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Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at
epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating
evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as
an important regulator of cell growth and development. Despites its original roles in
X-chromosome dosage compensation, lncRNA Xist also participates in the development
of tumor and other human diseases by functioning as a competing endogenous
RNA (ceRNA). In this review, we comprehensively summarized recent progress in
understanding the cellular functions of lncRNA Xist in mammalian cells and discussed
current knowledge regarding the ceRNA network of lncRNA Xist in various diseases.
Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in
length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016;
Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately
98–99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014;
Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of
genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs
are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs,
Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small
nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A)
lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016;
Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range
of evidence has suggested that lncRNAs function as key regulators in crucial cellular
functions, including proliferation, differentiation, apoptosis, migration, and invasion, by
regulating the expression level of target genes via epigenomic, transcriptional, or post-
transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body
fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis,
and monitoring of disease progression, and act as novel and potential drug targets for
therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a).
Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of
15,000–20,000 nt sequences localized in the X chromosome inactivation center
(XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998;
Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019).
Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation
(XCI), resulting in the inheritable silencing of one of the X-chromosomes during
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female cell development. Also, it serves a vital regulatory function in the whole
spectrum of human disease (notably cancer) and can be used as a novel
diagnostic and prognostic biomarker and as a potential therapeutic target for
human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019;
Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA
Xist have been demonstrated to be involved in the development of multiple types of
tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer,
with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist
(Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such
as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and
osteoarthritis chondrocytes, and more specific details can be found in Table 2. This
review summarizes the current knowledge on the regulatory mechanisms of lncRNA
Xist on both chromosome dosage compensation and pathogenesis (especially cancer)
processes, with a focus on the regulatory network of lncRNA Xist in human disease.

Keywords: long non-coding RNA, lncRNA Xist, cancer, disease, X-chromosome inactivation, X-chromosome
inactivation center

THE ROLE OF LncRNA XIST IN X
CHROMOSOME DOSAGE
COMPENSATION

In most mammals, sex is determined by a system based on X
and Y chromosomes (Deng et al., 2014), with males holding the
XY chromosome and females XX. Dosage compensation is thus
needed to ensure equivalent expression levels of sex-linked and
autosomal genes (Polito et al., 1990; Bone and Kuroda, 1996;
Larsson and Meller, 2006; Disteche, 2012, 2016; Ferrari et al.,
2014) despite the presence of an extra X-chromosome in female
cells (Deng et al., 2014). X-chromosome inactivation (XCI),
which refers to the random selection and transcriptional silence
of one of two X-chromosomes in females at the early stages
of embryonic development, is a unique dosage compensation
mechanism in mammals (Waldron, 2016; Bar et al., 2019; Strehle
and Guttman, 2020; Yu B. et al., 2020). In most placental
mammals, there are two waves of XCI: the imprinted XCI exists
in the fertilized embryo and extraembryonic tissues, and the
random XCI persists in the inner cell mass (after implantation
around embryonic day 5.5), yet humans lack the imprinted XCI
and instead have X chromosome dampening (XCD) (Ropers
et al., 1978; Harper et al., 1982; Kung et al., 2013; Lee et al., 2013;
van Bemmel et al., 2016; Finestra and Gribnau, 2017; Sahakyan
et al., 2018).

XCI is subdivided into distinct phases: initiation,
establishment, and maintenance of the inactive X-chromosome
(Gontan et al., 2011; Maduro et al., 2016). Initiation phase is
a stochastic process (Spatz et al., 2004; Maduro et al., 2016;
Jegu et al., 2017) that involves X-X pairing, counting, and XCI
activation (xist activation, etc.) processes, and ensures that any
number of X chromosomes randomly generate only one active X
chromosome (Xa) expressed in each female cell and inactive X
chromosome (Xi) is hetero-chromatinized and silenced in female
cells. Establishment phase (Spatz et al., 2004; Maduro et al., 2016;

Colognori et al., 2020) involves building a chromosomal memory
that persists through the ensuring maintenance phase and
ensures stable retention of repressive heterochromatin. Once the
establishment phase is completed, the XCI is remarkably stable
and becomes more difficult to reactivate. Maintenance phase is
keeping the silenced state of XCI after the establishment phase
via continuing lncRNA Xist expression. Once Xi is established,
the Xi fully maintains its silent configuration and is clonally
propagated throughout cell divisions (Maduro et al., 2016;
Finestra and Gribnau, 2017). Numorous studies suggest that all
three phases of XCI are governed by the lncRNA Xist (Lu et al.,
2017; Sahakyan et al., 2018; Sidorenko et al., 2019).

XIC is the X-linked minimal genetic region which contains
various factors and genes, such as Xist and Tsix, that are necessary
and sufficient to initiate the XCI process in female cells (Willard,
1996; Sherstyuk et al., 2013; Hwang et al., 2015; Loda and
Heard, 2019). XIC (Figure 1) is located in 100–500 kb region
of mouse X chromosome and 2.3 Mb syntenic region of human
X chromosome, and includes a cluster of lncRNA loci, such as
Ftx, Jpx, Xist, Tsix, Xite, RepA, and so on (Spatz et al., 2004;
Augui et al., 2011; Maduro et al., 2016; Jegu et al., 2017; Loda
and Heard, 2019; Sidorenko et al., 2019). lncRNA Xist exists
inside XIC, specifically at a location 15 kb downstream from Tsix
antisense (Sado and Brockdorff, 2013; Gendrel and Heard, 2014;
Mira-Bontenbal and Gribnau, 2016; da Rocha and Heard, 2017;
Pintacuda et al., 2017b; Monfort and Wutz, 2020), and contains
several functional domains that are a series of conservation
repetitive motifs of A-to-F repeats (Figure 1). lncRNA Xist is
transcriptionally activated with the initiation of the XIC process
and is also believed to contribute to the complete process of XCI
as a master regulator.

lncRNA Xist and its associated chromatin modifying complex
plays a vital role in the regulation of the XCI process (Figure 2).
A detailed description of the XCI process is beyond the scope
of this review, and more specific detail is given in references
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FIGURE 1 | The X-chromosome Inactivation Center (Maduro et al., 2016). The X inactivation center consists of the different genes located and multiple genes
encoding lncRNA, containing Xist, Tsix, Tsx, Xite, Jpx, Ftx, DNA binders, and RNA binders.

(Spatz et al., 2004; Augui et al., 2011; Jegu et al., 2017), We
briefly described regulatory process involved in LncRNA Xist in
the review (Figure 2). During the initiation phase, the complex
factors (OCT4, CTCF, Tsix, Xite, etc.), which separately bind the
Xa and Xi, facilitates the X chromosome pairing and counting
in the embryo after fertilization (Xu et al., 2006; Donohoe
et al., 2009; Kung et al., 2015). After counting and pairing, XCI
initiation is also accompanied by Tsix, Xist, etc. upregulation
which is controlled by the network of genetic interactions
(Figure 2B), such as Tsix, Sox2, PRDM14, OCT4, Jpx, Rnf12,
and RepA (Augui et al., 2011; Khamlichi and Feil, 2018).
When complete onset of XCI occurs, they employ divergent
transcription fates with one becoming the Xa chromosome and
the other becoming the Xi chromosome (Jegu et al., 2017).
In Xi, lncRNA Xist activation and expression is modulated by
numerous factors, such as pluripotency factor (NANOG, OCT4,
SOX2, PRDM14, and REX1), RNF12, Tsix, and RepA (PcG
protein recruitment), and more information is given in reference
(Augui et al., 2011; Khamlichi and Feil, 2018). The regulation
of Tsix expression is beyond the scope of this review, and more
specific details can be found in references (Willard, 1996; Gontan
et al., 2012; Gayen et al., 2015). Once Xist expression has been
activated, Xist binds Polycomb repressive complex 2 (PRC2) via
Repeat A formed Xist-PRC2 complex, and YY1 tethers the PRC2-
Xist complex through Repeat C to the Xi nucleation center which
obtains lncRNA Xist-PRC2 complex by the RNA polymerase
II (RNA Pol II) (Jeon and Lee, 2011; Thorvaldsen et al., 2011;
Makhlouf et al., 2014; Chigi et al., 2017).

After the initiation phase, LncRNA Xist recruits protein
complex factors excluding RNA Pol II, and induces a global
suppression of lncRNA Xist topologically associated domains

(TAD), which is involved in epigenetic modification and
chromatin compaction to the Xi chromosome to spreads along
the Xi at the established phase (Giorgetti et al., 2016; Mira-
Bontenbal and Gribnau, 2016; Finestra and Gribnau, 2017;
van Bemmel et al., 2019; Galupa et al., 2020). These protein
complexes (Figure 2A) include the heterogeneous nuclear
protein U (hnRNPU; also known as SAF-A), which is required
for lncRNA Xist localization (Hasegawa et al., 2010; Kolpa
et al., 2016; Sakaguchi et al., 2016; Loda and Heard, 2019),
heterogeneous nuclear ribonucleoprotein K (hnRNPK), which
is required for Xist-mediated chromatin modifications and
Polycomb recruitment but not lncRNA Xist localization (Chu
et al., 2015; Pintacuda et al., 2017a; Loda and Heard, 2019; Wang
et al., 2019g), and the gene-silencing factor Spen, which is not
required for Xist RNA localization (Chu et al., 2015; Monfort
et al., 2015; Loda and Heard, 2019; Dossin et al., 2020) and binds
to C, B, F, and A repeats at the 5′ end of the lncRNA Xist. ATRX
directs binding to two major Polycomb repressive complexes
(PRCs). -PRC1 and -PRC2 are involved in epigenetic silencing
(acetylation of histone H3 and H4 and CpG island methylation,
etc.) (Sarma et al., 2014; Minajigi et al., 2015; Pinheiro and
Heard, 2017; Colognori et al., 2019; Lee et al., 2019; Wang et al.,
2019a; Chen and Zhang, 2020). Other protein complexes (Mira-
Bontenbal and Gribnau, 2016; Loda and Heard, 2019) also take
part in the lncRNA Xist spreading procession, such as SHARP
(McHugh et al., 2015), HDAC3 (Zylicz et al., 2019), LBR (Chen
C.K. et al., 2016; Nesterova et al., 2019), Airn and Kcnq1ot1
(Schertzer et al., 2019), RBM15 and WTAP (Mira-Bontenbal and
Gribnau, 2016), trisomy 21 (Jiang et al., 2013), U1 snRNP (Yin
et al., 2020), Rsx (Grant et al., 2012), and CdK8 (Postlmayr et al.,
2020). LncRNA Xist recruits repressive complexes, which leads
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FIGURE 2 | Model for Xist and Xist regulation at the process of XCI. (A) The process of dynamic and multifaceted modulation of XCI by lncRNA Xist. lncRNA Xist is a
multitasking RNA that recruits protein complexes (such as OCT4, CTCF, Tsix, Xite, PRC1, PRC2, SPEN, ATRX, hnRNPU, hnRNPK, SHARP, HDAC3, LBR, Airn,
Kcnq1ot1, RBM15, WTAP, trisomy 21, U1 snRNP, Rsx, Sox2, PRDM14, Jpx, Rnf12, and RepA) to initiate, establish, and maintain the XCI state by histone
modifications, DNA methylation, and H4 hypoacetylation. (B) LncRNA Xist regulation network of genetic interactions (Augui et al., 2011). Note that here arrows do
not necessarily imply direct regulation.

to immediate histone modifications and DNA methylation (such
as H2AK119Ub, H3K27me3, and CpG island) and coats on the
Xi to build Xi (Mira-Bontenbal and Gribnau, 2016; Pinheiro and
Heard, 2017; Wang et al., 2020a). Taken together, the Xi has been
established and maintained in an inactive state by continuous
synthesis of lncRNA Xist RNA.

