 

development that are later pruned back to facilitate the formation of functionally mature 

neuronal circuitry (Cowan et al., 1984; Low and Cheng, 2006). Recently, it has been shown 

that dendritically translated BDNF and its precursor, proBDNF, are crucially involved in 

synaptic maturation and pruning in developing hippocampal neurons (Orefice et al., 2016). 

Furthermore, BDNF and proBDNF have been extensively studied as modulators of synapse 

structure, maturation, and plasticity and are known to have opposing roles in this regard 
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(e.g., (Lai and Ip, 2013; Zagrebelsky and Korte, 2014; Park and Poo, 2013; Lu et al., 2005)). 

Specifically, whereas mature BDNF promotes dendritic spine formation and long-term 

potentiation (LTP), proBDNF promotes growth cone retraction, spine shrinkage, and long-

term depression (LTD) (e.g., (Lu et al., 2005; Woo et al., 2005; Teng et al., 2005; Deinhardt 

et al., 2011; Koshimizu et al., 2009; Patterson et al., 1996; Korte et al., 1996; Rauskolb et al., 

2010)). As BDNF signaling is tightly regulated, it is logical to assume that a disturbance in 

BDNF signaling may impact this intricate balance of synapse pruning and maturation in 

developing (grafted) neurons.

Recently, the BDNF prodomain, which is cleaved from proBDNF to produce the mature 

BDNF protein, has been implicated as another independent and biologically active ligand 

with modulatory effects at the synapse (Anastasia et al., 2013; Mizui et al., 2015; Guo et al., 

2016; Giza et al., 2018). As reviewed in (Zanin et al., 2017), the first of these studies 

(Anastasia et al., 2013) revealed that the BDNF prodomain containing the variant Met allele 

induced growth cone retraction and collapse in cultured hippocampal neurons. The same 

group later showed that the Met-prodomain eliminated mature mushroom spines and 

reduced axonal projection density in ventral CA1 hippocampal (vCA1) neurons during peri-

adolescence, whereas the wild-type Val-prodomain had no effect (Giza et al., 2018). 

Conversely, a separate group of researchers showed that the Val-prodomain facilitated LTD 

in the hippocampus, whereas the Met-prodomain completely prevented this effect (Mizui et 

al., 2015). Finally, in a report by a third group, the Val-prodomain reduced dendritic spine 

density in rat hippocampal neurons (Guo et al., 2016).

Much remains to be understood regarding the function of the BDNF prodomain as an 

independent ligand, especially in structures outside of the hippocampus, and how the rs6265 

SNP impacts neuron and synapse function. However, these initial findings may still have 

important implications. Specifically, Giza and colleagues (Giza et al., 2018) concluded that 

the Met-prodomain, when applied to developing vCA1 neurons during peri-adolescence, 

rendered these neurons “underdeveloped,” thus preventing maturation of fear extinction 

circuitry in rs6265 Met allele carriers. Considering the compelling evidence that the 

prodomain may act as an independent and biologically active ligand with modulatory effects 

at the synapse, the current data could be hypothesized to suggest that the Met-prodomain 

prevents maturation and pruning of synaptic connectivity between grafted DA neurons and 

the host striatum.

4.5. Abnormal target plasticity: Evidence for aberrant graft-host synaptic connectivity in 
rs6265 SNP carriers

Structural changes mediated by DA depletion in the parkinsonian striatum have been 

postulated as potential contributors to GID development (reviewed in (Steece-Collier et al., 

2012)). Specifically, it is known that striatal DA depletion causes morphological alterations 

to striatal MSNs (primary targets of grafted DA neurons) including dendritic spine loss, both 

in human PD patients and parkinsonian animal models (McNeill et al., 1988; Zaja-Milatovic 

et al., 2005; Stephens et al., 2005; Day et al., 2006; Neely et al., 2007; Villalba et al., 2009). 

Furthermore, preventing this loss of MSN spines with the calcium channel antagonist 

nimodipine reduces GID behavior in DA grafted rats (Soderstrom et al., 2010).
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As described above, BDNF signaling is a potent modulator of spine and synapse dynamics 

in the striatum (Rauskolb et al., 2010; Saylor et al., 2006; Baquet et al., 2004; Li et al., 2012; 

Xie et al., 2010; Razgado-Hernandez et al., 2015) and corticostriatal plasticity (Jia et al., 

2010). In a mouse model of the rs6265 BDNF SNP, Jing and colleagues (Jing et al., 2017) 

observed an increase in immature thin spines and a decrease in mature mushroom spines in 

the dorsolateral striatum of BDNF Met/Met mice, despite no change in total spine density. 

This phenomenon was also observed in cultured hippocampal neurons treated with the Met-

prodomain (Giza et al., 2018). Moreover, in addition to its known role in impairment of 

cortical and hippocampal plasticity (Ninan et al., 2010; Bath et al., 2012; Pattwell et al., 

2012; Galvin et al., 2015), the rs6265 SNP is also associated with impaired striatal plasticity 

(Jing et al., 2017). Based on the finding that total MSN spine density does not change with 

rs6265, the authors suggested that dendritic spine density per se may not contribute to the 

observed changes in striatal plasticity (Jing et al., 2017). However, the shift in spine 

phenotype from mature to immature suggests that the development of functionally mature 

synapses may be impaired in rs6265 striatum.

In the current study, we quantified presumed synaptic connections between MSN dendritic 

spines (i.e., synaptopodin/SP) and grafted DA neurons. Interestingly, despite similar 

numbers of these graft-host synaptic appositions, only wild-type rats exhibited a significant 

decrease in LID behavior with increased density of synaptic contacts, as expected per 

(Collier et al., 2015). This evidence suggests that grafted DA neurons in Met68Met rats may 

not be capable of establishing functionally appropriate/mature synaptic contacts with striatal 

dendritic spines, despite contact densities similar in number to that of wild-type rats. We 

propose that this may be due to structural differences in the MSN spines available for 

establishing connections and/or an inability to develop functionally mature connections with 

grafted cells, and that the enhanced amelioration of LID observed in Met68Met rats may 

occur through a separate underlying mechanism (e.g., autocrine release of DA from the 

extensive neurite network).

4.6. VGLUT2 expression indicative of immature phenotype in transplanted DA neurons: A 
molecular driver of GID?

In the normal adult striatum, nigrostriatal DA synapses exhibit ultrastructural features 

common to symmetric (Gray type-II) synapses (Freund et al., 1984; Moss and Bolam, 2008; 

Pickel et al., 1981). Interestingly, atypical asymmetric (Gray type-I/excitatory) synapses 

formed by THir fibers have been documented postmortem in DA grafts from PD patients 

(Kordower et al., 1996), parkinsonian non-human primates (Leranth et al., 1998), and 

parkinsonian rats (Soderstrom et al., 2008). In parkinsonian rats, we previously reported that 

asymmetric synapses made by grafted DA neurons are associated with GID (Soderstrom et 

al., 2008). In the current study, grafted Met68Met rats were the only group to develop 

significant GID, despite the presence of a widespread graft which does not typically cause 

GID in wild-type rats (Maries et al., 2006). Accordingly, we reasoned that if GID in 

Met68Met hosts are associated with asymmetric (presumed excitatory) DA synapses, these 

DA neurons should show neurochemical evidence of DA-glutamate co-transmission. As 

such, the grafted DA neurons should contain Vglut2 mRNA and VGLUT2 protein.
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During normal development, nigral DA neurons do indeed express Vglut2 mRNA and 

VGLUT2 protein and show evidence of DA-glutamate co-transmission, a phenotype that 

typically disappears with maturation (for review (El Mestikawy et al., 2011)). We show here 

the first neurochemical evidence supporting the fact that grafted DA neurons maintain this 

immature phenotype well into a timeframe that should be associated with maturation and 

loss of DA-glutamate co-expression (Prakash and Wurst, 2006). Indeed, in our study, 

approximately 60% of transplanted DA neurons contained Vglut2 mRNA, and this occurred 

regardless of host genotype, suggesting this is inherent to the graft. This contrasts the <5% 

found in mature SN and ~25% in mature VTA DA neurons that we (Fig 6) and others (e.g., 

(Morales and Margolis, 2017; Morales and Root, 2014)) have found.

As would be expected in DA neurons expressing Vglut2 mRNA, we provide evidence of 

VGLUT2 protein found within transplanted DA fibers. Similar to Vglut2 mRNA in mature 

SN and VTA, there was significantly less VGLUT2 in mature nigral DA fibers projecting to 

the striatum in naïve adult rats. While we did not perform ultrastructural analyses in the 

current study, we provide neurochemical evidence that grafted DA neurons create presumed 

excitatory (glutamatergic) synapses in the grafted striatum as evidenced by VGLUT2 within 
DA neurites making close (≤0.6 μm) appositions with PSD95 in the host striatum. While we 

appreciate that synapses are orders of magnitude smaller, we used a semi-automated 

approach that combines triple label immunofluorescence and high-resolution confocal 

microscopy to provide the first evidence of neurochemical signatures of excitatory synapses 

made by DA neurons in the grafted parkinsonian striatum. In keeping with our previously 

reported data showing a positive trend between ultrastructurally identified asymmetric DA 

synapses and levodopa-mediated GID (Soderstrom et al., 2008), in the present study, we 

show that amphetamine-mediated GID is significantly, positively associated with 

asymmetric DA synapses, but interestingly only in Met68Met rats.

Again, as wild-type rats do not typically develop GID with wide-spread DA grafts (Maries et 

al., 2006), the lack of correlation between asymmetric DA synapses and GID in grafted 

Val68Val subjects was not unexpected. However, it is notable that the lack of association 

between these two factors occurred in Val68Val rats despite similar levels of VGLUT2 

expression between genotypes. We propose here that this collective evidence is suggestive of 

synaptic rewiring or “miswiring” between transplanted DA neurons and the host brain in 

Met68Met subjects – perhaps reflective of an inability to establish and/or maintain mature 

synaptic connectivity - which in turn promotes aberrant graft-induced side-effects.

