
Research Article
Robust SAR Automatic Target Recognition Based on Transferred
MS-CNN with L2-Regularization

Yikui Zhai ,1 Wenbo Deng ,1 Ying Xu ,1 Qirui Ke,1 Junying Gan ,1 Bing Sun,2

Junying Zeng ,1 and Vincenzo Piuri3

1Department of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
2School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
3Dipartimento di Informatica, Universita’ Degli Studi di Milano, Via Celoria 18, 20133 Milan, Italy

Correspondence should be addressed to Ying Xu; xuying117@163.com

Received 13 June 2019; Accepted 21 August 2019; Published 15 November 2019

Academic Editor: Amparo Alonso-Betanzos

Copyright © 2019 Yikui Zhai et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

-ough Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) via Convolutional Neural Networks (CNNs)
has made huge progress toward deep learning, some key issues still remain unsolved due to the lack of sufficient samples and
robust model. In this paper, we proposed an efficient transferred Max-Slice CNN (MS-CNN) with L2-Regularization for SAR
ATR, which could enrich the features and recognize the targets with superior performance. Firstly, the data amplification
method is presented to reduce the computational time and enrich the raw features of SAR targets. Secondly, the proposed MS-
CNN framework with L2-Regularization is trained to extract robust features, in which the L2-Regularization is incorporated
to avoid the overfitting phenomenon and further optimizing our proposed model. -irdly, transfer learning is introduced to
enhance the feature representation and discrimination, which could boost the performance and robustness of the proposed
model on small samples. Finally, various activation functions and dropout strategies are evaluated for further improving
recognition performance. Extensive experiments demonstrated that our proposed method could not only outperform other
state-of-the-art methods on the public and extended MSTAR dataset but also obtain good performance on the random
small datasets.

1. Introduction

SAR ATR is widely used in various fields such as urban
monitoring, natural environment survey, and military target
reconnaissance [1, 2], which can acquire earth observation
images from severely adverse weather conditions and ex-
cavate hidden and camouflaged targets effectively [3, 4].
Compared with other microwave detection tools, distinctive
characteristics derived from SAR images can work well
better than other sensors, like optical and infrared methods
on coherent imaging system and electromagnetic scattering
mechanism. Nowadays, SAR ATR is an essential technique
in remote sensing application.

SAR ATR was restricted by imaging quality and ad-
vancement of image classification. SAR target classification
can be categorized as traditional methods and deep learning

methods. Generally, traditional methods aim to extract
discriminative and represented features from the training
samples. Traditional feature extraction methods, such as
Histogram of Oriented Gradients (HOG) [5], Local Binary
Pattern (LBP) [6], Principal Component Analysis (PCA) [7],
and Scale Invariant Feature Transform (SIFT) [8], were
applied to SAR target classification task. Song et al. [9]
designed a novel gradient HOG-like feature-based SAR ATR
method to tackle a complex application environment. Li
et al. [10] proposed a HOG descriptor-based method to
match features between SAR images and optical images.
Ghannadi and Saadatseresht [6] proposed a modified LBP
descriptor to obtain robust features for SAR ATR. Wang
et al. [11] presented an improved SAR interferogram
denoising method based on PCA to improve the accuracy of
phase unwrapping. Xiang et al. [12] combined an adaptive

Hindawi
Computational Intelligence and Neuroscience
Volume 2019, Article ID 9140167, 13 pages
https://doi.org/10.1155/2019/9140167

mailto:xuying117@163.com
https://orcid.org/0000-0003-0154-9743
https://orcid.org/0000-0003-2038-5844
https://orcid.org/0000-0002-7707-0045
https://orcid.org/0000-0002-6418-7316
https://orcid.org/0000-0002-7559-0637
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9140167


sampling method with SAR-SIFT to eliminate obvious scale
difference images. However, the presence of speckle noises
and lack of robust features have seriously degraded the
feature robustness of the SAR image.