THE ROLE OF LncRNA XIST IN CANCER

Cancer, of which there are over 200 different types, is a
complex disease in which cells in a specific tissue are no longer
fully responsive to the signals within the tissue that regulate
cellular differentiation, survival, proliferation, and death. As a
result, these cells accumulate within the tissue, causing local
damage and inflammation Cancer cells proliferate (growth) out
of control, spread to other tissues (metastasize), and lose the
ability to die via the normal process of cell apoptosis (death). The
discovery of lncRNA Xist has contributed to cancer development
and progression by regulation of the downstream signaling
processes (Table 1). This also provides a window into the
understanding of aberrant expression of lncRNA Xist associated
with tumorigenesis, metastasis, and tumor stage. lncRNA Xist
is a novel potential biomarker and potentially could be used in
diagnosis and therapy for different types of cancer.

LncRNA Xist in Bladder Cancer
Bladder cancer is more common in men than in women, with
respective incidence and mortality rates of 9.6 and 3.2 per
100,000 in men, which is about 4 times that of women globally
(Chen W. et al., 2016; Bray et al., 2018). lncRNA Xist has recently
been reported to regulate bladder cancer development through
regulating several miRNAs or other target genes. lncRNA Xist
exerts an oncogenic role through binding to miR-124, miR-
139-5p, miR-200c, miR-133a, and miR-335 targets AR, Wnt1,
TET1, and p53, which affect cell growth, invasion and migration,
and metastasis (Hu et al., 2017; Xiong et al., 2017; Xu R.
et al., 2018; Hu B. et al., 2019; Zhou et al., 2019c; Chen D.
et al., 2020). This research uncovered that lncRNA Xist may
be invoked as a potential therapeutic and prognostic biomarker
for bladder cancer.

LncRNA Xist in Breast Cancer
Breast cancer accounts for almost one in four cancer cases among
women, with respective incidence and mortality rates of 24.2
and 15.0%, and is the most commonly diagnosed cancer and
leading cause of cancer death in women globally (Chen W.
et al., 2016; Bray et al., 2018). Some previous studies have
suggested that deregulation of lncRNA Xist plays a vital role in
the pathogenesis of both inherited and sporadic breast cancer
(Kawakami et al., 2004; Soudyab et al., 2016). The Breast Cancer
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TABLE 1 | LncRNA Xist and miRNA in cancer.

Cancer type miRNA Target Mechanism of action
and function

Signaling pathway References

Bladder cancer miR-124, miR-139-5p,
miR-200c, miR-133a,
miR-335

AR, Wnt1, TET1, p53 Aberrant expression
lncRNA Xist is involved
in cancer cells growth,
proliferation,
metastasis, migration,
invasion, apoptosis,
epithelial mesenchymal
transition and drug
resistance

TGF-beta signaling
pathway, PIK3/AKT
signaling pathway,
mTOR signaling
pathway, Wnt/
β-catenin signaling
pathway, p53
signaling pathway,
MAPK signaling
pathway, FOXO
signaling pathway,
HIF-1 signaling
pathway, Thyroid
hormone signaling
pathway, Notch
signaling pathway,
C-type lectin receptor
signaling pathway,
JAK-STAT signaling
pathway, AGE-RAGE
signaling pathway,
Pathways of
neurodegeneration—
multiple diseases
and ECM-receptor
interaction, etc.

Hu et al., 2017; Xiong et al., 2017;
Xu R. et al., 2018; Hu B. et al., 2019;
Zhou et al., 2019c; Chen D. et al., 2020

Breast cancer miR-155, miR-20a,
miR-200c-3p, miR-454,
miR-92b, miR-503,
miR-125b-5p, miR-362-5p

CDX1, TP53, ANLN,
Slug, ESA, PHLPP1,
AKT, MSN, cMet,
NLRC5, UBAP1

Xing et al., 2018; Zhao L. et al., 2018;
Zheng R. et al., 2018; Li et al.,
2020c,d,e; Liu et al., 2020a; Zhang
et al., 2020a

Colorectal cancer miR-137, miR-132-3p,
miR-486-5p, miR-93-5p,
miR-124, miR-30a-5p,
miR-338-3p

EZH2, MAPK1, NRP-2,
HIF1A, AXL, METTL14,
SGK1, ROR1, PAX5

Chen D.L. et al., 2017; Song et al.,
2017; Liu et al., 2018a, 2019a; Zhu J.
et al., 2018; Zhang et al., 2019d; Ma
et al., 2020; Yang L.G. et al., 2020

Glioblastoma miR-152, miR-27a, miR-429,
miR-137, miR-126, miR-133a,
miR-29c, miR-204-5p

Smurf1, ZO-2, FOXC1,
Rac1, SLC1A5, IRS1,
SOX4, MMR, Bcl-2,
ASCT2

Du P. et al., 2017; Wang Z. et al., 2017;
Yu H. et al., 2017; Cheng Z.H. et al.,
2020; Luo C.X. et al., 2020; Shen J.
et al., 2020; Sun Y. et al., 2020; Yao
et al., 2020; Zhao Q. et al., 2020

Hepatocellular
carcinoma

miR-29b, miR-92b,
miR-155-5p, miR-200b-3p,
miR-139-5p, miR-194-5p,
miR-497-5p, miR-181a

HMGB1, SMAD7,
SOx6, PTEN, PDK1,
AKT, MAPK1, PDCD4,
PTEN

Zhuang et al., 2016; Chang et al., 2017;
Mo et al., 2017; Kong et al., 2018; Lin
et al., 2018; Liu and Xu, 2019; Xie
et al., 2019; Zhang et al., 2019h

Nasopharyngeal miR-34a-5p, miR-29c,
miR-491-5p, miR-148a-3p,
miR-381-3p

E2F3, Notch3,
ADAM17, NEK5,
PDCD4, Fas-L

Song et al., 2016; Han et al., 2017;
Cheng Q. et al., 2018; Shi et al., 2020;
Zhao C.H. et al., 2020

Lung cancer miR-140, miR-363-3p, let-7i,
miR-449a, miR-374a,
miR-212-3p, miR-186-5p,
miR-137, miR-744, miR-367,
miR-141, miR-16, miR-335,
miR-144-3p, miR-17,
miR-142-5p

iASPP, TCF-4, MDM2,
BAG-1, HIF1A-AS1,
KLF2, Bcl-2, LARP1,
CBLL1, PXN, Notch-1,
RING1, ZEB2, CDK8,
SOD2, ROS, SMAD2,
p53, NLRP3, MDR1,
MRP1, ATG7, PAX6

Sun J. et al., 2017; Sun W. et al., 2017;
Wang H.Y. et al., 2017; Xu Z.Z. et al.,
2017; Zhang Y.L. et al., 2017; Jiang
H.J. et al., 2018; Li C. et al., 2018;
Wang et al., 2018c, 2019c; Liu et al.,
2019b; Qiu et al., 2019; Tian et al.,
2019; Zhou et al., 2019e; Jiang et al.,
2020; Rong et al., 2020; Xu et al., 2020

Osteosarcoma miR-21-5p, miR-193-3p,
miR-195-5p, miR-137,
miR-302b, miR-375-3p,
miR-153

p21, NF-kB, PUMA,
PDCD4, RSf1, YAP,
RAP2B, AKT, mTOR,
SNAl1

Wu D.P. et al., 2017; Zhang and Xia,
2017; Lv et al., 2018; Yang C. et al.,
2018; Li H. et al., 2019; Sun X. et al.,
2019; Wen et al., 2020

Pancreatic
cancer

miR-133a, miR-140, miR-124,
miR-34a-5p, miR-34a,
miR-141-3p, miR-429

EGFR, iASPP, YAP,
EGFR, TGF-β2, ZEB1

Liang et al., 2017; Wei W. et al., 2017;
Sun Z. et al., 2018; Shen et al., 2019;
Sun and Zhang, 2019; Zou et al., 2020

(Continued)
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TABLE 1 | Continued

Cancer type miRNA Target Mechanism of action
and function

Signaling pathway References

Retinoblastoma miR-21-5p, miR-124, miR-101,
miR-140-5p, miR-200a-3p

VEGF, NKILA, STAT3,
ZEB1, ZEB2, SOX4,
NRP1

Hu et al., 2018; Cheng Y. et al., 2019;
Dong et al., 2020; Wang et al., 2020c;
Zhao H. et al., 2020

Cervical cancer miR-200a, miR-140-5p,
miR-889-3p

Fus, ORC1, SIX1 Zhu H. et al., 2018; Chen X. et al.,
2019c; Liu et al., 2020d

Gastric cancer miR-101, miR-497, miR-185,
miR-337

EZH2, MACC1,
TGF-β1, MDR1, MRP1,
JAK2

Chen D.L. et al., 2016; Ma L. et al.,
2017; Zhang Q. et al., 2018; Zheng W.
et al., 2020

Melanoma miR-21, miR-139-5p, miR-217 PI3KR1, ROCK1 Pan et al., 2019; Zhang et al., 2019f;
Tian K. et al., 2020

Esophageal
cancer

miR-101, miR-494 EZH2, CDK6 Wu X. et al., 2017; Chen et al., 2019f

Laryngeal
squamous cell
carcinoma

miR-124-3p, miR-144,
miR-125-5p

EZH2, IRS1, TRIB2 Xiao D. et al., 2019; Cui et al., 2020; Liu
et al., 2020b

Ovarian cancer miR-214-3p, miR-150-5p PTEN, PDCD4 Zuo et al., 2019; Wang and Li, 2020

Neuroendocrine
tumor

miR-424-5p bFGF Zhou et al., 2019b

Neuroblastoma miR-375 EZH2, DKK1, L1CAM Yang H. et al., 2020

Thyroid cancer miR-34a, miR-141 MET Liu et al., 2018c; Xu Y. et al., 2018

Colon cancer miR-34a Wnt/β-catenin Sun N.N. et al., 2018

Renal cell
carcinoma

miR-106b-5p, miR-302c p21, SDC1 Zhang J. et al., 2017; Sun K. et al.,
2019

Prostate cancer miR-23a RKIP, LINE-1 Laner et al., 2005; Du Y. et al., 2017

Chordoma miR-124-3p iASPP Hai, 2020

1 protein (BRCA1) is a tumor suppressor. Reduced expression
of BRCA1 leads to increased risk of breast cancer development
(Romagnolo et al., 2015). LncRNA Xist, which is dependent
on the production of BRCA1 and may participate in regulating
breast cancer development, is highly expressed in BRCA1-like
breast cancer as a predictive biomarker (Sirchia et al., 2005,
2009; Vincent-Salomon et al., 2007; Schouten et al., 2016).
It is thought that histone modifications (histone deacetylase
inhibitor) and DNA methylation plays a critical role in breast
cancer growth and metastasis (Librizzi et al., 2015; Shukla et al.,
2019). Some research indicated that breast tumors frequently
display major epigenetic instability of XI which is mediated
by lncRNA Xist, and this phenomenon regulates breast cancer
cells’ proliferation and differentiation (Salvador et al., 2013;
Chaligne et al., 2015). In addition to the indirect regulation
of competing endogenous RNA (ceRNAs), studies published
to date have demonstrated that knockdown or overexpressed
LncRNA Xist in breast cancer results in sponging five miRNAs,
containing miR-155, miR-20a, miR-200c-3p, miR-125b-5p, and
miR-362-5p, and positively regulates the downstream targets
including CDX1, TP53, ANLN, NLRC5, and UBAP1, which
affects breast cancer cells’ growth, proliferation, metastasis,
migration, invasion, apoptosis, epithelial mesenchymal transition
(EMT), and doxorubicin resistance (Zhao L. et al., 2018; Zheng R.
et al., 2018; Li et al., 2020e; Liu et al., 2020a; Zhang et al., 2020a).