4.7. Corticostriatal connections with grafted cells

Previous evidence from our group (Soderstrom et al., 2008) revealed a significant positive 

correlation between total levodopa-mediated GID severity and the proportion of aberrant 

asymmetric synapses onto grafted DA neurons in parkinsonian rats. These connections were 

presumed to be new corticostriatal inputs onto the grafted DA neurons, which were 

themselves making atypical excitatory (dopaminergic/glutamatergic) contacts onto host 

striatum neurons, and were hypothesized to create a nidus of aberrant excitatory drive 

leading to GID (Soderstrom et al., 2008). Accordingly, in the current study, we examined 
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whether GID behavior in Met68Met rats correlated with excitatory VGLUT1-labeled 

corticostriatal input onto grafted DA neurons.

In contrast to our earlier findings, we did not find a correlation between GID and 

corticostriatal connections in grafted rats of either genotype. This may be due to the fact that 

in the present study we analyzed VGLUT1 input onto grafted DA fibers extending into the 

striatal parenchyma, while our previous electron microscopic evidence found that these 

connections occurred more frequently on grafted DA somas and proximal dendrites 

(Soderstrom et al., 2008). While the precise relationship of VGLUT1 to GID behaviors 

remains unclear, the current study did reveal that there was a significant increase in 

corticostriatal VGLUT1 input onto DA fibers in the grafted vs intact striatum in Met68Met 

rats that express this behavioral phenotype, but not in Val68Val rats. While the implications 

associated with this phenomenon of elevated corticostriatal input onto DA fibers in 

Met68Met GID-expressing rats are uncertain, it is known from the rs6265 mouse model that 

there is a basal elevation of glutamatergic neurotransmission in dorsolateral striatum of 

subjects with the Met risk allele (Jing et al., 2017). A similar enhancement of glutamatergic 

neurotransmission in the striatum has been observed in animal models for Huntington’s 

disease where BDNF availability is decreased (Milnerwood and Raymond, 2010). The 

increased strength of glutamatergic synapses in the striatum has been suggested to play a 

role in aberrant plasticity involved with the enhancement of basal ganglia related behaviors 

such as anxiety and drug-seeking behaviors in Met allele carriers (for review (Jing et al., 

2017)). Given the proposed similarities in aberrant striatal plasticity mechanisms between 

addiction and dyskinesias (e.g., (Steece-Collier et al., 2020)), it is reasonable to hypothesize 

that excessive corticostriatal neurotransmission could be a mechanism contributing to the 

expression of GID behaviors in subjects with the Met allele.

4.8. Cell composition in VM grafts: Serotonin neurons and implications for dyskinetic 
behavior

4.8.1. Serotonin neurons and LID—In the parkinsonian striatum, levodopa is 

converted to DA by the enzyme aromatic amino acid decarboxylase (AADC) within 

remaining striatal DA terminals. However, as striatal DA terminals are depleted in advancing 

PD, this function is maintained instead by 5-HT neurons of the dorsal raphe nucleus (DRN) 

that sprout into the parkinsonian striatum. Specifically, it is known that serotonergic 

innervation of the striatum is markedly increased following DA depletion (Maeda et al., 

2003; Maeda et al., 2005) and levodopa treatment (Rylander et al., 2010) and that DRN 5-

HT neurons contain AADC and the vesicular monoamine transporter 2 (VMAT2). 

Therefore, endogenous striatal 5-HT terminals are capable of taking up exogenous levodopa 

and subsequently synthesizing, storing, and releasing DA as a “false neurotransmitter” after 

levodopa administration (reviewed in detail elsewhere, e. g., (Steece-Collier et al., 2012; 

Shin et al., 2012b; Munoz et al., 2020)). Unlike DA neurons, however, 5-HT neurons do not 

possess mechanisms of regulatory feedback (i.e., DA D2 autoreceptors and the DA 

transporter). Thus, the release of DA from 5-HT terminals following levodopa 

administration is unregulated and non-physiological, which is thought to contribute to 

dyskinesogenesis (e.g., (Carta et al., 2007)). Indeed, in support of this theory, it has been 
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shown that viral vector-mediated expression of the DA D2 autoreceptor in DRN 5-HT 

neurons blocks LID in parkinsonian rats (Sellnow et al., 2019).

4.8.2. Serotonin neurons and GID—In addition to their role in contributing to LID, 5-

HT neurons have been implicated, with some controversy, as a causative factor in the 

development of GID in grafted subjects (Politis et al., 2010; Politis et al., 2011). This 

contention is supported by evidence indicating that GID were markedly reduced in three 

grafted PD patients with extensive graft-derived serotonergic hyperinnervation when treated 

with buspirone, a 5-HT1A partial agonist that also displays DA D2 receptor (D2R) 

antagonistic properties (Steece-Collier et al., 2012; Politis et al., 2010; Politis et al., 2011). 

However, the role of 5-HT neurons – both graft-derived and endogenous – in GID 

development has yet to be conclusively defined. For instance, the presence (often in 

abundance) of 5-HT neurons in transplants has been observed in the absence of GID in VM 

grafted PD patients (Mendez et al., 2008; Cooper et al., 2009). Furthermore, additional 

evidence strongly suggests that buspirone suppresses GID through its action as a DA D2R 

antagonist, rather than its interaction with the 5-HT1A receptor (Shin et al., 2012a; Shin et 

al., 2014). Indeed, buspirone was initially developed as an antipsychotic drug based on its 

interaction with the DA D2R (New, 1990) and is known to exhibit varying levels of 

antagonistic affinity for DA receptors D1-D4 (Dhavalshankh et al., 2007; Loane and Politis, 

2012; Bergman et al., 2013). Ultimately, though the topic remains a matter of debate, the 

majority of available evidence is supportive of a major role for the DA system in the 

development of GID, with a modulatory role for the 5-HT system (Lane et al., 2009a; Garcia 

et al., 2012; Aldrin-Kirk et al., 2016; Tronci et al., 2015).

In keeping with the current dogma regarding 5-HT neurons and LID causation (e.g., 

(Rylander et al., 2010; Carta et al., 2007; Sellnow et al., 2019)), we observed a positive trend 

between the 5-HT/DA cell ratio and LID in wild-type rats. However, data from our current 

study do not support a role of graft-derived 5-HT neurons in the expression of GID 

behaviors since there was a similar proportion of 5-HT/DA neurons in both Met68Met and 

Val68Val rats, as well as a lack of correlation of this behavior with 5-HT/DA ratios in both 

genotypes. Despite this finding, it may be of interest in future studies to consider whether 

there are differences in 5-HT and VGLUT3 colocalization between genotypes and whether 

this parameter correlates with GID and/or LID. Similar to DA neurons colocalizing 

VGLUT2, 5-HT neurons, even in the mature brain, co-express vesicular glutamate 

transporter 3 (VGLUT3) which has been proposed to be involved in the phenomenon called 

“vesicular synergy” that results in increased extracellular 5-HT (El Mestikawy et al., 2011). 

Thus, understanding whether such a mechanism correlates with GID and/or LID may be 

warranted (Steece-Collier et al., 2012).

4.9. Conclusion & future directions

In this era of personalized medicine, understanding both global (e.g., aging) and specific 

(e.g., rs6265 SNP) factors that might impact efficacy of clinical interventions such as cell 

replacement therapy could provide significant advances in the field of regenerative medicine. 

The current studies, performed in mature adult (6 mos at time of grafting) rats homozygous 

for the rs6265 SNP, were undertaken as proof-of-principle studies to determine whether the 

Mercado et al. Page 29

Neurobiol Dis. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genotype that would produce the largest reduction in BDNF release would have any impact 

on graft function or dysfunction compared to wild-type rats. These experiments provide 

clear evidence that the Met68Met genotype in the host significantly impacts DA graft 

efficacy in this model. While suggesting some novel mechanisms associated with DA graft 

function and/or dysfunction in association with the rs6265 SNP as discussed above, the 

current studies leave many questions unanswered. Nevertheless, these novel studies provide 

an important foundation for an abundance of future investigations. For example, as the 

present study clearly demonstrates the significant impact of host genotype on wild-type 

donor cells, additional studies will be essential to examine the role of graft genotype. In 

addition, while the inclusion of heterozygous Val/Met subjects was beyond the scope of the 

present investigation, this is highly warranted for future studies. Finally, based on the known 

association of advanced age with PD and poor graft efficacy (Freed et al., 2001), we have an 

ongoing study in our rs6265 rats in which we are examining the interaction of advancing age 

with this SNP. We posit that a combination of future data provided from our ongoing studies 

in aged (15 mos at time of grafting) parkinsonian Met68Met and wild-type rats together with 

that which might be obtained from grafted PD patients will be needed to provide the most 

comprehensive understanding of how these two factors, one global and one genetic, impact 

therapeutic outcome for this experimental therapy.

Indeed, to the best of our knowledge, PD patients and transplanted donor cells are not 

currently genotyped for this SNP. Notably, a large clinical grafting study is currently in the 

recruiting phase in China (Clinical Trial Identifier: NCT03119636). Considering that the 

rs6265 SNP is highly prevalent in East Asian countries, with some allelic frequency 

estimates as high as 72% (Petryshen et al., 2010), the findings of the current study suggest 

that it would be prudent to genotype the clinical participants so the impact of the rs6265 

SNP may be considered during interpretation of the study results. While the current studies 

are most relevant to PD, data from these studies together with those from human TBI 

subjects with the Met genotype and the rs6265 mouse stroke model (Krueger et al., 2011; 

Qin et al., 2014; Failla et al., 2015) suggest that understanding how to harness the “good” 

phenotype (i.e., enhanced neurite outgrowth and functional benefit) while subverting the 

“bad” phenotype (i.e., motor dysfunction/GID; anxiety and depression (Jing et al., 2017)) 

associated with the Met allele could provide a means for optimizing not only the clinical 

regenerative medicine approach of cell transplantation for PD but also treatment for a variety 

of traumatic, degenerative, and/or developmental maladies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This study was supported by the National Institute of Neurological Disorders and Stroke grant NS105826 (KSC, 
CES, TJC) and the Michigan Parkinson Foundation (KSC, NMM). The authors have no other conflicts of interest to 
report. We would like to acknowledge the excellent technical assistance of Brian Daley, BS, Christopher Kemp, 
MS, and Amandine Roux, PhD. We also thank Colin K. Franz, MD, PhD, Shirley Ryan AbilityLab, Department of 
Physical Medicine and Rehabilitation, and Neurology, Northwestern University Feinberg School of Medicine, 
Chicago, IL for his unpublished research communication, and Margaret Fahnestock, PhD, McMaster University 
Health Sciences Center, Hamilton, Ontario, Canada for her expertise and guidance with BDNF biology.