In recent years, deep learning methods have been pro-
posed to extract more robust features. Rumelhart et al. [13]
proposed the Back Propagation (Back Propagation) algo-
rithm for Multilayer Perception (Multilayer Perception,
MLP) to effectively solve the nonlinearity classification
problem. LeCun et al. [14] presented LeNet structure to
improve the classification performance. In 2006, Hinton
et al. [15] proposed a self-learning method to overcome the
gradient disappearance in deep network training. Zhang
et al. [16] proposed a SAR-CNN model with batch nor-
malization to estimate the speckled image and improve its
performance. Zhen et al. [17] integrated effective image
preprocessing and CNN for SAR target classification.
Shahzad et al. [18] used CNN to generate visible images with
high quality from SAR images and yield good result. Hughes
et al. [19] identified corresponding patches in SAR and
optical images with pseudosiamese CNN, to identify cor-
responding patches in high-resolution optical and SAR
remote sensing imagery. -ough the above methods could
achieve relatively good performance, two key problems still
remain unsolved in SAR ATR [17, 20].

-e first challenging problem is effective model design,
which is mainly impacted by objective function and cost
function design, super-high dimensional parameters optimi-
zation, and so on. -e second challenging problem is model
generalization, such as overfitting caused by insufficient
samples and generalization ability on unknown targets.

In this paper, a transferred MS-CNN with L2-Regula-
rization is proposed to tackle the aforementioned chal-
lenging problems. Firstly, joint ROI feature extraction and
data amplification methods are adopted to prepossess in-
terested SAR regions and enhance the richness of raw
training samples, respectively, which could seek accurate
interested image regions and effectively scale up the dataset.
Secondly, a novel transferred MS-CNN framework with L2-
Regularization is proposed to extract robust features and
address the overfitting challenge.-irdly, transfer learning is
employed to improve the feature discrimination and eval-
uate the model robustness. -en, dropout strategy is utilized
to address the redundancy of extracted features from the
network. Finally, experiments conducted on the original and
extended MSTAR dataset indicated that the proposed
method could achieve an excellent performance. -e con-
tributions of this paper can be summarized as follows:

(1) Joint ROI and data amplification: ROI extraction and
data amplification methods are presented to suppress
noise and enrich numbers of raw training samples

(2) Max-Slice CNNmodel: the presentedMS-CNNmodel
could not only extract robust features but also rec-
ognize the targets correctly on MSTAR database and
yield satisfactory performance on both small samples

(3) L2-regularization: L2-regularization algorithm is
incorporated to avoid overfitting and optimize the

trained model, which could boost 8.53% compared
with the one without L1-regularization

(4) Transfer learning strategy: transfer learning is
employed for improving the robustness under small
samples and outperforms other state-of-the-art
methods, thus greatly increasing the performance of
the feature generalization representation and
discrimination

-e rest of the paper is mainly organized as follows:
Section 2 introduces the related work on SARATR. Section 3
describes the proposed method in SAR ATR. Section 4
presents the content of transfer learning. Section 5 details the
conducted experiments. Section 6 draws the conclusions.

2. Related Work

2.1. Convolutional Neural Networks. Convolution neural
network is a forward neural network [21] through convo-
lution operation to realize the connection between network
layers [22], which incorporates Convolutional layers
(Convs), Rectified Linear Unit (Rectified Linear Unit, ReLU)
layers, Pooling layers (Pooling), Fully Connection layers
(FC), and so on. -e Convs applied linear filters followed by
activation functions, such as Randomized Parameterized
ReLU, Exponential Linear Units (ELU), Scaled Exponential
Linear Units (SELU), TanHyperbolic (Tanh), and so on. -e
filter weights were shared across receptive fields in the
Convolutions. -e activation layer was adopted to increase
nonlinearity of the network without affecting receptive fields
of Conv layers. -e pooling layer was applied to nonlinear
activation maps, and useless information or redundancy in
feature maps was discarded.-e fully connection layer maps
extracted visual features to desired outputs and generated a
value to represent grasp success probability. -us, CNN
could extract low-level features from images from early
layers, which provided justification behind development of
other improved CNNs.