Triple-negative breast cancer (TNBC) is a subtype of breast
cancer that accounts for approximately 10–20% of total breast
cancer cases (Prat et al., 2015; Bianchini et al., 2016; Medina
et al., 2020). The deficiency of estrogen, progesterone, and

ERBB2 receptor expression leads to its highly invasive nature
and relatively low response to current therapeutics approaches.
Collectively, lncRNA Xist interacts with miR-454 to inhibit cell
growth in TNBC (Li et al., 2020d). And lncRNA Xist sponges
with miR-92b/Slug/ESA signaling pathway to suppresses TNBC
growth (Li et al., 2020c). lncRNA Xist also positively regulates
PHLPP1 expression via sequestering HDAC3 from the PHLPP1
promoter to influence cells’ viability (Huang et al., 2016). In
cancer immunity and brain metastasis, lncRNA Xist involves
cancer immunity in high expression programmed cell death
protein 1 ligand TNBC cells via activating both OCT4 and
NANOG though activating PI3K/AKT/mTOR signaling pathway
(Salama et al., 2019). lncRNA Xist also promotes brain metastasis
in breast cancer by activating the MSN-c-Met pathway and
augmenting secretion of exosomal miR-503 (Xing et al., 2018),
which may serve as an effective target for the treatment of
brain metastasis. These findings demonstrate LncRNA Xist
may contribute to a significant approach to the treatment
of breast cancer.

LncRNA Xist in Colorectal Cancer
Colorectal cancer, with respective incidence and mortality
rates of 10.2 and 9.2% in the world and which presents a
rising trend in recent decades in China, ranks third in term
of incidence but second in terms of mortality (Chen W.
et al., 2016; Bray et al., 2018). As previously mentioned,
lncRNA Xist exerts its function in colorectal cancer cells’
development by serving as a miRNA sponge. Zhang et al.
(2019e) reported that lncRNA Xist, which modulates tumor
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size, plays a critical role in clinical prognosis and progression
of colorectal cancer. Growing evidence from recent studies
has shown that lncRNA Xist facilitates proliferation, metastasis,
invasion, and EMT of colorectal cancer cells by functioning as
an endogenous sponge of miR-200b-3p, miR-137, miR-132-3p,
miR-486-5p, and miR-93-5p, thus affecting the expression of
miRNAs target gene containing ZEB1, EZH2, MAPK1, NRP-
2, and HIF-1A (Chen D.L. et al., 2017; Song et al., 2017; Liu
et al., 2018a, 2019a; Yang L.G. et al., 2020). But beyond that,
lncRNA Xist has been identified as the downstream target of
methyltransferase-like14 (METTL14) by RNA-seq and Me-RIP,
and its expression negatively correlating with METTL14 and
YTHDF proteins 2 (YTHDF2) has been observed in colorectal
cancer tissues (Yang X. et al., 2020). Yang X. et al. (2020)
identified that METTL14-YTHDF2-lncRNA Xist axis mediated
cells’ proliferation and metastasis in colorectal cancer.

In drug resistance of colorectal cancer cells, lncRNA Xist has
been implicated in the resistance of colorectal cancer cells to
chemoresistance via serving as a miRNA sponge. lncRNA Xist
participates in the processes of drug resistance by modulating
the axis of miR-124/serum and SGK1, miR-338-3p/PAX5, and
miR-30a-5p/ROR1 (Zhu J. et al., 2018; Zhang et al., 2019d;
Ma et al., 2020). Interestingly, Xiao et al. (2017) reported that
overexpression of lncRNA Xist in colorectal cancer confers
a potent poor therapeutic efficacy, and lncRNA Xist enjoys
5FU resistance via enhancing the expression of thymidylate
synthase. In summary, this information indicates that lncRNA
Xist may serve as an independent risk factor for colorectal
cancer prognosis, and could be a potential therapeutic target and
prognostic biomarker for colorectal cancer patients (Yu J. et al.,
2020).

LncRNA Xist in Glioblastoma
Glioblastoma (GBM), with incidence rates of 3.2 per 100,000
and relative 5-year mortality rate of just 94.9%, is the most
common and lethal primary intracranial tumor with few
advances in treatment over the last several decades (Batash
et al., 2017; McFaline-Figueroa and Wen, 2017; Kim et al.,
2018). Accumulating evidence suggests that lncRNA Xist has a
pivotal role in regulating glioma cells’ properties by interacting
with miRNA. lncRNA Xist affects glioblastoma development by
directly binding miR-152 and miR-429 (Yao et al., 2015; Cheng
Z.H. et al., 2017). However, the downstream target gene of
miR-152 and miR-429 remains unclear. In addition, lncRNA
Xist mediates glioma progression, tumorigenesis, metastasis,
proliferation, apoptosis, and glucose metabolism by positively
regulating Bcl-2, FOXC1, ZO-2, Rac1, ASCT2, SLC1A5, SOX4,
Smurf1, and IRS1 by functioning as a ceRNA of miR-204-5p,
miR-137, miR-133a, miR-27a, and miR-126 (Wang Z. et al., 2017;
Yu H. et al., 2017; Cheng Z.H. et al., 2020; Luo C.X. et al., 2020;
Shen J. et al., 2020; Sun Y. et al., 2020; Yao et al., 2020; Zhao Q.
et al., 2020). In drug resistance of glioblastoma cells, lncRNA Xist
has been demonstrated in the resistance of human glioblastoma
cells to Temozolomide (TMZ) via the miR-29c/DNA mismatch
repair (MMR) pathway (Du P. et al., 2017). And Velázquez-
Flores et al. (2020) have reported that XIST and XIST-210
may act as potential biomarkers for Diffuse intrinsic pontine

gliomas diagnosis and prognostic biomarkers. In summary, these
findings revealed that lncRNA Xist has an oncogenic role in the
tumorigenesis of glioma and may serve as a novel and potential
therapeutic target for patients with glioblastoma.

LncRNA Xist in Hepatocellular
Carcinoma
Liver cancer, with respective incidence and mortality rates of
4.7 and 8.2%, was predicted to be the sixth most commonly
diagnosed cancer and the fourth leading cause of cancer death
worldwide in 2018 (Chen W. et al., 2016; Bray et al., 2018).
The major risk factors of hepatocellular carcinoma are chronic
infection with hepatitis B virus (HBV) or hepatitis C virus
(HCV), aflatoxin-contaminated foodstuffs, heavy alcohol intake,
obesity, smoking, and type 2 diabetes, and accounts for about 75–
85% of primary live cancer (Chen W. et al., 2016; Bray et al.,
2018). Recent studies have proposed that lncRNA Xist exerts
tumorigenesis in hepatocellular carcinoma (Ma W.J. et al., 2017;
Ma X. et al., 2017). LncRNA Xist, which functions as a ceRNA
to regulate target HMGB1, SOX6, Smad7, PDK1/AKT, MAPK1,
PDCD4, and PTEN expression by sponging miR-29b, miR-155-
5p, miR-92b, miR-139-5p, miR-194-5p, miR-497-5p, and miR-
181a, facilitates cells’ growth, autophagy, metastasis, and invasion
via activating the miRNA/target signaling pathway (Zhuang et al.,
2016; Chang et al., 2017; Mo et al., 2017; Kong et al., 2018; Lin
et al., 2018; Xie et al., 2019; Zhang et al., 2019h). Analogously,
Liu and Xu (2019) also demonstrated that silencing lncRNA Xist,
whose expression level is significantly higher in hepatocellular
carcinoma tissue compared with adjacent tissues, inhibits cell
growth and tumor formation in hepatocellular carcinoma by
directly interacting with miR-200b-3p, but the downstream
target gene of miR-200b-3p remains unclear. All in all, these
studies will contribute to providing a promising treatment for
hepatocellular carcinoma.

LncRNA Xist in Nasopharyngeal
Carcinoma
Nasopharyngeal carcinoma, with incidence rates of 0.7% and
unknown mortality rates, is relatively uncommon compared
with other cancers and is one of the most common malignant
tumors in the head and neck (Chua et al., 2016; Wei K.R.
et al., 2017). Accumulating studies suggests that the molecular
function of lncRNA Xist has a pivotal function in nasopharyngeal
carcinoma properties, such as cell proliferation, migration,
and invasion. Knockdown of lncRNA Xist, which negatively
regulates expression of miR-29c and miR-491-5p whose target
gene remains unclear, suppressed cell proliferation, invasion, and
growth and induces apoptosis in nasopharyngeal carcinoma (Han
et al., 2017; Cheng Q. et al., 2018). Analogously, lncRNA Xist,
which is highly expressed in nasopharyngeal carcinoma tissues
and cell lines, facilitates nasopharyngeal carcinoma development
via activating miR-34a-5p/E2F3, miR-148a-3p/ADAM17, and
miR-381-3p/NEK5 axis (Song et al., 2016; Shi et al., 2020;
Zhao C.H. et al., 2020). In drug resistance of nasopharyngeal
carcinoma cells, lncRNA Xist, which may present a novel and
potential therapeutic target in nasopharyngeal carcinoma, has
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been implicated in the resistance of human nasopharyngeal
carcinoma cells to cisplatin (DDP) by facilitating programmed
cell death 4 (PDCD4) and Fas ligand (Fas-L) expression (Wang
et al., 2019b). On the whole, these reports will be play a novel role
in the treatment of nasopharyngeal carcinoma.

LncRNA Xist in Lung Cancer
Lung cancer, with respective incidence and mortality rates of
11.6 and 18.4%, is the second most common cancer and remains
the leading cause of cancer incidence and mortality worldwide
(Chen W. et al., 2016; Bray et al., 2018). Emerging research
demonstrates that lncRNA Xist are usually dysregulated in
lung cancer and play a pivotal function in lung carcinoma
initiation, progression, and therapy. lncRNA Xist, which has
an oncogenic role in lung carcinoma, is closely correlated
with tumor progression via regulating miR-140/iASPP axis
and TCF-4 expression (Tang et al., 2017; Sun and Xu, 2019).
Lung adenocarcinoma, which account for approximately 40%
of total lung carcinoma, is also the most common histological
subtype of NSCLC (Rong et al., 2020). lncRNA Xist expedites
cancer progression and the resistance of cisplatin in lung
adenocarcinoma via mediating the miR-363-3p/MDM2 and let-
7i/BAG-1 signaling pathway (Sun J. et al., 2017; Rong et al.,
2020). These results indicated that lncRNA Xist is likely to be
a new marker and potential therapeutic target for patients with
lung adenocarcinoma.