Mercado et al. Page 30

Neurobiol Dis. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT03119636


References

Adachi N, Numakawa T, Richards M, Nakajima S, Kunugi H, 2014 New insight in expression, 
transport, and secretion of brain-derived neurotrophic factor: Implications in brain-related diseases. 
World J. Biol. Chem 5, 409–428. https://10.4331/wjbc.v5.i4.409.

Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T, 2007 Mouse and rat bdnf gene structure and 
expression revisited. J. Neurosci. Res 85, 525–535. https://10.1002/jnr.21139. [PubMed: 17149751] 

Aldrin-Kirk P, Heuer A, et al., 2016 Dreadd modulation of transplanted da neurons reveals a novel 
parkinsonian dyskinesia mechanism mediated by the serotonin 5-ht6 receptor. Neuron 90, 955–968. 
https://10.1016/j.neuron.2016.04.017. [PubMed: 27161524] 

Altar CA, DiStefano PS, 1998 Neurotrophin trafficking by anterograde transport. Trends Neurosci. 21, 
433–437. https://10.1016/s0166-2236(98)01273-9. [PubMed: 9786341] 

Altar CA, Cai N, et al., 1997 Anterograde transport of brain-derived neurotrophic factor and its role in 
the brain. Nature 389, 856–860. https://10.1038/39885. [PubMed: 9349818] 

Anastasia A, Deinhardt K, et al., 2013 Val66met polymorphism of bdnf alters prodomain structure to 
induce neuronal growth cone retraction. Nat. Commun 4, 2490 https://10.1038/ncomms3490. 
[PubMed: 24048383] 

Baj G, Carlino D, Gardossi L, Tongiorgi E, 2013 Toward a unified biological hypothesis for the bdnf 
val66met-associated memory deficits in humans: A model of impaired dendritic mrna trafficking. 
Front. Neurosci 7, 188 https://10.3389/fnins.2013.00188. [PubMed: 24198753] 

Baquet ZC, Gorski JA, Jones KR, 2004 Early striatal dendrite deficits followed by neuron loss with 
advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J. Neurosci 
24, 4250–4258. https://10.1523/JNEUROSCI.3920-03.2004. [PubMed: 15115821] 

Barker RA, Consortium T, 2019 Designing stem-cell-based dopamine cell replacement trials for 
parkinson’s disease. Nat. Med 25, 1045–1053. https://10.1038/s41591-019-0507-2. [PubMed: 
31263283] 

Bastide MF, Meissner WG, et al., 2015 Pathophysiology of l-dopa-induced motor and non-motor 
complications in parkinson’s disease. Prog. Neurobiol 132, 96–168. https://10.1016/
j.pneurobio.2015.07.002. [PubMed: 26209473] 

Bath KG, Jing DQ, et al., 2012 Bdnf val66met impairs fluoxetine-induced enhancement of adult 
hippocampus plasticity. Neuropsychopharmacology 37, 1297–1304. https://10.1038/npp.2011.318. 
[PubMed: 22218094] 

Baydyuk M, Xu B, 2014 Bdnf signaling and survival of striatal neurons. Front. Cell. Neurosci 8, 254 
https://10.3389/fncel.2014.00254. [PubMed: 25221473] 

Belmer A, Klenowski PM, Patkar OL, Bartlett SE, 2017 Mapping the connectivity of serotonin 
transporter immunoreactive axons to excitatory and inhibitory neurochemical synapses in the 
mouse limbic brain. Brain Struct. Funct 222, 1297–1314. https://10.1007/s00429-016-1278-x. 
[PubMed: 27485750] 

Bergman J, Roof RA, et al., 2013 Modification of cocaine self-administration by buspirone (buspar(r)): 
Potential involvement of d3 and d4 dopamine receptors. Int. J. Neuropsychopharmacol 16, 445–
458. https://10.1017/S1461145712000661. [PubMed: 22827916] 

Carta M, Carlsson T, Kirik D, Bjorklund A, 2007 Dopamine released from 5-ht terminals is the cause 
of l-dopa-induced dyskinesia in parkinsonian rats. Brain 130, 1819–1833. https://10.1093/brain/
awm082. [PubMed: 17452372] 

Cenci MA, Crossman AR, 2018 Animal models of l-dopa-induced dyskinesia in parkinson’s disease. 
Mov. Disord 33, 889–899. https://10.1002/mds.27337. [PubMed: 29488257] 

Chen X, Nelson CD, et al., 2011 Psd-95 is required to sustain the molecular organization of the 
postsynaptic density. J. Neurosci 31, 6329–6338. https://10.1523/JNEUROSCI.5968-10.2011. 
[PubMed: 21525273] 

Chen ZY, Jing D, et al., 2006 Genetic variant bdnf (val66met) polymorphism alters anxiety-related 
behavior. Science 314, 140–143. https://10.1126/science.1129663. [PubMed: 17023662] 

Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S, 2010 Brain-derived neurotrophic factor and the 
development of structural neuronal connectivity. Dev Neurobiol 70, 271–288. https://10.1002/
dneu.20774. [PubMed: 20186709] 

Mercado et al. Page 31

Neurobiol Dis. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://10.4331/wjbc.v5.i4.409
https://10.1002/jnr.21139
https://10.1016/j.neuron.2016.04.017
https://10.1016/s0166-2236(98)01273-9
https://10.1038/39885
https://10.1038/ncomms3490
https://10.3389/fnins.2013.00188
https://10.1523/JNEUROSCI.3920-03.2004
https://10.1038/s41591-019-0507-2
https://10.1016/j.pneurobio.2015.07.002
https://10.1016/j.pneurobio.2015.07.002
https://10.1038/npp.2011.318
https://10.3389/fncel.2014.00254
https://10.1007/s00429-016-1278-x
https://10.1017/S1461145712000661
https://10.1093/brain/awm082
https://10.1093/brain/awm082
https://10.1002/mds.27337
https://10.1523/JNEUROSCI.5968-10.2011
https://10.1126/science.1129663
https://10.1002/dneu.20774
https://10.1002/dneu.20774


Collier TJ, Sortwell CE, Daley BF, 1999 Diminished viability, growth, and behavioral efficacy of fetal 
dopamine neuron grafts in aging rats with long-term dopamine depletion: An argument for 
neurotrophic supplementation. J. Neurosci 19, 5563–5573. [PubMed: 10377363] 

Collier TJ, O’Malley J, et al., 2015 Interrogating the aged striatum: Robust survival of grafted 
dopamine neurons in aging rats produces inferior behavioral recovery and evidence of impaired 
integration. Neurobiol. Dis 77, 191–203. https://10.1016/j.nbd.2015.03.005. [PubMed: 25771169] 

Collier TJ, Sortwell CE, Mercado NM, Steece-Collier K, 2019 Cell therapy for parkinson’s disease: 
Why it doesn’t work every time. Mov. Disord 34, 1120–1127. https://10.1002/mds.27742. 
[PubMed: 31234239] 

Cooper O, Astradsson A, et al., 2009 Lack of functional relevance of isolated cell damage in 
transplants of parkinson’s disease patients. J. Neurol 256 (Suppl. 3), 310–316. https://10.1007/
s00415-009-5242-z. [PubMed: 19711122] 

Cowan WM, Fawcett JW, O’Leary DD, Stanfield BB, 1984 Regressive events in neurogenesis. Science 
225, 1258–1265. https://10.1126/science.6474175. [PubMed: 6474175] 

Day M, Wang Z, et al., 2006 Selective elimination of glutamatergic synapses on striatopallidal neurons 
in parkinson disease models. Nat. Neurosci 9, 251–259. https://10.1038/nn1632. [PubMed: 
16415865] 

dbSNP, 2020 Reference snp (rs) report: Rs6265. Available from. http://www.ncbi.nlm.nih.gov/SNP/
snp_ref.cgi?searchType=adhoc_search&type=rs&rs=rs6265

Deinhardt K, Kim T, et al., 2011 Neuronal growth cone retraction relies on proneurotrophin receptor 
signaling through rac. Sci. Signal 4 ra82 https://10.1126/scisignal.2002060. [PubMed: 22155786] 

Dhavalshankh AG, Jadhav SA, et al., 2007 Effects of buspirone on dopamine dependent behaviours in 
rats. Indian J. Physiol. Pharmacol 51, 375–386. [PubMed: 18476392] 

Di Pino G, Pellegrino G, et al., 2016 Val66met bdnf polymorphism implies a different way to recover 
from stroke rather than a worse overall recoverability. Neurorehabil. Neural Repair 30, 3–8. https://
10.1177/1545968315583721. [PubMed: 25896987] 

Dunnett SB, Bjorklund A, Stenevi U, Iversen SD, 1981 Behavioural recovery following transplantation 
of substantia nigra in rats subjected to 6-ohda lesions of the nigrostriatal pathway. I. Unilateral 
lesions. Brain Res. 215, 147–161. https://10.1016/0006-8993(81)90498-4. [PubMed: 7260584] 

Egan MF, Kojima M, et al., 2003 The bdnf val66met polymorphism affects activity-dependent 
secretion of bdnf and human memory and hippocampal function. Cell 112, 257–269. https://
10.1016/s0092-8674(03)00035-7. [PubMed: 12553913] 

El Mestikawy S, Wallen-Mackenzie A, Fortin GM, Descarries L, Trudeau LE, 2011 From glutamate 
co-release to vesicular synergy: vesicular glutamate transporters. Nat. Rev. Neurosci 12, 204–216. 
https://10.1038/nrn2969. [PubMed: 21415847] 

Failla MD, Kumar RG, et al., 2015 Variation in the bdnf gene interacts with age to predict mortality in 
a prospective, longitudinal cohort with severe tbi. Neurorehabil. Neural Repair 29, 234–246. 
https://10.1177/1545968314542617. [PubMed: 25063686] 

Fischer DL, Auinger P, et al., 2018 Bdnf variant is associated with milder motor symptom severity in 
early-stage parkinson’s disease. Parkinsonism Relat. Disord 53, 70–75. https://10.1016/
j.parkreldis.2018.05.003. [PubMed: 29759928] 

Fischer DL, Auinger P, et al., 2020 Bdnf rs6265 variant alters outcomes with levodopa in early-stage 
parkinson’s disease. Neurotherapeutics (in press).