GoogleNet has achieved a significant recognition effect
on large-scale visual recognition [23] by using maximum
and average pooling, random inactivation, and softmax
classifier. A residual module [24] was proposed to enhance
feature learning by jumping connection and prevent the
gradient dissipation. -e inception module [22] extracted
multiscale information from an image by convolution op-
eration of different branches to widen the network. In ad-
dition, the inception-v4 [25] structure formed by
introducing jump connection into inception could greatly
accelerate training speed and improve network perfor-
mance. -e pyramid model [26], which was composed of
bottom-up, top-down repetitive processing and in-
termediate supervision, was also proposed to improve the
performance by processing and integrating features on a
multiscale architecture. Liu et al. [27] analyzed the perfor-
mance of GoogleNet in SAR ATR and achieved good results.
Wang et al. [28] used very deep convolutional networks
(VGG) to construct ship classification in SAR images to
solve training bottleneck caused by small dataset. Fu et al.
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[29] used learning optimization in ResNet for SAR ATR to
solve the feature extraction challenge. CNNs rely on training
samples, while insufficient training data result in an over-
fitting phenomenon.

2.2. Regularization. Due to overfitting caused by insufficient
samples and large scale of parameters, regularization
methods have become a significant strategy in deep learning
to improve model generalization. Regularization technique,
which discourages complexity of the model, can be cate-
gorized as L1 and L2-regularization. -eir difference lies in
the parameter restricted term. L1-regularization, also re-
ferred to as L1 norm or Lasso, helps shrink the parameters to
zero and finish feature selection by assigning insignificant
input features with zero weight and useful features with a
nonzero weight. L2-regularization is the sum of square of all
feature weights to fix the error by penalizing the weights.
Regularization is a goodmethod less prone to overfitting and
wildly used for deep learning models.

Bi et al. [30] used the L1-regularization-based SAR
imaging and CFAR detection method to efficiently improve
SAR imaging performance, including suppressing sidelobes
and clutter. Rambour et al. [31] introduced spatial regula-
rization in SAR tomography reconstruction to sever to the
ground analysis. Wagner et al. [32] proposed a deep learning
SAR ATR system using regularization and prioritized classes
to improve the convergence properties. Meng et al. [33]
adopted an adaptive pseudo-p-norm regularization based
despeckling SAR images method to provide a high-quality
interpretation of SAR data. Ni et al. [34] presented the L1/L2-
regularization SAR imaging via complex image data to better
reconstructing the image target detection task. Kang and
Kim [35] used improved L2-regularization for compressive
sensing to enhance the performance. Although regulariza-
tion is a good choice to avoid model overfitting in SAR ATR
and recognition machine, feature extraction and feature
discrimination methods are still challenging issues accu-
rately distinguishing targets.

2.3. Transfer Learning. Transfer learning [36] is an impor-
tant research topic in machine learning. -e goal of transfer
learning is to transform the knowledge learned from a
domain to different but related ones and to reuse the
knowledge of target domain by using shared information
from source domain. -e transfer learning method can
effectively use existing marked data to assist classification
task of similar datasets and improve target recognition rate
of SAR images. -erefore, it can effectively alleviate the
intervention of inherent factors and shortage of tagged
training samples, and provide an effective path to improve
target recognition performance.

Wang et al. [37] adopted transfer learning for SAR target
detection based on SSD with data augmentation and ob-
tained better performance than other methods. Zhong et al.
[38] presented a simple and feasible approach by using
transfer learning and achieved a good performance. Xu et al.
[39] proposed a differentiated adaptive regularized transfer
learning framework for SAR ship classification to overcome

the limitation under insufficient labeled training samples. Al
Mufti et al. [40] employed a pretrained AlexNet to train a
multiclass SVM classifier. -us, transfer learning is be-
coming a popular approach to solve small sample problems.

3. Proposed Method

In our work, the transferred MS-CNN method is proposed
to develop a feature refinement from the initial SAR image to
the final classification map. -e structure incorporates
training stage and testing stage. During the training stage,
the input of the transferredMS-CNN is the enriched samples
augmented by ROI and data amplification and the output is
the corresponding predicted label; a softmax classifier with
L2-regularization is considered as the loss function to op-
timize the network. During the testing stage, images and
labels are input into the network, and the aim is to extract the
features by using the learned model and predict the rec-
ognized classes. -e framework is shown in Figure 1.

-e operation of convolution in MS-CNN is shown as

y
s

� max 0, 
k

x
k ⊗w

k,s
+ b

s⎛⎝ ⎞⎠, (1)

where xk and ys indicate that feature maps are extracted
from the k-th input and s-th feature maps, respectively.W is
described as the convolutional filter connecting the k-th
input feature map and s-th output map. ⊗ Denotes the
operation of convolution. bs is the bias of the j-th output
map. For learning various regional features, weights in each
layer are locally shared. In addition, max-pooling is illus-
trated as

y
s
i,j � max

0≤m,n≤p
x

s
i·p+m,j·p+n, (2)

where each value in the s-th output map ys pools over the
p × p n-overlapping region in the s-th input map xs.