Non-small cell lung carcinoma (NSCLC), which accounts for
85% of lung cancer cases, is the most common subtype of lung
cancer (Zhou et al., 2018). Accumulating evidence has revealed
that lncRNA Xist is a pivotal regulator of cell proliferation, EMT,
migration, invasion, and drug resistance in NSCLC. lncRNA Xist
acts as an oncogene in NSCLC by modulating HIF1A-AS1 and
KLF2 expression (Tantai et al., 2015; Fang et al., 2016). lncRNA
Xist also positively mediates Bcl-2, LARP1, PXN and Notch-1,
CBLL1, and RING1 expression by functioning as a ceRNA of
miR-449a, miR-374a, miR-137, miR-212-3p, and miR-744, which
are involved in cell proliferation, migration, invasion, EMT, and
death in NSCLC (Xu Z.Z. et al., 2017; Zhang Y.L. et al., 2017;
Jiang H.J. et al., 2018; Wang et al., 2018c, 2019c; Qiu et al., 2019).
In addition, lncRNA Xist (Wang H.Y. et al., 2017), which has a
higher expression in NSCLC cell lines and tissues, increases cell
proliferation and invasion by negatively regulating miR-186-5p
expression; however, the downstream target gene of miR-186-5p
remains unclear.

It has been reported (Li C. et al., 2018) that TGF-β
(Transforming growth factor β)-induced EMT serves a vital role
in NSCLC metastasis and invasion. lncRNA Xist promotes TGF-
β-induced EMT by positively regulating ZEB2 via interacting
with miR-367 and miR-141 (Li C. et al., 2018). Analogously,
lncRNA Xist inhibits NSCLC progression by sponging miR-
16, miR-335, and miR-142-5p, and regulating target CDK8,
SOD2/ROS, and PAX6 expression (Liu et al., 2019b; Zhou et al.,
2019e; Jiang et al., 2020). Drug resistance is one of the most
common reasons for therapeutic failure in patients with NSCLC
and a persistent issue that requires continued investigation.
Emerging evidence indicated that lncRNA Xist is associated
with cisplatin resistance in NSCLC by TGF-β effector SMAD2

signaling pathway, miRNA-144-3p/MDR1 and MRP1, and miR-
17/ATG7 axis (Sun W. et al., 2017; Tian et al., 2019; Xu
et al., 2020). All in all, this evidence suggests that lncRNA Xist
may offer a hopeful diagnostic and therapeutic choice for the
treatment of NSCLC.

LncRNA Xist in Osteosarcoma
Bone cancer, with respective incidence and mortality rates of
0.20 and 0.28%, occurs frequently in children, adolescents, and
young adults aged 15 to 29 years (Siegel et al., 2019, 2020).
Osteosarcoma, which accounts for 20 to 40% of all bone tumors,
are the most frequent morphological subtypes of bone cancer,
representing a worldwide and common primary malignant bone
tumor in children and adolescents (Balmant et al., 2019; Muller
and Silvan, 2019). Growing evidence from recent studies has
shown that lncRNA Xist is aberrantly regulated in osteosarcoma.
LncRNA Xist, which participated in osteosarcoma development
processes, including cell proliferation, migration, invasion, EMT,
and apoptosis, is involved in gene regulation through a variety of
mechanisms, primarily by functioning as a miRNA sponge and
via interacting with its targets (Li et al., 2017; Wang et al., 2019f;
Han and Shen, 2020), such as miR-153/SNAI1 pathway (Wen
et al., 2020), EZH2, PUMA, and NF-kB (Xu T. et al., 2017; Gao
et al., 2019).

In addition to indirect modulation of ceRNAs, studies
published to date have indicated that high lncRNA Xist
expression in osteosarcoma results in sponging six miRNAs,
namely miR-21-5p, miR-193a-3p, miR-195-5p, miR-320b, miR-
137, and miR-375-3p, which affects osteosarcoma progression
(Wu D.P. et al., 2017; Zhang and Xia, 2017; Lv et al., 2018; Yang C.
et al., 2018; Li H. et al., 2019; Sun X. et al., 2019). lncRNA, which
regulates miR-21-5p/PDCD4 axis, miR-193a-3p/RSF1 axis, miR-
195-5p/YAP axis, miR-137, miR-320b/RAP2B axis, and miR-
375-3p/KT/mTOR axis, contributes to osteosarcoma cell growth,
metastasis, and invasion by activating MAPK signaling pathway,
NF-kB signaling pathway, and PI3K-AKT-mTOR signaling
pathway. Taking all into account, these studies indicated that
lncRNA Xist may act as a candidate prognostic biomarker and
a promising therapeutic target for osteosarcoma (Wu D.P. et al.,
2017; Zhang and Xia, 2017; Lv et al., 2018; Yang C. et al., 2018;
Li H. et al., 2019; Sun X. et al., 2019).

LncRNA Xist in Pancreatic Cancer
Pancreatic cancer, with respective incidence and mortality rates
of 2.5% (China, 2.1%, 2015) and 4.5% (China, 2.8%, 2015), was
the seventh leading cause of cancer death worldwide in both
males and females in 2018 (Chen W. et al., 2016; Bray et al., 2018).
Accumulating evidence indicated that lncRNA Xist interacts with
additional miRNAs, such as miR-133a, miR-140 and miR-124,
miR-34a-5p, miR-34a, miR-141-3p, and miR-429 in pancreatic
cancer, and is involved in the development and progression of
pancreatic cancer (Liang et al., 2017; Wei W. et al., 2017; Sun Z.
et al., 2018; Shen et al., 2019; Sun and Zhang, 2019; Zou et al.,
2020). As aforementioned, lncRNA Xist promotes pancreatic
cancer cells’ proliferation by binding miR-133a, thus affecting
the miR-133a downstream target gene EGFR (epidermal growth
factor receptor) which is positively correlated with lncRNA Xist
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(Wei W. et al., 2017). lncRNA Xist also facilitates miR-140/miR-
124/iASPP/CDK1 axis, miR-34a/YAP axis, miR-141-3p/TGF-β2
axis, miR-429/ZEB1 axis and miR-34a-5p, which contributes to
carcinoma cell growth, EMT, migration, and invasion (Liang
et al., 2017; Sun Z. et al., 2018; Shen et al., 2019; Sun and
Zhang, 2019; Zou et al., 2020). However, the downstream target
gene of miR-34a-5p remains unknown. Taken together, the above
research results suggested that lncRNA Xist could be regarded
as a candidate prognostic biomarker and a potential therapeutic
target in human pancreatic carcinoma.

LncRNA Xist in Retinoblastoma
Retinoblastoma, which has a significant effect on mortality
in emerging countries but is more curable in industrialized
countries, is an aggressive eye cancer that affects infants and
children (Cassoux et al., 2017). Recently, abundant studies
demonstrated that dysregulation lncRNA was involved in
tumorigenesis and cancer progression of retinoblastoma (Yang
and Wei, 2019). Compared to healthy controls, lncRNA Xist was
significantly upregulated in plasma of retinoblastoma patients
which was inversely associated with lncRNA NKILA (Lyu et al.,
2019). LncRNA Xist overexpression promotes retinoblastoma
cells proliferation, migration, and invasion rates via negatively
regulating lncRNA NKILA, but the causality has not been
fully validated. In addition, lncRNA Xist, which indirectly
interacts with miR-21-5p, miR-124, miR-101, miR-140-5p, and
miR-200a-3p, and positively regulates VEGF, STAT3, ZEB1
and ZEB2, SOX4, and NRP1 expression, facilitates apoptosis,
migration, EMT, proliferation, and invasion by activating
signaling pathways, such as PI3K-Akt signaling pathway and
MAPK-ERK signaling pathway (Hu et al., 2018; Cheng Y. et al.,
2019; Dong et al., 2020; Wang et al., 2020c; Zhao H. et al.,
2020). All in all, these studies suggested that lncRNA Xist serves
a potential and promising clinical application for diagnosis,
prognosis, and treatment.

LncRNA Xist in Cervical Cancer
Cervical cancer, with respective incidence and mortality rates of
3.2 and 3.3%, ranked as the fourth most frequently diagnosed
cancer and the fourth leading cause of cancer death in women in
2018 worldwide (Chen W. et al., 2016; Bray et al., 2018). Recently,
numerous reports found that dysregulation of lncRNA Xist was
involved in regulating cervical cancer progression via binding
to miRNAs. Zhu H. et al. (2018) demonstrated lncRNA Xist,
which is extremely highly expressed in cervical cancer tissues and
cell lines, accelerates cervical cancer progression via upregulating
Fus through functioning as a ceRNA of miR-200a. In additional,
lncRNA Xist upregulation, which positively facilitates ORC1
expression and acts as a ceRNA of miR-140-5p, contributes to
the cervical cancer progression by activating miR-140-5p/ORC1
axis (Chen X. et al., 2019c). Similarly, Liu et al. (2020d) found
that lncRNA Xist, which was highly expressed in cervical cancer
cells and tissue, promoted cervical cancer cells’ proliferation,
migration, and invasion and hindered apoptosis by inhibiting
miR-889-3p and positively mediating SIXI expression. Taken
together these studies demonstrated that lncRNA Xist may play a
role in epigenetic diagnostics and therapeutics in cervical cancer.

LncRNA Xist in Gastric Cancer
Stomach cancer (cardia and non-cardiac gastric cancer
combined), with respective incidence and mortality rates of
5.7 and 8.2%, was the fifth most frequently diagnosed cancer
and the third leading cause of cancer death in 2018 worldwide,
and remains an important cancer (Chen W. et al., 2016; Bray
et al., 2018). Recently, some reports founded that lncRNA Xist
exerts its function in gastric cancer progression by acting as a
miRNA sponge, It acts on miRNA, such as miR-101, miR-497,
miR-185, and miR-337. lncRNA Xist, which acts as a molecular
sponge of miR-101, miR-497, miR-185, and miR-337 to mediate
EZH2, MACC1, TGF-β1, and JAK2 expression, is involved in
gastric cancer progression through mediating miR-101/EZH2
axis, miR-497/MACC1 axis, miR-185/TGF-β1 axis, and miR-
337/JAK2 axis (Chen D.L. et al., 2016; Ma L. et al., 2017;
Zhang Q. et al., 2018; Zheng W. et al., 2020). In drug resistance
of gastric carcinoma cells, Li Y.D. et al. (2019) demonstrated that
lncRNA Xist contributes to drug resistance of gastric cancer cells
though positively facilitating the related gene MDR1 (multidrug
resistance gene 1) and MRP1 (multi-drug resistance protein 1)
of multidrug resistance, and is helpful for the molecule-targeted
treatment of gastric cancer. Taken together, these findings suggest
that lncRNA Xist may be a candidate prognostic biomarker and
a new therapy target in gastric cancer patients.

