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ABSTRACT
Aims/Introduction: Duodenal-jejunal bypass (DJB) surgery has been reported to effec-
tively relieve diabetic cardiomyopathy (DCM). However, the specific mechanisms remain
largely unknown. The present study was designed to determine the alterations of myocar-
dial glucose uptake (MGU) after DJB and their effects on DCM.
Materials and Methods: Duodenal-jejunal bypass and sham surgeries were carried
out in diabetic rats induced by a high-fat diet and a low dose of streptozotocin, with
chow-diet fed rats as controls. Bodyweight, food intake, glucose homeostasis and lipid
profiles were measured at indicated time-points. Cardiac function was evaluated by
transthoracic echocardiography and hemodynamic measurement. Cardiac remodeling was
assessed by a series of morphometric analyses along with transmission electron micro-
scopy. Positron-emission tomography with fluorine-18 labeled fluorodeoxyglucose was car-
ried out to evaluate the MGU in vivo. Furthermore, myocardial glucose transporters (GLUT;
GLUT1 and GLUT4), myocardial insulin signaling and GLUT-4 translocation-related proteins
were investigated to elucidate the underlying mechanisms.
Results: The DJB group showed restored systolic and diastolic cardiac function, along with
significant remission in cardiac hypertrophy, cardiac fibrosis, lipid deposit and ultrastructural
disorder independent of weight loss compared with the sham group. Furthermore, the DJB
group showed upregulated myocardial insulin signaling, hyperphosphorylation of AKT
substrate of 160 kDa (AS160) and TBC1D1, along with preserved soluble N-ethylmaleimide-
sensitive factor attachment protein receptor proteins, facilitating the GLUT-4 translocation to
the myocardial cell surface and restoration of MGU.
Conclusions: The present findings provide evidence that restoration of MGU is
implicated in the alleviation of DCM after DJB through facilitating GLUT-4 translocation,
suggesting a potential choice for treatment of human DCM if properly implemented.

INTRODUCTION
Diabetic cardiomyopathy (DCM) substantially increases heart
failure risk and leads to poor prognosis1. However, there is

currently no specific clinical intervention, and novel therapies
are required.
Bariatric surgery has been proved to provide effective remis-

sion in type 2 diabetes and associated complications2,3. It has
attracted more attention because of its effectiveness in amelio-
rating diabetic cardiac dysfunction4,5. However, most previousReceived 2 July 2018; revised 10 September 2018; accepted 1 October 2018
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studies were carried out on the background of obesity, and
remarkable weight loss after surgery would inevitably confound
the results.
Duodenal-jejunal bypass (DJB) is a commonly used experi-

mental model to investigate the antidiabetic effect of bariatric
surgery independent of weight loss6,7. However, there has been
limited study regarding the therapeutic effects of DJB on DCM
to date. Our previous research showed that DJB could amelio-
rate diabetic cardiac dysfunction in a rat model8. However, more
studies are required to elucidate the underlying mechanism.
Insulin resistance is one of the main triggers of DCM9.

Although multiple downstream signaling is involved, impaired
insulin-mediated myocardial glucose uptake (MGU) is consis-
tently observed10–12. The compromised glucose utilization facili-
tates a substrate shift toward increased free fatty acid oxidation,
which would in turn lead to cardiac damage13. Conversely, nor-
malizing MGU and cardiac metabolism could reverse DCM14.
At the cellular level, MGU is dependent on the transmem-

brane glucose gradient and the content of cell surface glucose
transporters (GLUT)15. GLUT-1 is mainly localized in the
sarcolemma and regulates the basal MGU, whereas GLUT-4
takes effect relying on a sophisticated translocation from
intracellular storage sites to the cell surface through a cascade
activation of the insulin signaling pathway in the presence of
stimulation16,17.
To our knowledge, the alterations in MGU after DJB and its

effects on DCM have not been reported. In the present study,
we carried out DJB and sham surgeries on diabetic rats induced
by a high-fat diet (HFD) and a low dose of streptozotocin, with
chow-diet fed rats as controls. We aim to investigate the alter-
ations in MGU after DJB and the associated mechanisms, as
well as its morphological and functional effects on DCM.