In the training stage, images input into the network are
processed layer wise to obtain the representative features, to
have the data further intuitionistic. As is shown in Table 1,
data visualization is employed by using this method.

3.1. Data Preprocess and Amplification. Suffering from the
background noise, especially speckle noise performs nega-
tive to the classification task. ROI extraction from the SAR
targets, via resizing the input samples, contributes to re-
ducing the influence of irrelevant background noise and
optimizing the training time and coverage speed.-e ROI in
SAR image stands in the central region in the whole picture,
and then the ROI algorithm is employed below to obtain the
interested region. -e particle of the image is considered as
the center to locate the target. -e formula is shown in the
following equation:

ic, jc(  �
m10

m00
,
m01

m00
 , (3)

where (ic, jc) is the particle ordinations of SAR target image.
-e m10 and m01 are 1-order origin moments.
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mij � 
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j
p(x, y), (4)

where mij denotes the (i+ j)-order origin moment, (x, y)
denotes the pixel coordinates of the image, and p (x, y)
denotes the pixel value.

To the best of our knowledge, feature extraction and
classifier discrimination are also affected by limitation of
training sample. -e adequacy and confidence of feature
information determine the classification performance as
well. To this regard, a data amplification method that could
rotate the target image at 360 degrees is proposed to address
the challenges in sufficient training samples. -is method
could generate superior SAR target images that can not only
better remove background noise from images and locate the
region interested to process but also can offset the disad-
vantages caused by insufficient samples and avoid overfitting
as well as gradient explosion. -e data process and ampli-
fication procedure are depicted in Figure 2.

3.2. MS Block for Feature Refinement. -e MS-block is used
to refine the extracted features from convolution layers. -e
role of the slice layer is to decompose the bottom into
multiple tops as needed. Considering that the dimensions of
the input feature are the N∗ 2∗H∗W, set the axis to be the
value 1, that is, the dimension to be decomposed of the
feature map. Under the basis of slice operation, the di-
mensions of the output feature map will be N∗ 1∗H∗W

and N∗ 1∗H∗W, respectively. -e aim of the designed
eltwise layer is to obtain the refined feature maps with the
same dimensions as the output of convolution layers by
element operation. -ree basic operations SUM, PROD, and
MAX are available to make its realization. In this paper,
MAX operation served to compare the size of output feature
maps for the goal of obtaining refined feature maps.

-e achievements of MS-block are described in Figure 3.
Firstly, the scale space of the MS-block representation is
obtained by smooth convolution with different Gaussian
kernels and shares the same resolution on all scales. Sec-
ondly, due to the redundant information produced by the
block, max pooling is provided to reduce the redundancy
and increase the efficiency. -irdly, the advantage of feature
representation is that the local features of the image can be
described on different scales in a simple form with an
abundant theoretical basis to analyze the local features of the
image.

3.3. L2-Regularization-Based Classifier. After the MS-CNN
is amply trained, an L2-regularization-based classifier is
employed to recognize the SAR images. Consider that N
input variables are represented by vector V. -e prediction
can be illustrated as follows:

P(Y � y | v) � softmax W
T
v + b 

y
, (5)

whereW is the weights of above layers and T is transposition
operation. b is the bias of the output map.

Convolution layer 1

MS1 block 

Convolution layer 7

MS7 block Norm 1

MS8 block MS9 block 

Concat

FC1

FC2 Classifier based on
L2-regularization

Dopout

Convolution layer 2

MS2 block

Convolution layer 3

MS3 block 

Convolution layer 8 Convolution layer 9

MS10 block 

SAR images (all)