LncRNA Xist in Melanoma
Melanoma, with respective incidence and mortality rates of
1.6 and 0.6%, was the most fatal form of skin cancer in
2018 worldwide and the rates are increasing faster than any
other currently preventable cancers (Chen W. et al., 2016;
Bray et al., 2018; Schadendorf et al., 2018). Recently, some
findings suggested that a major role of lncRNA Xist is facilitating
melanoma progression via acting as a miRNAs sponge to
regulate its downstream target genes, such as lncRNA Xist
(Zhang et al., 2019f), which promoted malignant melanoma
growth and metastasis by functioning as a ceRNA though
miR-217. However, the downstream target gene of miR-217
remains unclear. Analogously, lncRNA Xist (Pan et al., 2019;
Tian K. et al., 2020), which functions as a ceRNA to positively
regulate ROCK1 and PI3KRI and AKT expression by sponging
miR-139-5p and miR-21, respectively, facilitates proliferation,
invasion, and oxaliplatin resistance of melanoma cells. In
summary, this evidence shows that lncRNA Xist could provide
a novel insight into the pathogenesis and underlying therapeutic
targets for melanoma.

LncRNA Xist in Esophageal Cancer
Esophageal cancer, with respective incidence and mortality rates
of 3.2 and 5.3%, ranks seventh in terms of incidence and sixth in
mortality overall, the latter signifying that esophageal cancer was
responsible for an estimated 1 in every 20 cancer deaths in 2018
worldwide (Chen W. et al., 2016; Bray et al., 2018; Schadendorf
et al., 2018). Recently, numerous reports demonstrated that
dysregulation of lncRNA Xist was involved in regulating
esophageal cancer development via binding to miRNAs. lncRNA
Xist involves esophageal squamous cell carcinoma development
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via regulation of miR-101/EZH2 axis (Wu X. et al., 2017),
and facilitates esophageal squamous cell carcinoma proliferation,
apoptosis, migration, and invasion via regulation miR-494/CDK6
axis and activation of JAK2/STAT3 signal pathway (Chen et al.,
2019f). In addition, lncRNA Xist predicts the presence of
lymph node metastases in human esophageal squamous cells
(Li and He, 2019; Wang et al., 2020b). Taken together, these
results demonstrated that lncRNA Xist may provide a novel
candidate prognostic biomarker and a new insight for esophageal
carcinoma therapy.

LncRNA Xist in Laryngeal Squamous Cell
Carcinoma
Laryngeal cancer, with respective incidence and mortality rates
of 1.0 and 1.0%, was one of the most common tumors of
the respiratory tract in 2018 worldwide (Chen W. et al., 2016;
Steuer et al., 2017; Bray et al., 2018). Squamous cell carcinoma,
accounting for approximately 90% of malignant neoplasms of
the larynx, is the most common malignancy of the larynx
(Thompson, 2017; Bradford et al., 2020). Recently, some evidence
suggested that a major role of lncRNA Xist, which is notably up-
regulated in laryngeal squamous cell carcinoma tissues and cells,
promotes laryngeal squamous cell carcinoma progression via
interacting with miRNAs to regulate its downstream target gene.
lncRNA Xist increases the aggressiveness of laryngeal squamous
cell carcinoma by functioning as a ceRNA sponge of miR-124 to
regulate EZH2 expression (Xiao D. et al., 2019), and promotes
progression of laryngeal squamous cell carcinoma via activating
the miR-144/IRS1 axis (Cui et al., 2020), and promotes the
malignance of laryngeal squamous cell carcinoma cells through
functioning as a ceRNA of miR-125b-5p to positively modulate
TRIB2 expression (Liu et al., 2020b). All together, these studies
demonstrated that lncRNA Xist may serve as a new potential
prognostic biomarker and putative target in the therapy of
laryngeal squamous cell carcinoma.

LncRNA Xist in Ovarian Cancer
Ovarian cancer, which is the leading cause of death for women
of reproductive age around the world and has a 5-year survival
rate below 45%, is in eighth place among the most common
cancers in women and the fifth leading cause of death among
women worldwide, including 4% of all cancers (Webb and
Jordan, 2017; Moga et al., 2018; Stewart et al., 2019). In
order to prove the lncRNA Xist participated in ovarian cancer
development, Wang et al. (2018a) revelated that lncRNA Xist is
involved in ovarian cancer development by negatively regulating
miR-214-3p expression. This confirmed that lncRNA Xist is
closely associated with the tumor grade and distant metastasis
in the ovarian cancer patients (Zuo et al., 2019). This result
suggested that lncRNA Xist plays a role in tumor development.
In addition, lncRNA Xist (Wang and Li, 2020), which functions
as a ceRNA to positively mediate the expression of PDCD4
(programmed cell death protein 4) through binding to miR-150-
5p and is significantly decreased in ovarian cancer tissues and
cell lines compared with the normal tissue and cells, inhibits

ovarian cancer cell growth and metastasis via regulating miR-150-
5p/PDCD4 signaling pathway. All in all, these studies evaluated
that lncRNA Xist provides insight into the potential target for the
treatment of ovarian cancer, and a new evaluation of the diagnosis
and prognosis of ovarian cancer.

LncRNA Xist in Others Cancer
Growing evidence from recent studies has shown that lncRNA
Xist facilitates tumor development, including pituitary
neuroendocrine tumor, neuroblastoma, thyroid cancer, colon
cancer, renal cell carcinoma, and prostate cancer (Chaligne
and Heard, 2014; Yang Z. et al., 2018; Liu et al., 2019c). In
the pituitary neuroendocrine tumor cells (Zhou et al., 2019b),
lncRNA Xist, which functions as a ceRNA to sequester miR-424-
5p to elevate the expression of the its target bFGF, and exhibits
high expression in invasive pituitary neuroendocrine tumor
tissues as compared to non-invasive tumor tissues, promotes
cancer progression in invasive pituitary neuroendocrine tumor
via activating the miR-424-5p/bFGF signaling pathway. In
neuroblastoma (Zhang et al., 2019a), lncRNA Xist, which
interacts with EZH2 to downregulate DKK1 by inducing H3
histone methylation, promotes neuroblastoma cell growth,
proliferation, migration, and invasion via modulating H3
histone methylation of DKK1 in neuroblastoma. In addition,
lncRNA Xist (Yang H. et al., 2020) repressed tumor growth and
boosted radiosensitivity of neuroblastoma via modulating the
miR-375/L1CAM axis. In thyroid cancer, lncRNA Xist (Liu et al.,
2018c), which positively regulates MET by sponging miR-34a,
modulates the cell proliferation and tumor growth through
activating the PI3K/AKT signaling pathway. Analogously,
Xu Y. et al. (2018) demonstrated that lncRNA Xist, whose
high expression is positively associated with TNM stage and
lymph node metastasis, promotes cell proliferation and invasion
by interacting with miR-141 in papillary thyroid carcinoma.
However, the downstream target gene of miR-141 remains
unknown. In colon cancer cells, lncRNA Xist (Sun N.N. et al.,
2018), which functions as a ceRNA by binding to miR-34a and
positively modulates WNT1 expression, has a crucial function in
colon cancer progression via the miR-34a/WNT1 axis to activate
the Wnt/β-catenin signaling pathway.

In addition to indirect regulation of ceRNAs, studies published
to date have manifested that low lncRNA Xist expression in renal
cell carcinoma results in sponging two miRNAs, miR-106b-5p
and miR-302c, which regulates tumor development (Zhang J.
et al., 2017; Sun K. et al., 2019). lncRNA Xist, which positively
facilitates P21 and SDC1 expression through sponging miR-106b-
5p and miR-302c, facilitates cell proliferation and apoptosis via
miR-106b-5p/P21 signaling pathway and miR-302c/SDC1 axis.
In prostate cancer cells, lncRNA Xist, which weakly expresses
in normal prostate tissues but not in leukocytes, contributes
prostate cancer development (cell proliferation and metastasis)
by activating miR-23a/RKIP signaling pathway (Laner et al., 2005;
Du Y. et al., 2017). In addition, SQ. Hai (2020) have indicated that
LncRNA XIST/miR-124-3p/iASPP Pathway Promotes Growth
of Human Chordoma Cells. Analogously, Lobo et al. (2019)
manifested that demethylated and methylated XIST promoter
may be involved in testicular germ cell tumor development.
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Altogether, this evidence pronounced that lncRNA Xist may
shed new light on epigenetic diagnostics and therapeutics for
cancer patients.

THE ROLE OF LncRNA XIST IN
NON-CANCER DISEASES

Diseases are abnormal conditions that have a specific set of signs
and symptoms. Diseases can have an external cause, such as an
infection, or an internal cause, such as autoimmune disease (such
as Alzheimer’s disease). Accumulating evidence has suggested
that lncRNA Xist participates in non-cancer related diseases’
development and progression (Table 2) as a ceRNA regulatory
network of miRNA-mRNA. It also provides a window into the
understanding of aberrant expression of lncRNA Xist associated
with non-cancer related diseases. lncRNA Xist is a novel potential
biomarker and could potentially be involved in the diagnosis and
therapy of different types of diseases.

LncRNA Xist in Cardiac Disease
Cardiac diseases, including coronary artery disease (CAD),
myocardial infarction (MI), cardiac hypertrophy, and heart
failure (HF), are among the leading causes of morbidity and
mortality worldwide (Greco et al., 2018; Colpaert and Calore,
2019). Emerging evidence has revealed that lncRNA Xist acted
as powerful and dynamic modifier of cardiac physiological and
pathological processes. Cardiac hypertrophy, recognized as a risk
predictor of sudden cardiac death, is an adaptive reaction in
response to altered stress or injury to maintain cardiac function
(Li Y. et al., 2018; Wehbe et al., 2019; Luo X. et al., 2020).
lncRNA Xist (Sohrabifar, 2020) participates in the pathogenesis
of complex diseases and also serves as a diagnostic marker.
lncRNA Xist also positively regulates S100B expression through
functioning as a ceRNA to bind miR-330-3p (Chen Y. et al.,
2018) and functions as a ceRNA of miR-101 to enhance TLR2
expression (Xiao L. et al., 2019) and modulates the progression of
cardiomyocyte hypertrophy by miR-330-3p/S100B pathway and
miR-101/TLR2 axis.

Myocardial infarction (MI), colloquially known as “heart
attack,” is caused by decreased or complete cessation of
blood flow to a portion of the myocardium and by the
rupture of atherosclerotic plaques, which results in damage to
cardiomyocytes due to lack of oxygen (Colpaert and Calore,
2019; Ojha and Dhamoon, 2020). lncRNA Xist, which positively
mediates PDE4D expression via interacting miR-130a-3p (Zhou
et al., 2019d) and targets miR-101a-3p through regulating FOS
(Lin B. et al., 2020), promotes myocardial infarction development
and cell apoptosis, and inhibits cell proliferation though the
miR-130a-3p/PDE4D aixs and miR-101a-3p/FOS aixs.