METHODS
Animals
All experiments were approved by the Ethics Committee on
Experiment Animal of Shandong University Qilu Hospital.
Eight-week-old male Sprague–Dawley rats (the Laboratory Ani-
mal Center of Shandong University, Jinan, China) were ran-
domly assigned to the control group or diabetic group. The
control group (n = 10) was fed with standard rodent chow diet
(15% of calories as fat, Laboratory Animal Center of Shandong
University) throughout the study period. Type 2 diabetes was
induced as previously described18. Briefly, rats in the diabetic
group received HFD (40% calories as fat, Huafukang Biotech
Company, Beijing, China) for 4 weeks to induce insulin resis-
tance. After a 12-h fast, they were injected intraperitoneally
with 2% of streptozotocin (Sigma, St. Louis, MO, USA; 35 mg/
kg dissolved in ice cold citrate buffer, pH 4.5), while the control
group received citrate buffer alone. Three days later, rats with
non-fasting glucose ≥16.7 mmol/L were considered diabetic
(n = 20). After 16 weeks of diabetes, transthoracic echocardiog-
raphy was carried out to evaluate the cardiac function before
surgery. Then diabetic rats (n = 20) were randomly allocated to

undergo corresponding surgery in the DJB group (n = 10) or
the sham group (n = 10). The study design is summarized in
Figure S1.

Surgical Procedures
DJB surgery was carried out as previously reported19. Sham
surgery consisted of midline laparotomy with the same expo-
sure, but not removal of stomach tissue. The operation time
was prolonged similar to that of DJB to ensure equivalent anes-
thetic and surgical stress. Access to water was given from 2 h
postoperatively. Rats were fed with 10% of Ensure (Abbott Lab-
oratories, Abbott Park, IL, USA) from 24 h after surgery for
3 days, followed by standard rodent chow diet until the end of
the study.

Oral Glucose Tolerance Test and Insulin Tolerance Test
The oral glucose tolerance test (OGTT) and insulin tolerance
test (ITT) were carried out preoperatively, and at both 2 and
8 weeks after surgery, as previously described18. Briefly, after a
12-h fast, blood glucose of rats was monitored from the tail
vein at baseline, 10, 30, 60 and 120 min after administration of
20% glucose (1 g/kg) by intragastric gavage for OGTT, or insu-
lin lispro (0.5 IU/kg) by intraperitoneal injection for ITT. ITT
was carried out 2 days after OGTT to ensure recovery.

Blood Sampling and Analysis
Blood samples were collected from the retro-orbital plexus of
rats under light ether anesthesia after an overnight fast. Levels
of serum triglyceride, total cholesterol, fasting plasma glucose
(FPG), high-density lipoprotein cholesterol, low-density lipopro-
tein cholesterol and non-esterified fatty acid were analyzed by
the Roche Cobas 8000 modular analyzer system (Roche Diag-
nostics, Indianapolis, IN, USA). Plasma fasting insulin and glu-
cagon-like peptide-1 (GLP-1) were quantified using the Ultra
Sensitive Rat Insulin ELISA Kit (Crystal Chem, Elk Grove, IL,
USA) and multispecies GLP-1 ELISA kit (Millipore, Billerica,
MA, USA), respectively. The homeostasis model assessment of
basal insulin resistance was calculated as FPG (mmol/L) 9 fast-
ing insulin (mIU/L) / 22.520.

Echocardiographic Evaluation
Before and at 8 weeks after surgery, transthoracic echocardiog-
raphy was carried out with a VEVO 2100 imaging system
(VisualSonics, Toronto, ON, Canada). Rats were lightly anes-
thetized with inhaled isoflurane-O2. Two-dimensional and
M-mode imaging was carried out to evaluate cardiac structure
by determining left ventricular end diastolic diameter and left
ventricular end systolic diameter. The left ventricular systolic
function was assessed according to ejection fraction and frac-
tional shortening. Mitral inflow was recorded by pulsed-wave
Doppler at the apical position; peak velocities of early filling (E)
were measured. Tissue Doppler imaging of mitral annulus was
obtained in the apical four-chamber view at the highest possible
frame rate and peak early diastolic velocities (e0) were
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measured. The ratio of E/e0 was calculated to evaluate the left
ventricular diastolic function21.