Foltynie T, Cheeran B, et al., 2009 Bdnf val66met influences time to onset of levodopa induced 
dyskinesia in parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 80, 141–144. https://10.1136/
jnnp.2008.154294. [PubMed: 18977816] 

Freed CR, Greene PE, et al., 2001 Transplantation of embryonic dopamine neurons for severe 
parkinson’s disease. N. Engl. J. Med 344, 710–719. https://10.1056/NEJM200103083441002. 
[PubMed: 11236774] 

Freund TF, Powell JF, Smith AD, 1984 Tyrosine hydroxylase-immunoreactive boutons in synaptic 
contact with identified striatonigral neurons, with particular reference to dendritic spines. 
Neuroscience 13, 1189–1215. https://10.1016/0306-4522(84)90294-x. [PubMed: 6152036] 

Mercado et al. Page 32

Neurobiol Dis. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://10.1016/j.nbd.2015.03.005
https://10.1002/mds.27742
https://10.1007/s00415-009-5242-z
https://10.1007/s00415-009-5242-z
https://10.1126/science.6474175
https://10.1038/nn1632
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?searchType=adhoc_search&type=rs&rs=rs6265
http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?searchType=adhoc_search&type=rs&rs=rs6265
https://10.1126/scisignal.2002060
https://10.1177/1545968315583721
https://10.1177/1545968315583721
https://10.1016/0006-8993(81)90498-4
https://10.1016/s0092-8674(03)00035-7
https://10.1016/s0092-8674(03)00035-7
https://10.1038/nrn2969
https://10.1177/1545968314542617
https://10.1016/j.parkreldis.2018.05.003
https://10.1016/j.parkreldis.2018.05.003
https://10.1136/jnnp.2008.154294
https://10.1136/jnnp.2008.154294
https://10.1056/NEJM200103083441002
https://10.1016/0306-4522(84)90294-x


Galvin C, Lee FS, Ninan I, 2015 Alteration of the centromedial amygdala glutamatergic synapses by 
the bdnf val66met polymorphism. Neuropsychopharmacology 40, 2269–2277. https://10.1038/
npp.2015.76. [PubMed: 25786582] 

Garcia J, Carlsson T, Dobrossy M, Nikkhah G, Winkler C, 2012 Impact of dopamine versus serotonin 
cell transplantation for the development of graft-induced dyskinesia in a rat parkinson model. 
Brain Res. 1470, 119–129. https://10.1016/j.brainres.2012.06.029. [PubMed: 22759908] 

Giza JI, Kim J, et al., 2018 The bdnf val66met prodomain disassembles dendritic spines altering fear 
extinction circuitry and behavior. Neuron 99 (163–178), e6 https://10.1016/j.neuron.2018.05.024.

Gombash SE, Manfredsson FP, et al., 2014 Neuroprotective potential of pleiotrophin overexpression in 
the striatonigral pathway compared with overexpression in both the striatonigral and nigrostriatal 
pathways. Gene Ther. 21, 682–693. https://10.1038/gt.2014.42. [PubMed: 24807806] 

Guo J, Ji Y, et al., 2016 Bdnf pro-peptide regulates dendritic spines via caspase-3. Cell Death Dis. 7, 
e2264 https://10.1038/cddis.2016.166. [PubMed: 27310873] 

Hagell P, Cenci MA, 2005 Dyskinesias and dopamine cell replacement in parkinson’s disease: a 
clinical perspective. Brain Res. Bull 68, 4–15. https://10.1016/j.brainresbull.2004.10.013. 
[PubMed: 16324999] 

Hagell P, Piccini P, et al., 2002 Dyskinesias following neural transplantation in parkinson’s disease. 
Nat. Neurosci 5, 627–628. https://10.1038/nn863. [PubMed: 12042822] 

Hauser RA, Auinger P, Oakes D, 2009 Levodopa response in early parkinson’s disease. Mov. Disord 
24, 2328–2336. https://10.1002/mds.22759. [PubMed: 19908302] 

Hoglinger GU, Widmer HR, et al., 2001 Influence of time in culture and bdnf pretreatment on survival 
and function of grafted embryonic rat ventral mesencephalon in the 6-ohda rat model of 
parkinson’s disease. Exp. Neurol 167, 148–157. https://10.1006/exnr.2000.7546. [PubMed: 
11161602] 

Iascone DM, Li Y, et al., 2020 Whole-neuron synaptic mapping reveals spatially precise excitatory/
inhibitory balance limiting dendritic and somatic spiking. Neuron 106 (566–578), e8 https://
10.1016/j.neuron.2020.02.015.

Jia Y, Gall CM, Lynch G, 2010 Presynaptic bdnf promotes postsynaptic long-term potentiation in the 
dorsal striatum. J. Neurosci 30, 14440–14445. https://10.1523/JNEUROSCI.3310-10.2010. 
[PubMed: 20980601] 

Jing D, Lee FS, Ninan I, 2017 The bdnf val66met polymorphism enhances glutamatergic transmission 
but diminishes activity-dependent synaptic plasticity in the dorsolateral striatum. 
Neuropharmacology 112, 84–93. https://10.1016/j.neuropharm.2016.06.030. [PubMed: 27378336] 

Konradi C, Westin JE, et al., 2004 Transcriptome analysis in a rat model of l-dopa-induced dyskinesia. 
Neurobiol. Dis 17, 219–236. https://10.1016/j.nbd.2004.07.005. [PubMed: 15474360] 

Kordower JH, Rosenstein JM, et al., 1996 Functional fetal nigral grafts in a patient with parkinson’s 
disease: Chemoanatomic, ultrastructural, and metabolic studies. J. Comp. Neurol 370, 203–230. 
https://10.1002/(SICI)1096-9861(19960624)370:2<203::AID-CNE6>3.0.CO;2-6. [PubMed: 
8808731] 

Kordower JH, Goetz CG, et al., 2017 Robust graft survival and normalized dopaminergic innervation 
do not obligate recovery in a parkinson disease patient. Ann. Neurol 81 (1), 46–57. https://
10.1002/ana.24820. [PubMed: 27900791] 

Korte M, Griesbeck O, et al., 1996 Virus-mediated gene transfer into hippocampal ca1 region restores 
long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc. Natl. Acad. Sci. U. 
S. A 93, 12547–12552. https://10.1073/pnas.93.22.12547. [PubMed: 8901619] 

Koshimizu H, Kiyosue K, et al., 2009 Multiple functions of precursor bdnf to cns neurons: negative 
regulation of neurite growth, spine formation and cell survival. Mol Brain 2, 27 https://
10.1186/1756-6606-2-27. [PubMed: 19674479] 

Krueger F, Pardini M, et al., 2011 The role of the met66 brain-derived neurotrophic factor allele in the 
recovery of executive functioning after combat-related traumatic brain injury. J. Neurosci 31, 598–
606. https://10.1523/JNEUROSCI.1399-10.2011. [PubMed: 21228168] 

Lai KO, Ip NY, 2013 Structural plasticity of dendritic spines: The underlying mechanisms and its 
dysregulation in brain disorders. Biochim. Biophys. Acta 1832, 2257–2263. https://10.1016/
j.bbadis.2013.08.012. [PubMed: 24012719] 

Mercado et al. Page 33

Neurobiol Dis. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://10.1038/npp.2015.76
https://10.1038/npp.2015.76
https://10.1016/j.brainres.2012.06.029
https://10.1016/j.neuron.2018.05.024
https://10.1038/gt.2014.42
https://10.1038/cddis.2016.166
https://10.1016/j.brainresbull.2004.10.013
https://10.1038/nn863
https://10.1002/mds.22759
https://10.1006/exnr.2000.7546
https://10.1016/j.neuron.2020.02.015
https://10.1016/j.neuron.2020.02.015
https://10.1523/JNEUROSCI.3310-10.2010
https://10.1016/j.neuropharm.2016.06.030
https://10.1016/j.nbd.2004.07.005
https://10.1002/(SICI)1096-9861(19960624)370:2<203::AID-CNE6>3.0.CO;2-6
https://10.1002/ana.24820
https://10.1002/ana.24820
https://10.1073/pnas.93.22.12547
https://10.1186/1756-6606-2-27
https://10.1186/1756-6606-2-27
https://10.1523/JNEUROSCI.1399-10.2011
https://10.1016/j.bbadis.2013.08.012
https://10.1016/j.bbadis.2013.08.012


Lane EL, Winkler C, Brundin P, Cenci MA, 2006 The impact of graft size on the development of 
dyskinesia following intrastriatal grafting of embryonic dopamine neurons in the rat. Neurobiol. 
Dis 22, 334–345. https://10.1016/j.nbd.2005.11.011. [PubMed: 16406222] 

Lane EL, Brundin P, Cenci MA, 2009a Amphetamine-induced abnormal movements occur 
independently of both transplant- and host-derived serotonin innervation following neural grafting 
in a rat model of parkinson’s disease. Neurobiol. Dis 35, 42–51. https://10.1016/
j.nbd.2009.03.014. [PubMed: 19361557] 

Lane EL, Vercammen L, Cenci MA, Brundin P, 2009b Priming for l-dopa-induced abnormal 
involuntary movements increases the severity of amphetamine-induced dyskinesia in grafted rats. 
Exp. Neurol 219, 355–358. https://10.1016/j.expneurol.2009.04.010. [PubMed: 19393238] 

Lee CS, Cenci MA, Schulzer M, Bjorklund A, 2000 Embryonic ventral mesencephalic grafts improve 
levodopa-induced dyskinesia in a rat model of parkinson’s disease. Brain 123 (Pt 7), 1365–1379. 
[PubMed: 10869049] 

Leranth C, Sladek JR Jr., Roth RH, Redmond DE Jr., 1998 Efferent synaptic connections of 
dopaminergic neurons grafted into the caudate nucleus of experimentally induced parkinsonian 
monkeys are different from those of control animals. Exp. Brain Res 123, 323–333. [PubMed: 
9860271] 