Acute MI (AMI) is characterized by ischemic injury and
cardiomyocyte apoptosis, while myocardial injury, which is also
an entity in itself, is a prerequisite for the diagnosis of MI in the
setting of acute myocardial ischemia (Sandoval and Thygesen,
2017; Sandoval et al., 2017; Colpaert and Calore, 2019). lncRNA
Xist, which interacts directly with miRNA (miR-150-5p, miR-
122-5p, miR-125b, miR-133a, and miR-449) to positively regulate

expression levels of mRNA (Bax, FOXP2, hexokianse 2, SOCS2,
and Notch1), protects hypoxia-induced cardiomyocyte injury
and represses the myocardial cell apoptosis though miR-150-
5p/Bax pathway, miR-122-5p/FOXP2 axis, miR-125b/hexokianse
2 axis, miR-133a/SOCS2 pathway, and miR-449/Notch1 signaling
pathway (Li Z.Q. et al., 2019; Zhang et al., 2019c; Fan et al.,
2020; Peng et al., 2020; Zhou et al., 2020). These results
indicated that lncRNA Xist represents a very promising potential
pharmacotherapeutic target and biomarker for cardiac disease.

LncRNA Xist in Neuropathic Pain
Neuropathic pain, including central pain, peripheral pain, and
cancer pain, is pain that arises as lesions or diseases of the
somatosensory system, either at the peripheral or at the central
level, and are treated by first-line (include antidepressants and
anticonvulsants acting at calcium channels), second-, and third-
line (include topical lidocaine and opioids) pharmacologicals
(Xu et al., 2016; Fornasari, 2017; Eberlin, 2019). Growing
studies have revealed that lncRNA Xist, which has been
characterized as a key modulator of neuronal functions, plays
a pivotal role in the development of neuropathic pain. In
Down’s syndrome, lncRNA Xist (Czerminski and Lawrence,
2020), which fully corrects trisomy 21 dosage in neural cells,
promotes differentiation of trisomic NSCs (neural stem cells)
to neurons by silencing Trisomy 21 and activating Notch
signaling pathway. In Parkinson’s disease (PD) animals, it
has been shown that lncRNA Xist/miR-133b-3p/Pitx3 axis
protect dopaminergic neurons through activation of CB2R
with AM1241, which alleviates PD (He et al., 2020). In
addition, lncRNA Xist participated in neuropathic pain though
interacting with miRNAs in CCI (chronic constriction injury)
rat models, including miR-154-5p, miR-137, miR-544, and miR-
150. lncRNA Xist, which functions as a ceRNA to positively
modulate mRNA expression (TLR5, TNFAIP1, STAT3, and
ZEB1) by sponging miRNA (miR-154-5p, miR-137, miR-544,
and miR-150), contributes to neuropathic pain development by
facilitating miR-154-5p/TLR5 axis, miR-137/TNFAIP1 axis, miR-
544/STAT3 axis, and miR-150/ZEB1 axis in CCI rat models
(Jin et al., 2018; Yan et al., 2018; Zhao Y. et al., 2018;
Wei et al., 2019).

Alzheimer’s disease (AD), which is a growing global health
concern with huge implications for individuals and society,
is a chronic progressive and irreversible neurodegenerative
disorder (Scheltens et al., 2016; Lane et al., 2018; Chanda
and Mukhopadhyay, 2020). Silencing lncRNA Xist (Wang
et al., 2018b) attenuated Aβ(amyloid-beta peptide)25-35-induced
toxicity, oxidative stress, and apoptosis in primary cultured
rat hippocampal neurons by negatively mediating miR-132
expression. But the downstream target gene of miR-132 remains
unclear. Similarly, Du Y. et al. (2020) showed that lncRNA
Xist, which was significantly upregulated in hydrogen peroxide
(H2O2)-induced AD mice models and in H2O2-treated N2a
cells, is involved in Alzheimer’s disease development though
positively regulating BACE1 expression by interacting with miR-
124. These studies suggested that lncRNA Xist might provide
novel therapeutic avenues for neuropathic diseases.
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TABLE 2 | LncRNA Xist and miRNA in non-cancer related disease.

Disease type miRNA Target Mechanism of action
and function

Signaling pathway References

Cardiac disease miR-330-3p, miR-101 S100B, TLR2 Aberrant expression
lncRNA Xist is involved
in non-cancer related
diseases and cells
development, such as
cell apoptosis, cell
cycle, cell proliferation,
cell differentiation.

TGF-beta signaling
pathway, PI3K-Akt
signaling pathway,
Toll-like receptor
signaling pathway,
cAMP signaling
pathway, Notch
signaling pathway,
Prolactin signaling
pathway, JAK-STAT
signaling pathway,
Toll-like receptor
signaling pathway,
NF−κB signaling
pathway, NOD-like
receptor signaling
pathway, C-type lectin
receptor signaling
pathway, Hedgehog
signaling pathway,
Thyroid hormone
signaling pathway,
HIF-1 signaling
pathway, Wnt/β-catenin
signaling pathway,
BMP/TGF-β signaling
pathway, MAPK and
MMPs signaling
pathway, Human
papillomavirus
infection, AGE-RAGE
signaling pathway in
diabetic complications,
Relaxin signaling
pathway, T cell receptor
signaling pathway and
B cell receptor signaling
pathway, etc.

Chen Y. et al., 2018; Xiao L. et al.,
2019

Myocardial
infarction

miR-130a-3p,
miR-101a-3p

PDE4D, FOS Zhou et al., 2019d; Lin B. et al.,
2020

Acute myocardial
infarction

miR-449, miR-122-5p,
miR-125b, miR-133a,
miR-150-5p

Notch1, FOXP2,
hexokianse 2, SOCS2,
Bax

Li Z.Q. et al., 2019; Zhang et al.,
2019c; Fan et al., 2020; Peng
et al., 2020; Zhou et al., 2020

Neuropathic pain miR-133b-3p, miR-154-5p,
miR-137, miR-544,
miR-150

Trisomy 21, Pitx3,
TLR5, TNFAIP1,
STAT3, ZEB1

Jin et al., 2018; Yan et al., 2018;
Zhao Y. et al., 2018; Wei et al.,
2019

Neurodegeneration miR-133b-3p Pitx3 He et al., 2020

Alzheimer’s disease miR-132, miR-124 BACE1 Wang et al., 2018b; Du Y. et al.,
2020

Osteoarthritis miR-211, miR-214-3p,
miR-17-5p, miR-1277-5p,
miR-376c-5p, miR-142-5p,
miR-149-5p, miR-675-5p

CXCR4, MAPK,
AHNAK, BMP2,
TIMP-3, MMP-13,
ADAMTS5, OPN,
SGTB, DNMT3A,
GNG5

Li L. et al., 2018; Liao et al., 2019;
Wang et al., 2019e; Feng et al.,
2020; Ghaderian et al., 2020; Li
et al., 2020b; Liu et al., 2020e;
Shen X.F. et al., 2020

Bone marrow miR-9-5p ALPL, ALP, Bglap,
Runx2

Zheng C. et al., 2020

Inflammation miR-27a-3p, miR-34a,
miR-30c-5p, miR-146a

NF−κB, NLRP3,
Smurf1, YY1, PTEN,
Nav1.7

Shenoda et al., 2018; Sun W.B.
et al., 2018; Hu W.N. et al., 2019;
Zhao Q. et al., 2020

(Continued)
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TABLE 2 | Continued

Disease type miRNA Target Mechanism of action
and function

Signaling pathway References

Spinal cord injury miR-27a, miR-494,
miR-32-5p

Smurf1, PTEN, Notch-1 Gu et al., 2017; Cheng X. et al.,
2020; Zhao Q. et al., 2020

Acute kidney injury miR-15-5p, miR-212-3p,
miR-122-5p, miR-142-5p

CUL3, ASF1A,
BRWD1M, PFKFB2,
PDCD4

Xu et al., 2019; Cheng and
Wang, 2020; Tang et al., 2020

Nephropathy miR-217, miR-93-5p,
miR-485

TLR4, CDKN1A,
PSMB8

Jin et al., 2019; Yang et al.,
2019; Wang, 2020

Placental
angiogenesis

miR-429, miR-485-3p VEGF-A, SOX7,
ERK1/2, Akt

Chen G. et al., 2018; Hu C.
et al., 2019

Acute pneumonia miR-370-3p TLR4, JAK, STAT,
NF−κB

Zhang et al., 2019g

Pulmonary fibrosis miR-139 β-catenin Wang Y.C. et al., 2017

Primary graft
dysfunction

miR-21 IL-12A Li et al., 2020a

Rett syndrome MeCP2, BMP/TGF-β Sripathy et al., 2017; Adrianse
et al., 2018

Acute respiratory
distress syndrome

miR-204 IRF2 Wang et al., 2019d

SCNT embryo
development

REX1, YY1,
MSL1/MSL2

Human trophoblast
cells

miR-144 Titin, MAPK, MMPs Yu N.H. et al., 2017

Endothelial cells
injury

miR-320 NOD2 Xu X.H. et al., 2018

Skin fibroblasts miR-29a, miR-29b-3p LIN28A, COL1A1 Guo et al., 2018; Cao and
Feng, 2019

Osteoblasts miR-203-3p, let-7c-5p ZFPM2, STAT3 Niu et al., 2020; Wang et al.,
2020d

Keratoconus miR-181a COL4A1 Tian R. et al., 2020

Hair follicle
regeneration

miR-424 Shh Lin B.J. et al., 2020

Acute liver injury BRD4 Shen and Li, 2020

Stanford Type A
Aortic Dissection

miR-17 PTEN Zhang et al., 2020b

LncRNA Xist in Osteoarthritis
Osteoarthritis (OA), which is the most common joint disorder
that affects one or several diarthrodial joints including small
joints (such as those in the hand) and large joints (such as
the knee and hip joints), is the most frequently diagnosed
musculoskeletal disease and leads to functional decline and loss
in quality of life (Kraus, 2014; Pereira et al., 2015). Accumulated
evidence manifested that lncRNA Xist is associated with
development and progression of OA. lncRNA Xist, which acts
as a ceRNA of miR-211 to positively mediate miR-211-interacted
CXCR4 expression, promotes the proliferation and apoptosis
of OA through the miR-211/CXCR4 axis activating MAPK
signaling pathway (Li L. et al., 2018). And lncRNA Xist (Liao
et al., 2019), which positively regulates AHNAK expression to
activate BMP2 Signaling Pathway by target with miR-17-5p, may
influence Cervical Ossification of the PLL through facilitating
of miR-17-5P/AHNAK/BMP2 axis. In periodontal ligament stem
cells (PDLSCs), lncRNA Xist, which was elevated in osteogenic
inducted PDLSCs, promoted Osteogenic Differentiation by
negatively regulating the expression of miR-214-3p, but the

downstream target gene of miR-214-3p remains unknown
(Feng et al., 2020).