Hemodynamic and Blood Pressure Measurements
At 8 weeks after surgery, under deep anesthesia, a fluid-filled
catheter was inserted from the right carotid artery into the left
ventricle (LV) of rats. The left ventricular end diastolic pressure
was measured.
In terms of blood pressure measurement, the heart rate,

systolic blood pressure, diastolic blood pressure and mean
arterial pressure were measured by a tail-cuff automatic
sphygmomanometer (Softron, Tokyo, Japan) as described
previously22.

Positron-Emission Tomography Scan and Image Processing
Three rounds of positron-emission tomography (PET) scan
were carried out at 8 weeks after surgery to evaluate the MGU
in vivo with an Inveon dedicated PET system (Siemens, Bonn,
Germany). Briefly, the first round was carried out regularly
after fluorine-18 labeled fluorodeoxyglucose (18F-FDG) injection
from the tail vein. To ensure the maximal stimulation of MGU,
the second round was carried out after an intravenous glucose
load. To fully simulate the postprandial hyperglycemia state,
the third round was carried out after an intragastric glucose
load instead. To determine the MGU, multiple regions-of-inter-
est were drawn manually on at least five representative midven-
tricular transverse planes by visualizing the heart margin as
they appeared as bumps under the skin23. The mean standard
uptake value was calculated to identify the radioactivity of the
heart. The detailed method and image processing are listed in
Appendix S1.

Organ Harvesting
At the end of the study (8 weeks after the surgery), human
insulin (Velosulin, 10 U/kg bodyweight) was injected into the
caudal vena cava of rats. Three minutes later, rats were eutha-
nized and the hearts were rapidly removed and washed in cold
phosphate-buffered saline. Then, 1-mm cubes were quickly cut
from the LV and fixed in 2.5% glutaraldehyde for electron
microscopy analysis. The remaining part of the LV was sliced
into three pieces, one was fixed in 4% paraformaldehyde, and
the other two were put into liquid nitrogen and stored at -
80°C for further analysis.

Morphometric and Histological Analysis
LV tissues fixed in 4% paraformaldehyde were embedded in
paraffin, and 4-lm thick sections were produced for hema-
toxylin–eosin staining and Masson’s trichrome staining. The
myocyte cross-sectional area was calculated under 9400 magni-
fication from hematoxylin–eosin-stained sections. Collagen vol-
ume fraction and perivascular collagen area/luminal area ratio
were quantified from Masson-stained sections. LV frozen sec-
tions (5 lm) were stained with Oil Red O and then counter-
stained with hematoxylin to detect neutral lipid. All

quantitative morphometry was carried out with Image-Pro Plus
6.0 (Media Cybernatics, Bethesda, MD, USA).

Transmission Electron Microscopy
LV samples (1-mm cubes) were fixed in 2.5% glutaraldehyde
overnight at 4°C and post-fixed in 1% osmium tetroxide, then
dehydrated through a graded ethanol series and embedded in
epoxy resin. Ultrathin sections double-stained with uranyl acet-
ate and lead citrate were examined by a transmission electron
microscope (FEI/Philips CM-100; Thermo Fisher Scientific,
Waltham, MA, USA).

Immunohistochemistry and Western Blotting
Image-Pro Plus 6.0 software (Media Cybernatics) was used to
calculate the mean integrated optical density per stained area
(lm2) for immunohistochemistry. In terms of Western blotting,
the total and membrane target protein were normalized relative
to b-actin and Na+/K+ ATPase1, respectively. The detailed
methods are listed in Table S1 and Appendix S2.