Li M, Dai FR, et al., 2012 Infusion of bdnf into the nucleus accumbens of aged rats improves cognition 
and structural synaptic plasticity through pi3k-ilk-akt signaling. Behav. Brain Res 231, 146–153. 
https://10.1016/j.bbr.2012.03.010. [PubMed: 22446058] 

Li W, Englund E, et al., 2016 Extensive graft-derived dopaminergic innervation is maintained 24 years 
after transplantation in the degenerating parkinsonian brain. Proc. Natl. Acad. Sci. U. S. A 113, 
6544–6549. https://10.1073/pnas.1605245113. [PubMed: 27140603] 

Lindvall O, 2015 Treatment of parkinson’s disease using cell transplantation. Philos. Trans. R. Soc. 
Lond. Ser. B Biol. Sci 370, 20140370 https://10.1098/rstb.2014.0370. [PubMed: 26416681] 

Loane C, Politis M, 2012 Buspirone: what is it all about? Brain Res. 1461, 111–118. https://10.1016/
j.brainres.2012.04.032. [PubMed: 22608068] 

Low LK, Cheng HJ, 2006 Axon pruning: an essential step underlying the developmental plasticity of 
neuronal connections. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci 361, 1531–1544. https://
10.1098/rstb.2006.1883. [PubMed: 16939973] 

Lu B, Pang PT, Woo NH, 2005 The yin and yang of neurotrophin action. Nat. Rev. Neurosci 6, 603–
614. https://10.1038/nrn1726. [PubMed: 16062169] 

Maeda T, Kannari K, et al., 2003 Rapid induction of serotonergic hyperinnervation in the adult rat 
striatum with extensive dopaminergic denervation. Neurosci. Lett 343, 17–20. https://10.1016/
s0304-3940(03)00295-7. [PubMed: 12749987] 

Maeda T, Nagata K, Yoshida Y, Kannari K, 2005 Serotonergic hyperinnervation into the dopaminergic 
denervated striatum compensates for dopamine conversion from exogenously administered l-dopa. 
Brain Res. 1046, 230–233. https://10.1016/j.brainres.2005.04.019. [PubMed: 15894297] 

Mallei A, Baj G, et al., 2015 Expression and dendritic trafficking of bdnf-6 splice variant are impaired 
in knock-in mice carrying human bdnf val66met polymorphism. Int. J. Neuropsychopharmacol 18 
https://10.1093/ijnp/pyv069.

Mariani S, Ventriglia M, et al., 2015 Meta-analysis study on the role of bone-derived neurotrophic 
factor val66met polymorphism in parkinson’s disease. Rejuvenation Res. 18, 40–47. https://
10.1089/rej.2014.1612. [PubMed: 25431370] 

Maries E, Kordower JH, et al., 2006 Focal not widespread grafts induce novel dyskinetic behavior in 
parkinsonian rats. Neurobiol. Dis 21, 165–180. https://10.1016/j.nbd.2005.07.002. [PubMed: 
16095907] 

McGregor CE, English AW, 2018 The role of bdnf in peripheral nerve regeneration: activity-dependent 
treatments and val66met. Front. Cell. Neurosci 12, 522 https://10.3389/fncel.2018.00522. 
[PubMed: 30687012] 

McNeill TH, Brown SA, Rafols JA, Shoulson I, 1988 Atrophy of medium spiny i striatal dendrites in 
advanced parkinson’s disease. Brain Res. 455, 148–152. [PubMed: 3416180] 

Mercado et al. Page 34

Neurobiol Dis. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://10.1016/j.nbd.2005.11.011
https://10.1016/j.nbd.2009.03.014
https://10.1016/j.nbd.2009.03.014
https://10.1016/j.expneurol.2009.04.010
https://10.1016/j.bbr.2012.03.010
https://10.1073/pnas.1605245113
https://10.1098/rstb.2014.0370
https://10.1016/j.brainres.2012.04.032
https://10.1016/j.brainres.2012.04.032
https://10.1098/rstb.2006.1883
https://10.1098/rstb.2006.1883
https://10.1038/nrn1726
https://10.1016/s0304-3940(03)00295-7
https://10.1016/s0304-3940(03)00295-7
https://10.1016/j.brainres.2005.04.019
https://10.1093/ijnp/pyv069
https://10.1089/rej.2014.1612
https://10.1089/rej.2014.1612
https://10.1016/j.nbd.2005.07.002
https://10.3389/fncel.2018.00522


Mendez I, Vinuela A, et al., 2008 Dopamine neurons implanted into people with parkinson’s disease 
survive without pathology for 14 years. Nat. Med 14, 507–509. https://10.1038/nm1752. [PubMed: 
18391961] 

Milnerwood AJ, Raymond LA, 2010 Early synaptic pathophysiology in neurodegeneration: insights 
from huntington’s disease. Trends Neurosci. 33, 513–523. https://10.1016/j.tins.2010.08.002. 
[PubMed: 20850189] 

Mizui T, Ishikawa Y, et al., 2015 Bdnf pro-peptide actions facilitate hippocampal ltd and are altered by 
the common bdnf polymorphism val66met. Proc. Natl. Acad. Sci. U. S. A 112, E3067–E3074. 
https://10.1073/pnas.1422336112. [PubMed: 26015580] 

Morales M, Margolis EB, 2017 Ventral tegmental area: Cellular heterogeneity, connectivity and 
behaviour. Nat. Rev. Neurosci 18, 73–85. https://10.1038/nrn.2016.165. [PubMed: 28053327] 

Morales M, Root DH, 2014 Glutamate neurons within the midbrain dopamine regions. Neuroscience 
282, 60–68. https://10.1016/j.neuroscience.2014.05.032. [PubMed: 24875175] 

Morin N, Jourdain VA, Di Paolo T, 2014 Modeling dyskinesia in animal models of parkinson disease. 
Exp. Neurol 256, 105–116. https://10.1016/j.expneurol.2013.01.024. [PubMed: 23360802] 

Moss J, Bolam JP, 2008 A dopaminergic axon lattice in the striatum and its relationship with cortical 
and thalamic terminals. J. Neurosci 28, 11221–11230. https://10.1523/JNEUROSCI.2780-08.2008. 
[PubMed: 18971464] 

Munoz A, Lopez-Lopez A, Labandeira CM, Labandeira-Garcia JL, 2020 Interactions between the 
serotonergic and other neurotransmitter systems in the basal ganglia: Role in parkinson’s disease 
and adverse effects of l-dopa. Front. Neuroanat 14, 26 https://10.3389/fnana.2020.00026. 
[PubMed: 32581728] 

Neely MD, Schmidt DE, Deutch AY, 2007 Cortical regulation of dopamine depletion-induced dendritic 
spine loss in striatal medium spiny neurons. Neuroscience 149, 457–464. https://10.1016/
j.neuroscience.2007.06.044. [PubMed: 17888581] 

New JS, 1990 The discovery and development of buspirone: a new approach to the treatment of 
anxiety. Med. Res. Rev 10, 283–326. https://10.1002/med.2610100302. [PubMed: 2196403] 

Ninan I, Bath KG, et al., 2010 The bdnf val66met polymorphism impairs nmda receptor-dependent 
synaptic plasticity in the hippocampus. J. Neurosci 30, 8866–8870. https://10.1523/
JNEUROSCI.1405-10.2010. [PubMed: 20592208] 

Numakawa T, Odaka H, Adachi N, 2017 Actions of brain-derived neurotrophic factor and 
glucocorticoid stress in neurogenesis. Int. J. Mol. Sci 18 https://10.3390/ijms18112312.

Olanow C, Bartus RT, et al., 2015 Gene delivery of neurturin to putamen and substantia nigra in 
parkinson disease: a double-blind, randomized, controlled trial. Ann. Neurol 78, 248–257. https://
10.1002/ana.24436. [PubMed: 26061140] 

Olanow CW, Goetz CG, et al., 2003 A double-blind controlled trial of bilateral fetal nigral 
transplantation in parkinson’s disease. Ann. Neurol 54, 403–414. https://10.1002/ana.10720. 
[PubMed: 12953276] 

Olanow CW, Kordower JH, Lang AE, Obeso JA, 2009 Dopaminergic transplantation for parkinson’s 
disease: current status and future prospects. Ann. Neurol 66, 591–596. https://10.1002/ana.21778. 
[PubMed: 19938101] 

Orefice LL, Shih CC, Xu H, Waterhouse EG, Xu B, 2016 Control of spine maturation and pruning 
through probdnf synthesized and released in dendrites. Mol. Cell. Neurosci 71, 66–79. https://
10.1016/j.mcn.2015.12.010. [PubMed: 26705735] 

Park H, Poo MM, 2013 Neurotrophin regulation of neural circuit development and function. Nat. Rev. 
Neurosci 14, 7–23. https://10.1038/nrn3379. [PubMed: 23254191] 

Patterson SL, Abel T, et al., 1996 Recombinant bdnf rescues deficits in basal synaptic transmission and 
hippocampal ltp in bdnf knockout mice. Neuron 16, 1137–1145. https://10.1016/
s0896-6273(00)80140-3. [PubMed: 8663990] 

Pattwell SS, Bath KG, et al., 2012 The bdnf val66met polymorphism impairs synaptic transmission 
and plasticity in the infralimbic medial prefrontal cortex. J. Neurosci 32, 2410–2421. https://
10.1523/JNEUROSCI.5205-11.2012. [PubMed: 22396415] 

Petryshen TL, Sabeti PC, et al., 2010 Population genetic study of the brain-derived neurotrophic factor 
(bdnf) gene. Mol. Psychiatry 15, 810–815. https://10.1038/mp.2009.24. [PubMed: 19255578] 

Mercado et al. Page 35

Neurobiol Dis. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://10.1038/nm1752
https://10.1016/j.tins.2010.08.002
https://10.1073/pnas.1422336112
https://10.1038/nrn.2016.165
https://10.1016/j.neuroscience.2014.05.032
https://10.1016/j.expneurol.2013.01.024
https://10.1523/JNEUROSCI.2780-08.2008
https://10.3389/fnana.2020.00026
https://10.1016/j.neuroscience.2007.06.044
https://10.1016/j.neuroscience.2007.06.044
https://10.1002/med.2610100302
https://10.1523/JNEUROSCI.1405-10.2010
https://10.1523/JNEUROSCI.1405-10.2010
https://10.3390/ijms18112312
https://10.1002/ana.24436
https://10.1002/ana.24436
https://10.1002/ana.10720
https://10.1002/ana.21778
https://10.1016/j.mcn.2015.12.010
https://10.1016/j.mcn.2015.12.010
https://10.1038/nrn3379
https://10.1016/s0896-6273(00)80140-3
https://10.1016/s0896-6273(00)80140-3
https://10.1523/JNEUROSCI.5205-11.2012
https://10.1523/JNEUROSCI.5205-11.2012
https://10.1038/mp.2009.24


Piccini P, Pavese N, et al., 2005 Factors affecting the clinical outcome after neural transplantation in 
parkinson’s disease. Brain 128, 2977–2986. https://10.1093/brain/awh649. [PubMed: 16246865] 

Pickel VM, Beckley SC, Joh TH, Reis DJ, 1981 Ultrastructural immunocytochemical localization of 
tyrosine hydroxylase in the neostriatum. Brain Res. 225, 373–385. https://
10.1016/0006-8993(81)90843-x. [PubMed: 6118197] 

Politis M, Wu K, et al., 2010 Serotonergic neurons mediate dyskinesia side effects in parkinson’s 
patients with neural transplants. Sci. Transl. Med 2, 38ra46–38ra46. https://10.1126/
scitranslmed.3000976.