In osteoporosis (OP), lncRNA Xist (Chen et al., 2019a,d),
which was highly expressed in the serum and monocytes of
patients with OP, regulates osteoporosis through recruiting DNA
methyltransferase and inhibiting bone marrow mesenchymal
stem cell differentiation. In addition, a major role of lncRNA
Xist is facilitating gene expression and affecting osteoarthritis
development and progression via sponging to miRNAs. The
lncRNA Xist/miR-9-5p/ALPL (Zheng C. et al., 2020) and lncRNA
Xist/miR-1277-5p/MMP-13 and ADAMTS5 (Wang et al., 2019e)
signaling pathway has been identified as a ceRNA regulatory
network involved in osteoarthritis development. And other
ceRNA regulatory networks have also been shown to contribute
to the progression of Osteoarthritis, such as lncRNA Xist/miR-
376c-5p/OPN signaling pathway (Li et al., 2020b), lncRNA
Xist/miR-142-5p/SGTB signaling pathway (Ghaderian et al.,
2020), lncRNA Xist/miR-149-5p/DNMT3A signaling pathway
(Liu et al., 2020e), and lncRNA Xist/miR-675-3p/GNG5 signaling
pathway (Shen X.F. et al., 2020). Increasing studies have shown
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FIGURE 3 | Overview of the regulatory network of lncRNA Xist involved in mammalian diseases and cells. NON, The downstream target Unclear.

that lncRNA Xist might act as a novel therapeutic target
for OA patients.

LncRNA Xist in Inflammation
Inflammation, which is activated by inflammasomes that are
innate immune system receptors and sensors that regulate
the activation of caspase-1, is a protective immune response
mounted by the evolutionarily conserved innate immune
system in response to harmful stimuli, such as pathogens,
dead cells, or irritants, and is tightly regulated by the
host (Guo et al., 2015). Recent findings demonstrated the

pivotal role of lncRNA Xist in the progression of the
inflammatory response. NF-κB (nuclear factor-κB) signaling
pathway, which plays a vital role in inflammation and innate
immunity, were involved in cell proliferation and apoptosis
and regulated the production of inflammatory cytokines
including tumor necrosis factor (TNF)-α, interleukin (IL)-1β,
IL−6, and IL−8 (Ma et al., 2019; Shenoda et al., 2020).
lncRNA Xist facilitates acute inflammatory responses and
bovine mammary epithelial cell inflammatory responses via NF-
κB/NLRP3 inflammasome signaling pathway (Levey and James,
2017; Yang et al., 2019).
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In addition to the indirect regulation of ceRNAs, studies
published to date have demonstrated that high lncRNA Xist
expression in inflammatory cells results in sponging four
miRNAs, namely miR-27a-3p, miR-30c, miR-34c, and 146a,
which responded to the inflammatory development process
(Shenoda et al., 2018; Sun W.B. et al., 2018; Hu W.N. et al.,
2019; Zhao Q. et al., 2020). The regulation of lncRNA Xist
in most inflammation processes, including acute inflammation
response in female cells, apoptosis, and inflammatory injury of
microglia cells after spinal cord injury, cell apoptosis of HUVEC
(Human umbilical vein endothelial cells) and ox-LDL (oxidized
low-density lipoprotein)-induced the inflammatory response and
inflammatory pain in rat. The pathways involved included
lncRNA Xist/miR-34a/YY1 signaling pathway (Shenoda et al.,
2018), lncRNA Xist/miR-27a/Smurf1 signaling pathway (Zhao Q.
et al., 2020), lncRNA Xist/miR-30c-5p/PTEN signaling pathway
(Hu W.N. et al., 2019), and miR-146a/Nav1.7 signaling pathway
(Sun W.B. et al., 2018). These results suggest that lncRNA Xist
could be involved in a promising strategy against inflammation
and be a potential target for inflammatory patients.

LncRNA Xist in Kidney and
Cardiovascular Disease
As the kidney and heart are intricately linked, abnormal function
in one can lead to pathological function in the other (Lorenzen
and Thum, 2016). Acute kidney injury (formerly known as acute
renal failure), which is typically diagnosed by the accumulation
of end products of nitrogen metabolism (urea and creatinine) or
decreased urine output, or both, is a syndrome characterized by
the rapid loss of the function of glomerular filtration rate (Levey
and James, 2017; Ronco et al., 2019). Recent studies indicated
lncRNA Xist exerts its function by serving as a miRNA sponge
in the development of kidney injury. In diabetic nephropathy,
lncRNA Xist, which is highly expressed in the kidney tissue
of diabetic nephropathy mice and high glucose-exposed HK-
2 cells, is involved in diabetic nephropathy development
by positively facilitating CDKN1A (cyclin-dependent kinase
inhibitor 1A) expression via functioning as a ceRNA of miR-
93-5p (Yang et al., 2019). In LPS-induced SCI (Spinal cord
injury) microglia cells and lncRNA Xist, which interacts with
miR-27a to mediate the downstream target gene of Smurf1
expression, alleviated the apoptosis and inflammatory injury of
microglia cells after SCI through activating miR-27a/Smurf1 axis
(Zhao Q. et al., 2020). These signaling pathways, which include
lncRNA Xist/miR-494/PTEN/PI3K/AKT signaling pathway (Gu
et al., 2017), lncRNA Xist/miR-142-5p/PDCD4 signaling pathway
(Tang et al., 2020), lncRNA Xist/miR-217/TLR4 signaling
pathway (Jin et al., 2019), lncRNA Xist/miR-32-5p/Notch-1
signaling pathway (Cheng X. et al., 2020), and lncRNA Xist/miR-
15a-5p/CUL3signaling pathway (Xu et al., 2019), participated
in the SCI, acute kidney injury, and nephropathy procession.
Cheng and Wang (2020) identified that lncRNA Xist could
act as a ceRNA to sponge miR-212-3p and miR-122-5p to
facilitate kidney transplant acute kidney injury progression via
regulating the expression of ASF1A, BRWD1, and PFKFB2 using
GEO database assay.

In contrast to kidney diseases, the study of lncRNA Xist in
cardiovascular diseases is still in its infancy. Chen G. et al. (2018)
suggested that lncRNA Xist, which is disrupted by aberrant
expression of PFOS (Perfluorooctane sulfonate) in prenatal
cells, facilitates placental angiogenesis by regulation of miR-
429/VEGF-A axis. Similarly, lncRNA Xist (Hu C. et al., 2019),
which positively modulates SOX7 (SRY-box 7) expression by
sponging miR-485, participated in hypoxia-induced angiogenesis
to activate VEGF signaling pathway, ERK1/2, and Akt signaling
pathway through regulation miR-485/SCX7 axis. In additional,
Stanford Type A Aortic Dissection (TAAD) is one of the
most lethal cardiovascular diseases with an extremely high
morbidity and mortality rate. Zhang et al. (2020b) have
suggested that lncRNA Xist, which positively regulates PTEN
expression via its competitive target miR-17, modulates the
proliferation and apoptosis of vascular smooth muscle cells
to affect Stanford Type A Aortic Dissection. All in all, these
findings provide a new orientation for lncRNA Xist in kidney and
cardiovascular diseases.

LncRNA Xist in Other Disease and Cells
A growing number of studies exhibited (Agrelo and Wutz, 2010;
Shi et al., 2013; Cantone and Fisher, 2017) that lncRNA Xist
participated in disease-associated processes, such as pulmonary
disease, diabetic nephropathy, dermal diseases, and hereditary
diseases, and mediated cellular functions of cells, such as somatic
cell, B cells, and embryonic stem (ES) cells. In acute pneumonia,
lncRNA Xist was robustly increased in serum of patients with
acute-stage pneumonia and LPS (lipopolysaccharide)-induced
WI-38 (normal human fibroblast WI-38 cell line) human lung
fibroblasts cells, which shows it is involved in the progression of
cell inflammatory response (Zhang et al., 2019g). Consequently,
knockdown lncRNA Xist, which functions as a ceRNA to
positively modulate TLR4 expression by sponging miR-370-3p,
remarkably alleviates LPS-induced cell injury through regulating
miR-370-3p/TLR4 axis to activate JAK/STAT and NF−κB
signaling pathways (Zhang et al., 2019g).

In pulmonary fibrosis, Wang Y.C. et al. (2017) have
revealed that lncRNA Xist regulates bleomycin (BLM)-
induced extracellular matrix (ECM) and pulmonary fibrosis
via modulation of miR-139/β-catenin axis. Primary graft
dysfunction (PGD), which is a major cause of fatality post-lung
transplantation, is a known acute lung injury (ALI). Li et al.
(2020a) found that lncRNA Xist, which positively elevates the
expression of IL-12A by acting as a ceRNA of miR-21, induces
NET (neutrophil extracellular trap) formation and accelerates
PGD after lung transplantation by activating the network
of miR-21/IL-12A.

Diarrhea-predominant irritable bowel syndrome (IBS-D) is
prevalent and has a high incidence rate in children. Zhang
et al. (2020d) have demonstrated that lncRNA Xist, which
is highly expressed in visceral hypersensitivity mice with
IBS-D, modulates HT (5-hydroxytrytophan)-induced visceral
hypersensitivity by epigenetic silencing of the SERT gene in
mice with diarrhea-predominant IBS. In addition, Shen X.F.
et al. (2020) have suggested that the silencing of lncRNA
Xist, which is highly expressed in serum of patients, protects
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against sepsis-induced acute liver injury via inhibition of BRD4
expression. In diabetic nephropathy, Wang (2020) reported
that lncRNA Xist silencing, which positively modulates PSMB8
expression via acting as a sponge for miR-485 in HMCs
(human mesangial cells) treated with high glucose, alleviates
inflammation and mesangial cell proliferation via interacting
with miR-485/PSMB8.

Autoimmune disorders, such as Hashimoto’s thyroiditis,
Sjögren’s Syndrome, systemic lupus erythematosus (SLE), and
Grave’s disease, where 85–95% of patients are women, exhibited
a strong female bias (Syrett et al., 2019, 2020). In recent years,
lncRNA Xist (Syrett et al., 2017, 2019, 2020; Zhang et al., 2020c),
which serves a vital function in SLE by RNA-seq data, promotes
SLE development in NZB/WF1 mice with lupus-like disease.
Taken together, these studies provide an important insight into
how lncRNA Xist provides a therapeutic opportunity in female-
biased autoimmune disorders.

Rett syndrome (RS), which is a debilitating neurological
disorder affecting mostly girls, was caused by heterozygous
mutations in the gene encoding the methyl-CpG–binding
protein MeCP2 on the X chromosome (Sripathy et al., 2017).
lncRNA Xist facilitates RS development through regulation
of the bone morphogenetic protein (BMP)/TGF-β signaling
pathway (Sripathy et al., 2017), and contributes to mouse
brain development through reactivating MeCP2 expression
(Adrianse et al., 2018).

Acute respiratory distress syndrome (ARDS), which is
associated with diffuse alveolar injury and capillary endothelial
damage, is a common clinical syndrome with high a mortality
rate (Wang et al., 2019d). lncRNA Xist (Wang et al.,
2019d), which acts as a ceRNA to negatively upregulate IRF2
(interferon regulatory factor 2) expression to sponge miR-
204, significantly decreases the PaO2/FiO2 ratio and aggravates
lipopolysaccharide-induced ARDS in mice by regulating the miR-
204/IRF2 axis.