Statistical Analysis
Quantitative data are presented as mean – standard deviation,
and were analyzed using SPSS software (ver. 18.0; SPSS Inc.,
Chicago, IL, USA). The area under the curve (AUC) for OGTT
(AUCOGTT) and ITT (AUCITT) was calculated by trapezoidal
integration. Bodyweight, food intake, FPG, fasting insulin and
homeostasis model assessment of basal insulin resistance over
time were analyzed using two-way (repeated-measures) analysis
of variance (ANOVA). The results are reported differences as AP
by group, BP over time and CP due to the interaction of the
two factors. The Bonferroni post-hoc test was carried out where
appropriate. The other datasets were compared using one-way
ANOVA followed by Bonferroni or Dunnett’s T3 correction.
P < 0.05 was taken to show statistical significance.

RESULTS
General Characteristics of Diabetic Rats Before Surgery
After 16 weeks of diabetes, the diabetic group showed higher
water intake and urine volume than the control group, as
expected. The two groups showed similar levels of bodyweight,
systolic blood pressure, diastolic blood pressure and mean arte-
rial pressure (Table S2). However, the diabetic group showed
significantly higher left ventricular end diastolic diameter, left
ventricular end systolic diameter and E/e0, along with lower
ejection fraction and fractional shortening (Figure 1), indicating
both systolic and diastolic cardiac dysfunction before surgery.

Bodyweight and Food Intake After Surgery
Due to perioperative food restriction and surgical stress, both
bodyweight and food intake in the sham and DJB groups
decreased sharply during the first week after surgery, and
increased gradually thereafter (Figure 2a,b). No significant dif-
ference was detected between these two groups in terms of
bodyweight and food intake after surgery (Figure 2a,b).
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DJB Surgery Significantly Improved Glucose Homeostasis and
Serum Lipid Profiles
The DJB group showed lower levels of FPG than the sham
group from 2 weeks after surgery (Figure 2c). Though the fast-
ing insulin level of the two groups was similar, the DJB group
showed improved homeostasis model assessment of basal insu-
lin resistance from 2 weeks after surgery (Figure 2d,e). In addi-
tion, lower levels of AUCOGTT and AUCITT were detected in
the DJB group at 2 and 8 weeks after surgery than the sham
group (Figure 2f,g). These findings suggested that DJB could
reverse the impaired glucose tolerance and insulin sensitivity in
diabetic rats. Furthermore, the DJB group had higher levels of

plasma GLP-1 than the sham group at both 2 and 8 weeks
after surgery (Figure 2h).
Compared with the sham group, the DJB group showed

lower serum triglyceride and non-esterified fatty acid, along
with higher serum high-density lipoprotein cholesterol at 2
weeks after surgery (Table 1). At 8 weeks postoperatively, the
DJB group showed significantly lower serum triglyceride, total
cholesterol, low-density lipoprotein cholesterol and non-esteri-
fied fatty acid, as well as higher serum high-density lipoprotein
cholesterol, which were at the same levels as in the control
group (Table 1). Thus, DJB surgery could effectively improve
the serum lipid profiles of diabetic rats.
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DJB Surgery Reversed Diabetic-Induced Cardiac Remodeling
As shown in Figure 3a, the myocardial cells in the sham group
lined up in disorder with irregular nucleus and uneven cyto-
plasm distribution, and the myocardial fibers were fragmented
and disrupted. The DJB group showed well-arranged myocar-
dial cells, which was similar as those in the control group. The
DJB group showed a 29% decrease in myocyte size compared
with the sham group (Figure 3f), indicating a significant ame-
lioration of the cardiomyocyte hypertrophy. In addition, the Oil
Red O staining results showed less myocardial lipid deposition
in the DJB (Figure 3c). Furthermore, both interstitial and
perivascular cardiac fibrosis were alleviated in the DJB group,
with a lower collagen volume fraction and perivascular collagen
area/luminal area ratio than the sham group (Figure 3b,g,h).

This was further confirmed by the significantly lower collagen I
and III content in the DJB group (Figure 3d,i). In terms of
myocardial ultrastructure, the sham group showed randomly
distributed swollen mitochondria and lipid droplets between
poorly organized myofibrils, whereas the DJB group showed
layers of mitochondria intervened between myofibrils consisting
of regular and continuous sarcomeres (Figure 3e). These results
showed that DJB could reverse the diabetes-induced cardiac
remodeling remarkably.