Politis M, Oertel WH, et al., 2011 Graft-induced dyskinesias in parkinson’s disease: high striatal 
serotonin/dopamine transporter ratio. Mov. Disord 26, 1997–2003. https://10.1002/mds.23743. 
[PubMed: 21611977] 

Prakash N, Wurst W, 2006 Development of dopaminergic neurons in the mammalian brain. Cell. Mol. 
Life Sci 63, 187–206. https://10.1007/s00018-005-5387-6. [PubMed: 16389456] 

Qin L, Jing D, et al., 2014 An adaptive role for bdnf val66met polymorphism in motor recovery in 
chronic stroke. J. Neurosci 34, 2493–2502. https://10.1523/JNEUROSCI.4140-13.2014. 
[PubMed: 24523540] 

Rauskolb S, Zagrebelsky M, et al., 2010 Global deprivation of brain-derived neurotrophic factor in the 
cns reveals an area-specific requirement for dendritic growth. J. Neurosci 30, 1739–1749. https://
10.1523/JNEUROSCI.5100-09.2010. [PubMed: 20130183] 

Razgado-Hernandez LF, Espadas-Alvarez AJ, et al., 2015 The transfection of bdnf to dopamine 
neurons potentiates the effect of dopamine d3 receptor agonist recovering the striatal innervation, 
dendritic spines and motor behavior in an aged rat model of parkinson’s disease. PLoS One 10, 
e0117391 https://10.1371/journal.pone.0117391. [PubMed: 25693197] 

Rylander D, Parent M, et al., 2010 Maladaptive plasticity of serotonin axon terminals in levodopa-
induced dyskinesia. Ann. Neurol 68, 619–628. https://10.1002/ana.22097. [PubMed: 20882603] 

Saylor AJ, Meredith GE, Vercillo MS, Zahm DS, McGinty JF, 2006 Bdnf heterozygous mice 
demonstrate age-related changes in striatal and nigral gene expression. Exp. Neurol 199, 362–
372. https://10.1016/j.expneurol.2006.01.004. [PubMed: 16478623] 

Segal M, Vlachos A, Korkotian E, 2010 The spine apparatus, synaptopodin, and dendritic spine 
plasticity. Neuroscientist 16, 125–131. https://10.1177/1073858409355829. [PubMed: 20400711] 

Sellnow RC, Newman JH, et al., 2019 Regulation of dopamine neurotransmission from serotonergic 
neurons by ectopic expression of the dopamine d2 autoreceptor blocks levodopa-induced 
dyskinesia. Acta Neuropathol Commun 7, 8 https://10.1186/s40478-018-0653-7. [PubMed: 
30646956] 

Shin E, Garcia J, Winkler C, Bjorklund A, Carta M, 2012a Serotonergic and dopaminergic 
mechanisms in graft-induced dyskinesia in a rat model of parkinson’s disease. Neurobiol. Dis 47, 
393–406. https://10.1016/j.nbd.2012.03.038. [PubMed: 22579773] 

Shin E, Tronci E, Carta M, 2012b Role of serotonin neurons in l-dopa- and graft-induced dyskinesia in 
a rat model of parkinson’s disease. Parkinsons Dis 2012, 370190 https://10.1155/2012/370190. 
[PubMed: 22762012] 

Shin E, Lisci C, et al., 2014 The anti-dyskinetic effect of dopamine receptor blockade is enhanced in 
parkinsonian rats following dopamine neuron transplantation. Neurobiol. Dis 62, 233–240. 
https://10.1016/j.nbd.2013.09.021. [PubMed: 24135006] 

Sieber BA, Landis S, et al., 2014 Prioritized research recommendations from the national institute of 
neurological disorders and stroke parkinson’s disease 2014 conference. Ann. Neurol 76, 469–
472. https://10.1002/ana.24261. [PubMed: 25164235] 

Smith GA, Breger LS, Lane EL, Dunnett SB, 2012a Pharmacological modulation of amphetamine-
induced dyskinesia in transplanted hemi-parkinsonian rats. Neuropharmacology 63, 818–828. 
https://10.1016/j.neuropharm.2012.06.011. [PubMed: 22722025] 

Smith GA, Heuer A, et al., 2012b Amphetamine-induced dyskinesia in the transplanted hemi-
parkinsonian mouse. J. Parkinsons Dis 2, 107–113. https://10.3233/JPD-2012-12102. [PubMed: 
23933747] 

Mercado et al. Page 36

Neurobiol Dis. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://10.1093/brain/awh649
https://10.1016/0006-8993(81)90843-x
https://10.1016/0006-8993(81)90843-x
https://10.1126/scitranslmed.3000976
https://10.1126/scitranslmed.3000976
https://10.1002/mds.23743
https://10.1007/s00018-005-5387-6
https://10.1523/JNEUROSCI.4140-13.2014
https://10.1523/JNEUROSCI.5100-09.2010
https://10.1523/JNEUROSCI.5100-09.2010
https://10.1371/journal.pone.0117391
https://10.1002/ana.22097
https://10.1016/j.expneurol.2006.01.004
https://10.1177/1073858409355829
https://10.1186/s40478-018-0653-7
https://10.1016/j.nbd.2012.03.038
https://10.1155/2012/370190
https://10.1016/j.nbd.2013.09.021
https://10.1002/ana.24261
https://10.1016/j.neuropharm.2012.06.011
https://10.3233/JPD-2012-12102


Soderstrom KE, Meredith G, et al., 2008 The synaptic impact of the host immune response in a 
parkinsonian allograft rat model: influence on graft-derived aberrant behaviors. Neurobiol. Dis 
32, 229–242. https://10.1016/j.nbd.2008.06.018. [PubMed: 18672063] 

Soderstrom KE, O’Malley JA, et al., 2010 Impact of dendritic spine preservation in medium spiny 
neurons on dopamine graft efficacy and the expression of dyskinesias in parkinsonian rats. Eur. J. 
Neurosci 31, 478–490. https://10.1111/j.1460-9568.2010.07077.x. [PubMed: 20105237] 

Sortwell CE, Auinger Peggy, Goudreau John L., Pickut Barbara, Berryhill Brian, Hacker Mallory L., 
Charles David, Lipton Jack W., Cole-Strauss Allyson, Elm Jordan J., Fischer D. Luke, 2017 
Specific bdnf variants are associated with suboptimal response to levodopa but not to other 
dopaminergic medications or deep brain stimulation in parkinson’s disease. Mov. Disord 32 
(Suppl. 2).

Steece-Collier K, Collier TJ, Sladek CD, Sladek JR Jr., 1990 Chronic levodopa impairs morphological 
development of grafted embryonic dopamine neurons. Exp. Neurol 110, 201–208. https://
10.1016/0014-4886(90)90031-m. [PubMed: 2226699] 

Steece-Collier K, Collier TJ, et al., 2003 Embryonic mesencephalic grafts increase levodopa-induced 
forelimb hyperkinesia in parkinsonian rats. Mov. Disord 18, 1442–1454. https://10.1002/
mds.10588. [PubMed: 14673880] 

Steece-Collier K, Rademacher DJ, Soderstrom K, 2012 Anatomy of graft-induced dyskinesias: Circuit 
remodeling in the parkinsonian striatum. Basal Ganglia 2, 15–30. https://10.1016/
j.baga.2012.01.002. [PubMed: 22712056] 

Steece-Collier K, Stancati JA, et al., 2019 Genetic silencing of striatal cav1.3 prevents and ameliorates 
levodopa dyskinesia. Mov. Disord 34, 697–707. https://10.1002/mds.27695. [PubMed: 
31002755] 

Steece-Collier K, Collier TJ, et al., 2020 Striatal nurr1, but not fosb expression links a levodopa-
induced dyskinesia phenotype to genotype in fisher 344 vs. Lewis hemiparkinsonian rats. Exp. 
Neurol 330, 113327 https://10.1016/j.expneurol.2020.113327. [PubMed: 32387398] 

Stephens B, Mueller AJ, et al., 2005 Evidence of a breakdown of corticostriatal connections in 
parkinson’s disease. Neuroscience 132, 741–754. https://10.1016/j.neuroscience.2005.01.007. 
[PubMed: 15837135] 

Stoker TB, Blair NF, Barker RA, 2017 Neural grafting for parkinson’s disease: Challenges and 
prospects. Neural Regen. Res 12, 389–392. https://10.4103/1673-5374.202935. [PubMed: 
28469646] 

Tenenbaum L, Humbert-Claude M, 2017 Glial cell line-derived neurotrophic factor gene delivery in 
parkinson’s disease: a delicate balance between neuroprotection, trophic effects, and unwanted 
compensatory mechanisms. Front. Neuroanat 11, 29 https://10.3389/fnana.2017.00029. 
[PubMed: 28442998] 

Teng HK, Teng KK, et al., 2005 Probdnf induces neuronal apoptosis via activation of a receptor 
complex of p75ntr and sortilin. J. Neurosci 25, 5455–5463. https://10.1523/
JNEUROSCI.5123-04.2005. [PubMed: 15930396] 