In the parthenogenetic development of pigs, silencing lncRNA
Xist remarkedly increased the total blastocyst cell number but
did not influence the rate of embryo cleavage and blastocyst
formation compared with the control group (Chen et al.,
2019e). This study suggested that lncRNA Xist may play a
role in a new approach for improving the quality of porcine
parthenogenetic embryos. lncRNA Xist (Zhang et al., 2019b)
facilitates cells development in somatic cells by TALE-based
designer transcriptional factor, and regulates embryonic stem
cells’ fates (Chelmicki et al., 2014; An et al., 2020). lncRNA
Xist promotes hair follicle regeneration in Dermal papilla cells
via regulating miR-424/Shh axis to activate hedgehog signaling
(Lin B.J. et al., 2020), and regulates HT cell proliferation and
invasion in human trophoblast (HT) cells via miR-144/Titin
axis by activating the downstream MAPK and MMPs pathway
(Yu N.H. et al., 2017). In polycystic ovary syndrome (PCOS),
lncRNA Xist is correlated with adverse pregnancy outcomes
(Liu et al., 2020c). In addition, these signaling pathways, which
include lncRNA Xist/miR-203-3p/ZFPM2 (Niu et al., 2020),
lncRNA Xist/let-7c-5p/STAT3 (Wang et al., 2020d), and lncRNA
Xist/miR-320/NOD2 (Xu X.H. et al., 2018), have been identified
as a ceRNA regulatory network and participated in osteoblast

development and ox-LDL (oxidative low-density lipoprotein)-
induced endothelial cells injury.

A previous study reported that lncRNA Xist contributed
to human skin fibroblasts by serving as a miRNA sponge.
However, lncRNA Xist (Guo et al., 2018; Cao and Feng, 2019)
regulates these processes containing skin fibroblasts proliferation,
migration, and ECM (extracellular matrix) synthesis after
thermal injury by sponging miRNAs (miR-29a and 29b-3p) to
promote the expression of target genes (LIN28A and COL1A1).
Additionally, lncRNA Xist/miR-181a/COL4A1 axis (Tian R.
et al., 2020) is involved in the development and progression
of keratoconus using transcriptome RNA-seq data assay. All in
all, these results demonstrated that lncRNA Xist plays a pivotal
function in non-cancer diseases.

DISCUSSION AND PERSPECTIVES

LncRNA Xist, which is conserved among eutherians (human,
Rat, mouse, cow, dog, and elephant) but not non-eutherian
vertebrates, is an important initiator of the process of XCI
in eutherian mammals (Brockdorff et al., 1991; Duret et al.,
2006; Galupa et al., 2020). lncRNA Xist is produced by
Xist gene and is up-regulated from the Xi chromosome
during the XCI process, and recruits protein complexes to
reprogram chromosomes [such as H3K27me3 and H2AK119ub
trimethylation (Postlmayr et al., 2020)]. In addition to its
original XCI functions, numerous studies (Chaligne and Heard,
2014; Dey et al., 2014; Schmitz et al., 2016; Yang Z. et al.,
2018; Cheng J.T. et al., 2019; Yan et al., 2019) have also
indicated that lncRNA Xist is related to the pathogenic process
of multiple diseases by regulating of cell migration, invasion,
apoptosis, differentiation, proliferation, and drug resistance.
Further investigation of lncRNA, which is considered to function
as a miRNA or gene regulator, may aid in addressing disease
etiology, such as lung cancer, breast cancer, glioblastoma,
osteoarthritis, neuropathic pain, heart disease, and inflammation
(Tables 1, 2). By summarizing current knowledge, we noticed
that the regulatory network of lncRNA Xist in the majority
of biological processions varies considerably. However, lncRNA
Xist appears to regulate these processes primarily by interacting
with miRNAs to positively facilitate downstream target gene
expression (Figure 3). Further studies showed that the regulatory
network of lncRNA Xist participated in various signaling
pathways, such as TGF-beta signaling pathway, PIK3/AKT
signaling pathway, Wnt/β-catenin signaling pathway, FOXO
signaling pathway, NF-kB signaling pathway, mTOR signaling
pathway, MAPK signaling pathway, Toll-like receptor signaling
pathway, JAK-STAT signaling pathway, T cell receptor signaling
pathway, and B cell receptor signaling pathway (Tables 1, 2).
Although lncRNA Xist taking part in these signaling pathway
functions has rarely been demonstrated, there is no reason to
believe that the unexplored functions of lncRNA Xist will not
be understanded in these ways. These mechanisms of lncRNA
Xist action in diseases can indirectly and directly provide
recommendations for future research, and more functions of
lncRNA Xist can be confirmed.
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In theory, the genes lncRNA Xist over-expresses and silences
are numerous. But over-expression of lncRNA Xist, which is
a 15–17 kb RNA polymerase II transcript that is both spliced
and polyadenylated (Brockdorff, 2019), is different when using
plasmids. By contrast, lncRNA Xist may be inhibited using small
molecule inhibitors that block specific binding sites (Matoba
et al., 2011). Based on the above reasons, understanding of the
function of lncRNA Xist is in its infancy for various diseases
and cells. With the developing genome editing technology (Du
and Qi, 2016; Chen et al., 2019b; Yi and Li, 2020), CRISPR/Cas9
system is emerging as a powerful tool for sequence-specific
control of lncRNA Xist expression in mammalian cells. Recently,
numerous studies (Yue and Ogawa, 2018; Colognori et al.,
2019; Waśko et al., 2019; Deng et al., 2020) have indicated that
CRISPR/Cas9 system is useful for studying lncRNA Xist function
and related ceRNA regulatory networks. By combining other
future technologies, the function and mechanism of lncRNA Xist
will certainly be found. Investigation of lncRNA Xist in virous
cells may uncover numerous novel therapeutic approaches for
disease treatment in the future. At the same time, it might result
in a better understanding of how lncRNA Xist contributes to the
XCI and diseases in mammals, potentially opening new avenues
for research and therapeutic manipulation of these diseases.
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GLOSSARY

lncRNAs, Long non-coding RNAs; lncRNA Xist, Long non-coding RNA X-inactive specific transcript; XIC, X chromosome
inactivation center; ceRNA, competing endogenous RNA; XCI, X-chromosome inactivation; Xa, active X chromosome; Xi, inactive X
chromosome; Ftx, Ftx transcript, Xist regulator; Jpx, Jpx transcript, Xist activator; Tsix, Tsix transcript, Xist antisense RNA; OCT4, also
known as Pou5f1; CTCF, CCCTC-binding factor; PRC1 and PRC2, Polycomb repressive complexes (PRCs) -PRC1 and -PRC2; RNA
Pol II, RNA polymerase II; hnRNPU (also known as SAF-A), heterogeneous nuclear protein U; ATRX, ATRX chromatin remodeler;
hnRNPK, Heterogeneous nuclear ribonucleoprotein K; SHARP, SPEN family transcriptional repressor; HDAC3, histone deacetylase 3;
LBR, lamin B receptor; Airn, antisense of IGF2R non-protein coding RNA; Kcnq1ot1, KCNQ1 opposite strand/antisense transcript 1;
RBM15, RNA binding motif protein 15; WTAP, WT1 associated protein; U1 snRNP, U1 small nuclear ribonucleoprotein; Rsx, RNA-
on-the-silent X; NANOG, Nanog homeobox; SOX2, SRY-box transcription factor 2; PRDM14, PR/SET domain 14; REX1, ZFP42
zinc finger protein; RNF12, RING-H2 finger protein; CdK8, cyclin dependent kinase 8; AR, Androgen Receptor; BCSC, bladder
cancer stem cell; PD, Platycodin D; BRCA1, Breast Cancer 1 protein; EMT, epithelial mesenchymal transition; CDX1, caudal-type
homeobox 1; TNBC, Triple-negative breast cancer; ESA, epithelium-specific antigen; RELA, NF-κB subunit; BCSCs, Breast cancer
stem cells; PHLPP1, PH domain and leucine-rich repeat phosphatase 1; ZEB1, zinc finger E-box binding homeobox 1; EZH2, enhancer
of zeste homolog 2; MAPK1, mitogen-activated protein kinase 1; NRP-2, neuropilin-2; HIF-1A, hypoxia inducible factor 1, alpha
subunit; METTL14, methyltransferase-like14; YTHDF2, YTHDF proteins 2; SGK1, serum and glucocorticoid-inducible kinase 1;
ROR1, receptor-tyrosine-kinase-like orphan receptor 1; Smurf1, smad ubiquitination regulatory factor 1; FOXC1, forkhead box C1;
ZO-2, zonula occludens 2; Rac1, Rac family small GTPase 1; ASCT2 and SLC1A5, alanine-, serine-, and cysteine-preferring transporter
2; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; IRS1, insulin receptor substrate 1; SOX4, Y-related high-mobility group box
4; TMZ, Temozolomide; MMR, DNA mismatch repair; HBV, hepatitis B virus; HCV, hepatitis C virus; HMGB1, high-mobility group
box-1; PDK1, pyruvate dehydrogenase kinase 1; TNM, tumor-node-metastasis; PDCD4, programmed cell death 4; PTEN, phosphatase
and tensin homolog; E2F3, E2F transcription factor 3; ADAM17, a disintegrin and metalloproteinase 17; NEK5, NIMA related kinase
5; TAM, tumor-associated macrophage; TCF-4T, T-cell-specific transcription factor 4; MDM2, mouse double minute clone 2; BAG-1,
bcl-2 associated athanogene-1; NSCLC, Non-small cell lung carcinoma; LARP1, La-related protein 1; CBLL1, Casitas B-lineage proto-
oncogene like 1; TGF-β1, Transforming growth factor β; ZEB2, zinc finger E-box binding homeobox 2; ATG7, autophagy associated
gene 7; PUMA, p53 upregulated modulator of apoptosis; NF-kB, nuclear factor-kappa B; YAP, Hippo/yes-associated protein; EGFR,
epidermal growth factor receptor; iASPP, inhibitor of apoptosis-stimulating protein of p53; CDK1, Cyclin-dependent kinase 1; VEGF,
vascular endothelial growth factor; STAT3, signal transducer and activator of transcription 3; MACC1, MET transcriptional regulator;
MDR1, multidrug resistance gene 1; MRP1, multi-drug resistance protein 1; bFGF, basic fibroblast growth factor; SDC1:Syndecan-1;
TGCT, testicular germ cell tumor; CAD, coronary artery disease; MI, myocardial infarction; HF, heart failure; TLR2, toll-like receptor
2; PDE4D, Phosphodiesterase 4D; CB2R, cannabinoid receptor type II; LR5, toll-like receptor 5; NFAIP1, tumor necrosis factor alpha-
induced protein 1; CCI, chronic constriction injury; AD, Alzheimer’s disease; OA, Osteoarthritis; PDLSCs, periodontal ligament stem
cells; OP, osteoporosis; ALP, alkaline phosphatase; MMP-13, matrix metalloproteinase 13; ADAMTS5, ADAM metallopeptidase with
thrombospondin type 1 motif 5; OPN, overexpression of osteopontin; TLRS, Toll−like receptors; CRPS, Complex regional pain
syndrome; YY1, Yin-Yang 1; SCI, Spinal cord injury; CCSCI, Compressive Spinal Cord Injury; CDKN1A, cyclin-dependent kinase
inhibitor 1A; PFOS, Perfluorooctane sulfonate; SOX7, SRY-box 7; PGD, Primary graft dysfunction; NET, neutrophil extracellular trap;
NOD2, Nucleotide-Binding Oligomerization Domain 2; COL1A1, collagen 1 alpha 1.
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