DJB Surgery Ameliorated Diabetic-Induced Cardiac
Dysfunction
The three groups showed similar heart rate, systolic blood pres-
sure, diastolic blood pressure and mean arterial pressure at both
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2 and 8 weeks after surgery (Table 1). Compared with the
sham group, the DJB group showed significant reductions in
left ventricular end diastolic diameter, left ventricular end sys-
tolic diameter and E/e0, along with higher levels of ejection frac-
tion and fractional shortening (Figure 4a–e). In addition, the
hemodynamic measurement showed lower left ventricular end
diastolic pressure in the DJB group than in the sham group
(Figure 4f). There was no significant difference between the
DJB group and control group, except for the E/e0 ratio (Fig-
ure 4e). These results showed that DJB could improve both sys-
tolic and diastolic LV function of diabetic rats to levels close to
or similar to those observed in the control group.

DJB Surgery Restored MGU of Diabetic Rats
The sham group showed remarkably impaired MGU in all
three rounds of PET scans (Figure 4g,h). However, the DJB
group showed a significantly higher standard uptake value than
the sham group in all three rounds, although it did not reach
the level of the control group (Figure 4i). These results showed
that DJB could alleviate diabetes-induced MGU impairment in
both basal and insulin-stimulated states.

Effects of DJB Surgery on Myocardial Glucose and Fatty Acid
Transporter
The total protein levels of GLUT-1 and GLUT-4 were similar
among the three groups (Figure 5a,b,d). No significant differ-
ence was detected in plasma membrane GLUT-1 among the
three groups (Figure 5b,e). However, the plasma membrane
expression of GLUT-4 was significantly upregulated in the DJB
group compared with the sham group (Figure 5b,e). The
inconsistent intracellular distributions of GLUT-4 were further
confirmed by immunohistochemical staining, which showed
that most myocardial GLUT-4 in the control and DJB groups
was gathered near the cell membrane (Figure 5a). The plasma
membrane cluster of differentiation 36 (CD36), the major

myocardial fatty acid transporter, was significantly attenuated
after DJB compared with the sham group, although the total
protein of which remained similar (Figure 5c–e). These results
showed that the DJB group had more GLUT-4 and less CD36
in the plasma membrane compared with the sham group, but
there was no significant difference in GLUT-1 (Figure 5f).

Effects of DJB Surgery on Myocardial Insulin Signaling and
GLUT-4 Translocation
The DJB group showed a higher phospho/total ratio of insulin
receptor substrate 1, phosphatidylinositol 3-kinase (PI3K) and
protein kinase B (AKT/PKB) than the sham group (Figure 6a–
d). In terms of proteins involved in GLUT-4 translocation, the
DJB group showed upregulated phosphorylation of AKT sub-
strate of 160 kDa (AS160) and TBC1D1 compared with the
sham group (Figure 6e–h). No significant difference was
detected in the expression of vesicle-associated membrane pro-
tein 2, synaptosome-associated protein of 23 kDa or syntaxin 4
among the three groups (Figure 6e,i). These results showed that
DJB could facilitate myocardial insulin signaling and GLUT-4
translocation.

DISCUSSION
Diabetic cardiomyopathy is defined as LV dysfunction in
patients with diabetes in the absence of coronary artery disease
and arterial hypertension24. It is characterized by morphologi-
cal, functional and metabolic changes in the heart25. The pre-
sent study was carried out to further explore the therapeutic
effects of DJB on DCM and the associated mechanisms.
In the present study, HFD combined with low-dose strepto-

zotocin was used to induce diabetes in rats. This method has
been accepted by many researchers, as it simulates the natural
history and metabolic characteristics of patients with type 2
diabetes26–28. Furthermore, this model is commonly used in
research of DCM, and it was reported that 12–16 weeks of

Table 1 | Heart rate, blood pressure and serum lipid profiles of rats at 2 and 8 weeks after surgery

Determination 2 weeks after surgery 8 weeks after surgery

Control (n = 10) Sham (n = 10) DJB (n = 10) Control (n = 10) Sham (n = 10) DJB (n = 10)