Towns CR, 2017 The science and ethics of cell-based therapies for parkinson’s disease. Parkinsonism 
Relat. Disord 34, 1–6. https://10.1016/j.parkreldis.2016.10.012. [PubMed: 28341222] 

Tronci E, Fidalgo C, Carta M, 2015 Foetal cell transplantation for parkinson’s disease: Focus on graft-
induced dyskinesia. Parkinsons Dis 2015, 563820 https://10.1155/2015/563820. [PubMed: 
26881178] 

Villalba RM, Lee H, Smith Y, 2009 Dopaminergic denervation and spine loss in the striatum of mptp-
treated monkeys. Exp. Neurol 215, 220–227. https://10.1016/j.expneurol.2008.09.025. [PubMed: 
18977221] 

Vlachos A, Korkotian E, et al., 2009 Synaptopodin regulates plasticity of dendritic spines in 
hippocampal neurons. J. Neurosci 29, 1017–1033. https://10.1523/JNEUROSCI.5528-08.2009. 
[PubMed: 19176811] 

Woo NH, Teng HK, et al., 2005 Activation of p75ntr by probdnf facilitates hippocampal long-term 
depression. Nat. Neurosci 8, 1069–1077. https://10.1038/nn1510. [PubMed: 16025106] 

Mercado et al. Page 37

Neurobiol Dis. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://10.1016/j.nbd.2008.06.018
https://10.1111/j.1460-9568.2010.07077.x
https://10.1016/0014-4886(90)90031-m
https://10.1016/0014-4886(90)90031-m
https://10.1002/mds.10588
https://10.1002/mds.10588
https://10.1016/j.baga.2012.01.002
https://10.1016/j.baga.2012.01.002
https://10.1002/mds.27695
https://10.1016/j.expneurol.2020.113327
https://10.1016/j.neuroscience.2005.01.007
https://10.4103/1673-5374.202935
https://10.3389/fnana.2017.00029
https://10.1523/JNEUROSCI.5123-04.2005
https://10.1523/JNEUROSCI.5123-04.2005
https://10.1016/j.parkreldis.2016.10.012
https://10.1155/2015/563820
https://10.1016/j.expneurol.2008.09.025
https://10.1523/JNEUROSCI.5528-08.2009
https://10.1038/nn1510


Wu LL, Fan Y, Li S, Li XJ, Zhou XF, 2010 Huntingtin-associated protein-1 interacts with pro-brain-
derived neurotrophic factor and mediates its transport and release. J. Biol. Chem 285, 5614–5623. 
https://10.1074/jbc.M109.073197. [PubMed: 19996106] 

Xie Y, Hayden MR, Xu B, 2010 Bdnf overexpression in the forebrain rescues huntington’s disease 
phenotypes in yac128 mice. J. Neurosci 30, 14708–14718. https://10.1523/
JNEUROSCI.1637-10.2010. [PubMed: 21048129] 

Yurek DM, Lu W, Hipkens S, Wiegand SJ, 1996 Bdnf enhances the functional reinnervation of the 
striatum by grafted fetal dopamine neurons. Exp. Neurol 137, 105–118. https://10.1006/
exnr.1996.0011. [PubMed: 8566202] 

Yurek DM, Hipkens SB, Wiegand SJ, Altar CA, 1998 Optimal effectiveness of bdnf for fetal nigral 
transplants coincides with the ontogenic appearance of bdnf in the striatum. J. Neurosci 18, 
6040–6047. [PubMed: 9671688] 

Zagrebelsky M, Korte M, 2014 Form follows function: Bdnf and its involvement in sculpting the 
function and structure of synapses. Neuropharmacology 76 (Pt C), 628–638. https://10.1016/
j.neuropharm.2013.05.029. [PubMed: 23752094] 

Zaja-Milatovic S, Milatovic D, et al., 2005 Dendritic degeneration in neostriatal medium spiny neurons 
in parkinson disease. Neurology 64, 545–547. https://10.1212/01.WNL.0000150591.33787.A4. 
[PubMed: 15699393] 

Zanin JP, Unsain N, Anastasia A, 2017 Growth factors and hormones pro-peptides: the unexpected 
adventures of the bdnf prodomain. J. Neurochem 141, 330–340. https://10.1111/jnc.13993. 
[PubMed: 28218971] 

Zhang Y, Meredith GE, et al., 2013 Aberrant restoration of spines and their synapses in l-dopa-induced 
dyskinesia: Involvement of corticostriatal but not thalamostriatal synapses. J. Neurosci 33, 
11655–11667. https://10.1523/JNEUROSCI.0288-13.2013. [PubMed: 23843533] 

Zhou J, Bradford HF, Stern GM, 1997 Influence of bdnf on the expression of the dopaminergic 
phenotype of tissue used for brain transplants. Brain Res. Dev. Brain Res 100, 43–51. [PubMed: 
9174245] 

Zuccato C, Cattaneo E, 2007 Role of brain-derived neurotrophic factor in huntington’s disease. Prog. 
Neurobiol 81, 294–330. https://10.1016/j.pneurobio.2007.01.003. [PubMed: 17379385] 

Mercado et al. Page 38

Neurobiol Dis. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://10.1074/jbc.M109.073197
https://10.1523/JNEUROSCI.1637-10.2010
https://10.1523/JNEUROSCI.1637-10.2010
https://10.1006/exnr.1996.0011
https://10.1006/exnr.1996.0011
https://10.1016/j.neuropharm.2013.05.029
https://10.1016/j.neuropharm.2013.05.029
https://10.1212/01.WNL.0000150591.33787.A4
https://10.1111/jnc.13993
https://10.1523/JNEUROSCI.0288-13.2013
https://10.1016/j.pneurobio.2007.01.003


Fig. 1. 
Experimental design. a Experimental timeline of surgical procedures, behavioral evaluation, 

and drug treatment. b Experimental groups and final group size “N” upon completion of the 

study. c Schematic depicting the design of experiments. Ventral mesencephalic tissue was 

dissected from wild-type embryonic day 14 Sprague-Dawley rat pups, dissociated, then 

transplanted into wild-type Val68Val and homozygous Met68Met rats. Abbreviations: 6-

OHDA = 6-hydroxydopamine, Amph rotation = amphetamine rotation behavioral 

assessment, LD = levodopa, LID = levodopa-induced dyskinesia, GID = graft-induced 

dyskinesia, LD GID = levodopa-mediated GID assessment, Amph GID = amphetamine-

mediated GID assessment, sac = sacrifice, WT = wild-type, BDNF = brain-derived 

neurotrophic factor, SNP = single nucleotide polymorphism, DA = dopamine
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Fig. 2. 
Behavioral measures of graft functional efficacy. a Total LID score (primary behavioral 

endpoint) for Val68Val and Met68Met rats throughout levodopa priming (pre-graft period) 

and for 9 weeks post-engraftment. Dyskinesia severity scores were not significantly different 

between genotypes in sham grafted rats; thus, sham subjects were combined into one group 

post-graft. Inset graph depicts total dyskinesia score over time for sham grafted subjects, 

separated by genotype. Statistics: Non-parametric Kruskal-Wallis test with Dunn’s multiple 

comparisons test at each time point. Week 5:**p = 0.0015 Met68Met-DA vs Sham, †p = 

0.0302 Met68Met-DA vs Val68Val-DA; Week 6: *p = 0.0284 Met68Met-DA vs Sham, †p = 

0.0475 Met68Met-DA vs Val68Val-DA; Week 8: *p = 0.0198 Met68Met-DA vs Sham; 

Week 9: ***p = 0.0003 Met68Met-DA vs Sham. Sham groups were not significantly 
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different at any of the post-graft time points (p ≥ 0.12 for all time points post-graft). b Pre-

graft LID severity time course showing individual animal responses during levodopa 

priming days 1, 12, and 25. Rats were rated at 20, 70, 120, 170, and 220 mins post-levodopa 

each day. c LID severity time course and total LID scores showing individual animal 

responses at weeks 3, 6, and 9 post-engraftment. Non-parametric Kruskal-Wallis test with 

Dunn’s multiple comparisons test at each time point. d Amphetamine rotational asymmetry 

(secondary behavioral endpoint), measured at 7 weeks pre-graft and 7 weeks post-graft. Data 

are expressed as net ipsilateral rotations (i) and ipsilateral rotations per min over 90 mins (ii–

iii). Unpaired t-test with Welch’s correction (ii) and one-way ANOVA with Šídák’s post-hoc 

test (iii). Abbreviations: LID = levodopa-induced dyskinesia, DA = dopamine graft, CCW = 

counterclockwise
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Fig. 3. 
Behavioral measures of graft dysfunction. a,b Peak amphetamine-induced (a) and levodopa-

induced (b) GID severity score at week 10 post-engraftment. Non-parametric Kruskal-Wallis 

test with Dunn’s post-hoc comparisons. c,d Time course of amphetamine-mediated (c) and 

levodopa-mediated (d) GID behavior at week 10 post-engraftment. e Spearman correlation 

between amphetamine-mediated peak GID behavior and levodopa-mediated peak GID 

behavior. Abbreviations: GID = graft-induced dyskinesia, Amph = amphetamine, DA = 

dopamine graft
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Fig. 4. 
Graft histology in parkinsonian striatum of Met68Met rats and their wild-type (Val68Val) 

counterparts. a Representative micrographs of THir striatum demonstrating more extensive 

grafted DA neurite outgrowth in Met68Met host striatum. Scale bars = 100 μm (10x 

micrographs), 1000 μm (1x micrographs). b Corresponding THir nigral tissue sections 

showing near-complete depletion of host SNc DA neurons in the lesioned hemisphere. Scale 

bar = 1000 μm. c Stereologically estimated total number of grafted DA neurons. Mean ± 

SEM. Unpaired t-test. d Stereologically estimated total graft volume. Mean ± SEM. 

Unpaired t-test. e Schematic illustrating fields of view used for analysis of grafted DA 

neurite outgrowth. Proximal and distal regions are denoted by “1” and “2,” respectively. f 

Average grafted DA neurite density proximal and distal to the graft border. Mean ± SEM. 
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Two-way repeated measures ANOVA with Šídák’s post-hoc test. g Comparison of distal 

grafted DA neurite outgrowth separated into regions surrounding the graft. Mean ± SEM. 

Unpaired t-tests and mixed-effects model. Red bar indicates maximum and minimum neurite 

density means for Met68Met subjects. h Distal grafted DA neurite density compared with 

endogenous DA innervation of intact contralateral striatum. Mean ± SEM. Two-way 

repeated measures ANOVA with Šídák’s post-hoc test. Abbreviations: THir = tyrosine 

hydroxylase immunoreactive, str = striatum, ot = olfactory tubercle, vta = ventral tegmental 

area, sn = substantia nigra, ctx = cortex, D = dorsal, M = medial, V = ventral, L = lateral, 1 = 

proximal zone, 2 = distal zone, ns = not significant
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Fig. 5. 
Impact of Met allele on graft (TH) connectivity with host MSN spines (synaptopodin). a 

Schematic representation of regions relative to the graft in which confocal images were 

acquired (left), and representative 3D confocal z-stack of grafted DA neurites in tissue 

stained for TH and synaptopodin (right). Scale bar = 10 μm. b (i’) Increased magnification 

of micrograph in panel (a), and (i”) Imaris® 3D reconstruction of DA fiber denoted by (i) in 

panel (a). Scale bar = 1 μm. c Comparison of TH-synaptopodin contact density normalized 

to TH surface volume. Mean ± SEM. Two-way mixed-effects model with repeated measures, 

followed by Šídák’s and Dunnett’s post-hoc tests. Red bar indicates maximum and 

minimum contact density means in the intact striatum. d Spearman correlation between 

proximal TH-synaptopodin contact density and total LID severity score at 9 wks post-

engraftment. e Spearman correlation between distal TH-synaptopodin contact density and 

total LID severity score at 9 wks post-engraftment. Abbreviations: ctx = cortex, str = 

striatum, 1 = proximal zone, 2 = distal zone
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Fig. 6. 
Vglut2 mRNA expression in DA neurons grafted into parkinsonian striatum. a Schematic 

depicting normal mature vs immature DA neuron phenotype, based on data from (El 

Mestikawy et al., 2011). b,c Vglut2 mRNA expression in THir grafted DA neurons and 

unidentified grafted TH-negative cells. Cells denoted by (i-iii) in panel (c) are shown with 

increased magnification in (i’–iii’). Scale bars = 250 μm in panel (b) and 5 μm for insets in 

this panel; 100 μm in panel (c), or 10 μm for insets in this panel. d Vglut2 mRNA in DA 

neurons of the naïve adult rat midbrain. DA neurons of the substantia nigra (i) and ventral 

tegmental area (ii) are shown with increased magnification in (i’) and (ii’), respectively. 

Vglut2-negative DA neurons are indicated by solid arrows in (i’) and (ii’), whereas solid 

arrowheads indicate cells containing Vglut2 mRNA only, and unfilled arrows indicate cells 

containing colocalized TH-Vglut2. Scale bars = 300 μm for panel (d), and 30 μm for i’ and 

ii’. e Percentage of DA neurons expressing Vglut2 mRNA in naïve adult rat midbrain and 

grafted, parkinsonian striatum. NOTE: Grafted DA neurons are from wild-type donors. 

Mean ± SEM. Two-way ANOVA with Šídák’s post-hoc test (Naïve Total and Grafted); 

unpaired t-tests (naïve SNc and naïve VTA). Abbreviations: DA = dopamine, VMAT = 

vesicular monoamine transporter, Glut = glutamate, VGLUT2 = vesicular glutamate 

transporter 2, TH = tyrosine hydroxylase, SNc = substantia nigra pars compacta, VTA = 

ventral tegmental area
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Fig. 7. 
VGLUT2 protein expression in THir DA fibers grafted into parkinsonian striatum. a 

Computer generated Imaris® 3D reconstruction of confocal z-stack depicting VGLUT2 

colocalization within grafted DA neurites. The advanced Imaris® algorithms allow 

visualization of fine structures (i.e., vesicles) inside cellular elements (i.e., neurites), and 

allows the cellular element to be visualized at varying levels of transparency (i.e., 50% 

shown here) to allow visualization of internal elements. Scale bar = 1 μm. b Quantification 

of VGLUT2 protein located within THir DA fibers, normalized to TH surface volume. TH-

VGLUT2 colocalization in the striatum of naïve rats was compared with grafted DA fibers 

in the parkinsonian striatum and endogenous DA fibers in the intact striatum contralateral to 

the lesion. Mean ± SEM. Two-way ANOVAs with Tukey’s post-hoc test. c Spearman 

correlation between TH-VGLUT2 colocalization in grafted DA neurites and total 

amphetamine-mediated GID score at 10 wks post-engraftment. d Confocal micrograph 

indicating synaptic apposition (≤ 0.6 μm) between VGLUT2 protein located inside a grafted 

DA neurite (indicated by open arrow on the right) and PSD95 located adjacent to the DA 

neurite (indicated by open arrow on the left). The presumed synapse (i) is shown with 

increased magnification using Imaris® 3D imaging in (i’) and (i”). Scale bars = 2 μm 

(confocal micrograph), 1 μm (Imaris® 3D reconstructions). % transparency indicates that 

applied to TH fibers. e Quantification of presumed excitatory VGLUT2-PSD95 synapses 

made by DA neurites in the grafted striatum and intact contralateral striatum, normalized to 

TH surface volume. Mean ± SEM. Mixed-effects model with Šídák’s post-hoc test. f 
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Spearman correlation between presumed excitatory VGLUT2-PSD95 synapses made by DA 

neurites and total amphetamine-mediated GID score at 10 wks post-engraftment. Note that 

one statistical outlier was removed from the Met68Met group. Abbreviations: VGLUT2 = 

vesicular glutamate transporter 2, PSD95 = postsynaptic density protein 95, TH = tyrosine 

hydroxylase, MSN = medium spiny neuron, ns = not significant
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Fig. 8. 
Excitatory corticostriatal (VGLUT1) synaptic input onto grafted DA neurons. a Schematic 

depicting “normal” corticostriatal synapse with modulatory DA input (right side of 

diagram), and “atypical” excitatory glutamatergic synapse onto grafted DA neurons (left side 

of diagram). b Representative confocal z-stack of tissue stained for VGLUT1, PSD95, and 

TH proteins. Scale bar = 10 μm. Inset: Increased magnification of a presumed glutamatergic 

(VGLUT1) synapse onto PSD95 protein located inside a grafted THir DA fiber (≤ 0.6 μm). 

Inset scale bar = 0.5 μm. c Imaris® 3D reconstruction of the inset image in panel (b). % 

transparency indicates that applied to TH fibers. d Quantification of presumed corticostriatal 

(VGLUT1) synapses with PSD95 located inside grafted DA fibers, normalized to TH 

surface volume. Mean ± SEM. Two-way repeated measures ANOVA with Šídák’s post-hoc 
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test. e Quantification of presumed corticostriatal (VGLUT1) synapses onto grafted DA 

fibers, regardless of PSD95 presence, normalized to TH surface volume. Mean ± SEM. Two-

way repeated measures ANOVA with Šídák’s post-hoc test. Abbreviations: PSD95 = 

postsynaptic density protein 95, VGLUT1 = vesicular glutamate transporter 1, Glut = 

glutamate, DA = dopamine, TH = tyrosine hydroxylase
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Fig. 9. 
Impact of Met allele on presence of serotonin neurons in VM grafts. a Confocal micrographs 

depicting presence of serotonergic neurons in VM grafts from wild-type donors, in Val68Val 

and Met68Met host striatum. Inset: Increased magnification of DA neurons (THir) and 

serotonin neurons (Tph2-immunoreactive) present in grafted striatum. As shown in these 

representative images, there was no colocalization of Tph2 mRNA and TH in VM grafts, 

and this finding was identical between genotypes. Scale bars = 100 μm in panel (a), 10 μm in 

inset panels. b Quantification of grafted serotonin neurons relative to the number of grafted 

DA neurons. Mean ± SEM. Unpaired t-test. c Spearman correlation between the proportion 

of serotonin neurons relative to DA neurons and total amphetamine-mediated GID score at 

10 wks post-engraftment. d Spearman correlation between the proportion of serotonin 

neurons relative to DA neurons and total levodopa-mediated GID score at 10 wks post-

engraftment. e Spearman correlation between the proportion of serotonin neurons relative to 

DA neurons and total LID score at 9 wks post-engraftment. Abbreviations: TH = tyrosine 

hydroxylase, Tph2 = tryptophan hydroxylase 2
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Fig. 10. 
Impact of Met allele on Bdnf mRNA expression in grafted DA neurons and Trkb mRNA 

expression in host striatum. a Schematic illustrating Trkb expression in host dorsolateral 

striatum and Bdnf expression in grafted DA neurons. b Confocal micrograph of Bdnf mRNA 

in DA grafted tissue. Cells depicted in (i-iii) are shown at increased magnification in inset 

(i’–iii’). Scale bars = 100 μm for panel (b), 10 μm for inset images. c Percentage of grafted 

DA neurons expressing Bdnf mRNA in Val68Val and Met68Met grafted rats. Mean ± SEM. 

Unpaired t-test. NOTE: Bdnf mRNA data are available from only three Val68Val grafted 

subjects due to limited tissue sections containing grafts. d,f Micrographs of Trkb mRNA 

expression, presumed to be principally within medium spiny neurons, in grafted and intact 

dorsolateral striatum of sham grafted (d) and DA grafted (f) rats. Scale bars = 25 μm. e,g 

Quantification of Trkb mRNA in sham grafted (e) and DA grafted (g) rats depicted in panels 
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(d) and (f), respectively. Mean ± SEM. Two-way repeated measures ANOVAs with Šídák’s 

post-hoc test. Abbreviations: ctx = cortex, str = striatum, Bdnf = brain-derived neurotrophic 

factor, Trkb = tyrosine receptor kinase B, DA = dopamine, ns = not significant
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Table 2

RNA targets and corresponding RNAscope® probes.

RNA Target Probe Accession number Catalog number

Vglut2 Rn-Slc17a6 NM_053427.1 317011

Tph2 Rn-Tph2 NM_173839.2 316411

Bdnf Rn-Bdnf-CDS NM_012513.4 409031
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