HR (b.p.m.) 371.46 – 44.72 393.06 – 37.29 382.53 – 45.31 378.23 – 40.75 391.74 – 52.33 380.28 – 45.62
SBP (mmHg) 121.53 – 6.46 117.70 – 8.36 119.14 – 11.51 122.37 – 8.16 119.55 – 9.61 123.67 – 10.32
DBP (mmHg) 99.62 – 6.37 101.21 – 6.38 98.64 – 8.12 95.47 – 7.41 95.32 – 7.93 97.61 – 8.19
MAP (mmHg) 105.14 – 5.74 106.87 – 7.51 104.94 – 6.52 103.29 – 7.48 104.11 – 8.16 106.16 – 6.87
TG (mmol/L) 1.05 – 0.31 2.69 – 0.72** 1.92 – 0.65#,&& 1.11 – 0.34 2.95 – 0.84** 1.43 – 0.65##

TC (mmol/L) 1.80 – 0.35 2.32 – 0.49* 1.96 – 0.32 1.87 – 0.44 3.60 – 1.16** 2.19 – 0.73##

HDL-c (mmol/L) 1.15 – 0.27 0.62 – 0.20** 0.96 – 0.39# 1.21 – 0.21 0.52 – 0.25** 1.04 – 0.31##

LDL-c (mmol/L) 0.42 – 0.05 0.54 – 0.16 0.47 – 0.15 0.39 – 0.08 0.64 – 0.13** 0.46 – 0.09##

NEFA (lmol/dL) 22.54 – 3.39 48.42 – 9.81** 30.83 – 6.75##,&& 24.27 – 4.31 62.43 – 10.28** 27.51 – 6.20##

Data are expressed as mean – standard deviation, n = 10 per group. *P < 0.05, **P < 0.01 sham versus control; #P < 0.05, ##P < 0.01 duodenal-
jejunal bypass (DJB) versus sham; &&P < 0.01 DJB versus control. DBP, diastolic blood pressure; HDL-c, high-density lipoprotein cholesterol; HR, heart
rate; LDL-c, low-density lipoprotein cholesterol; MAP, mean arterial pressure; NEFA, non-esterified fatty acid; SBP, systolic blood pressure; TC, total
cholesterol; TG, triglyceride.
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diabetes was sufficient to induce DCM in this model29–31. In
the present study, after 16 weeks of diabetes, the diabetic rats
showed both systolic and diastolic LV dysfunction before sur-
gery, which makes it a suitable experimental model for investi-
gating the effects of DJB on DCM.
The present study provided direct evidence that DJB could

markedly alleviate DCM morphologically and functionally

independent of weight loss. We further showed that DJB could
ameliorate the MGU defects in diabetic rats, which was associ-
ated with facilitated myocardial insulin signaling and GLUT-4
translocation (Figure S2).
As a central trigger of DCM, the impaired MGU in diabetic

hearts has been reported10,12. However, these studies suffered
from a drawback that the measurements were carried out
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in vitro using isolated working hearts. Recently, PET has been
used to evaluate myocardial energy substrate uptake, with the
advantage of fully reflecting the physiological state in vivo29,32.

We carried out three rounds of 18F-FDG PET in this study.
The first round was carried out in the basal state, whereas the
second one was carried out under conditions of hyperglycemia
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and hyperinsulinemia to ensure maximal stimulation of
myocardial glucose transport. The third round was carried
out to better simulate postprandial hyperglycemia. The results
confirmed that DJB significantly restored the MGU in
diabetic rats.
GLUT-1 and GLUT-4 are responsible for basal and insulin-

stimulated MGU, respectively16. However, the alterations of
GLUTs in DCM remained inconsistent10,33. In the present
study, similar levels of total GLUT-1 and GLUT-4 were
observed among groups. However, we found attenuated levels
of plasma membrane GLUT-4 in the sham group, which was
consistent with previous studies12,32. Furthermore, we had a
novel finding that DJB could restore the myocardial expression
of membrane GLUT-4. As the total GLUT-4 levels were similar
among groups, the GLUT-4 defect in the sham group and
rehabilitation after DJB should occur at the translocation pro-
cess. PI3K/AKT is the central hub of signal transduction in the
myocardial insulin signaling pathway34, it receives the upstream
signal of IRS family and plays a central role in promoting
GLUT-4 translocation35. The sham group in the present study
had serious myocardial insulin resistance, which is consistent
with previous studies5,31,36. Furthermore, the DJB group showed
restored insulin sensitivity with increased insulin receptor sub-
strate 1 phosphorylation and intensified PI3K/AKT activation,
showing DJB could alleviate myocardial insulin resistance at the
molecular level.
The detailed mechanism regarding how exactly DJB inter-

feres with myocardial insulin signaling pathway remains
unclear. The present results showed increased levels of plasma
GLP-1 after DJB, which was considered to be due to the accel-
erated nutrient delivery to the distal ileum where GLP-1 is
secreted37. A previous study reported that GLP-1 had direct
effects on MGU and GLUT-4 translocation during reperfu-
sion38. More recent studies further confirmed that GLP-1 car-
ried out its cardioprotective role in alleviating myocardial
insulin resistance by activating the PI3K/AKT pathway39–41.
Taken together, GLP-1 probably plays an important role in the
alleviation of myocardial insulin sensitivity after DJB. Future
studies are warranted to confirm this hypothesis.
There is still a gap between upstream insulin signaling and

downstream GLUT-4 translocation42. Two novel substrates of
AKT, AS160 and TBC1D1, have been the major candidates
potentially bridging this gap43. They are essentially functioning
as a brake on GLUT-4 vesicle exocytosis. The phosphorylation
of AS160 and TBC1D1 by AKT in response to insulin results
in the conversion of some downstream Rab proteins to the
active guanosine-5’-triphosphate-bound form, and thus triggers
the GLUT-4 translocation to the plasma membrane43,44. Stud-
ies have confirmed the role of AS160 and TBC1D1 in skeletal
muscle45,46. However, there has been limited research into
their role in DCM to date. In the present study, the phospho-
rylation and activation of AS160 were restored after DJB,
which could play a pivotal role in the facilitation of GLUT-4
translocation.

The docking and fusion of GLUT-4 vesicles with the cell
membrane represent the final step of GLUT-4 translocation.
This process is mainly driven by soluble N-ethylmaleimide-sen-
sitive factor attachment protein receptor (SNARE) complex
assembly between the GLUT-4 vesicle-localized v-SNARE
vesicle-associated membrane protein 2 and the plasma mem-
brane-localized t-SNARE syntaxin 4, along with synaptosome-
associated protein of 23 kDa17,47. In the present study, the three
groups showed similar levels of vesicle-associated membrane
protein 2, Syntaxin4, and synaptosome-associated protein of
23 kDa, showing that both impaired MGU in diabetic rats and
restored MGU after DJB are independent of the quantity of
SNARE proteins. Further studies are required to validate the
physiological relevance of the current findings to humans.
As glucose and fatty acid metabolism could be tightly cou-

pled and inversely regulated in the myocardium48, it is likely
that DJB results not only in the improvement in MGU, but
also in a decrease in lipotoxicity. CD36 acts as a major facilita-
tor of myocardial fatty acids uptake in humans and rodents49.
Persistent relocation of CD36 to the sarcolemma is observed in
the diabetic myocardium50. The present results are consistent
with previous report and further show a net internalization of
CD36 after DJB compared with Sham surgery, which could
account, at least in part, for the alleviation of myocardial lipid
accumulation. Further studies are warranted to explore the
effects of DJB surgery on myocardial fatty acid metabolism.
One potential limitation of the present study was the lack of

detailed myocardial metabolic alterations. Although recovery in
MGU and the balance of cardiac metabolism have been proved
to effectively reverse DCM14, there are still gaps between
enhanced myocardial GLUT-4 on the membrane and the final
amelioration of cardiac function. Future studies focusing on
myocardial metabolic profiling after DJB and associated effects
on DCM would be of vital significance.
In conclusion, the present study showed that DJB surgery

could restore the MGU in diabetic rats by facilitating myocar-
dial GLUT-4 translocation, thus contributing to the morpholog-
ical and functional alleviation of DCM.
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