Le�: raw SAR images
Right: augmented SAR

images

Class 1

Class 2

Class 3

Le�: test SAR images
Right: predicted labels

2S1 BMP2 BRDM_2 BTR60 BTR70 D7 T62 T72 ZIL131 ZLU_2/34

Transfer

Figure 1: Structure of transferred MS-CNN for SAR target recognition. Firstly, raw SAR images and transformed SAR images is utilized in
MS-CNN to extract information, and the extracted features are by normalization operation to preprocess the learned features. -en, the
learned features are transformed to Max-Slice block; and the obtained feature maps are scaled to different size and operated with feature
aggregation; meanwhile, the processed feature maps are merged and associated with each specified size.-irdly, various filters are utilized to
obtain the feature information and max-pooling is served to enforce the robustness of the features. -e fully connected high-level feature
layer and softmax layer predict the recognized classes. Finally, parameters from outside datasets are transferred to the target classification.
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Assuming that the index, a class of submodels based on
the element-by-element penalty of a binary vector, is d, the
formula can be described as follows:

P(Y � y | v; d) � softmax W
T
(d⊙ v) + b 

y
. (6)

-e integrated predictor is defined as the geometric
average of the predictions of all members restandardized as
follows:

Pensemble(Y � y | v) �
Pensemble(Y � y | v)

y′
Pensemble Y � y′ | v( 

, (7)

where
Pensemble(Y � y | v) �

������������������


d∈ 0,1{ }n

P(Y � y | v; d).2n



(8)

Formula (10) is simplified as follows:

Table 1: Data visualization of the proposed MS-CNN.

Description Data shape Filter size/stride/pad Depth #Parameter
Input image [1 64 64] — — —
Conv1 [192 1 3 3] 3× 3/1/1 1 1920
MS1-block [96 64 64] — — —
Conv2 [192 96 1 1] 1× 1/1/0 1 18624
MS2-block [96 32 32] — — —
Conv3 [384 96 3 3] 3× 3/1/1 1 332160
MS3-block [192 32 32] — — —
Conv4 [384 192 1 1] 1× 1/1/0 1 74112
MS4-block [192 16 16] — — —
Conv5 [256 192 3 3] 3× 3/1/1 1 442624
MS5-block [128 16 16] — — —
Conv6 [256 128 1 1] 1× 1/1/0 1 33024
MS6-block [128 16 16] — — —
Conv7 [256 128 3 3] 3× 3/1/1 1 295168
MS7-block [128 16 16] — — —
Conv8 [512 128 1 1] 1× 1/1/0 1 66048
MS8-block [256 8 8] — — —
Conv9 [2048 256 1 1] 1× 1/1/0 1 526336
MS9-block [1024 8 8] — — —
Fc1 [512 24576] — 0 12583424
MS10-block [256] — — —
Fc2 [3 256] — 0 771

ROI selection Data amplification

0°

90° 180°

30°

270° 220°

...

...

...

...

Figure 2: -e procedures of data process and amplification.

Conv Feature
map

Slice

Feature
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Eltwise
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Figure 3: Structure of the MS-block.
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(9)

-e formula is normalized by simplifying the operation
and ignoring those multiplication terms that are constant
with respect to y, as is shown below:

pensemble(Y � y | v)∝
����������������������


d∈ 0,1{ }n

exp WT
y,:(d⊙ v) + b 2n



,

� exp
1
2


d∈ 0,1{ }n

W
T
y,:(d⊙ v) + b⎛⎝ ⎞⎠,

� exp
1
2
W

T
y,:v + b .

(10)

In order to reduce the error in classification, network
parameters are regularized in the course of the training stage.
-e choice of regularization is to add weight delay to rectify
the training standard of linear regression. -e influence of
regularization is shown in Figure 4.

L2-regularization is a good choice in the network. L2-
regularization is also known as ridge regression or
Tikhonov regularization and can be defined as the objective
function as

J(ω, X, y) �
z

2
ωTω + J(ω, X, y), (11)

where wTw is the regularized term and λ is the value of
weight decay. J(·) is the target function. We assume that
there are no bias parameters with the corresponding pa-
rameter gradient.

Ω(θ) �
1
2
‖w‖

2
2. (12)

To take a single gradient step to update the weights, we
perform this update:

ω⟵ω − ∈ zω + ∇ωJ(ω; X, y)( ,

orω⟵ (1 − ∈ z)ω − ∈ ∇ωJ(ω; X, y).
(13)

-is regularization strategy drives the weights closer to
the origin by adding a regularization termΩ(θ) � (1/2)‖w‖22
to the objective function. -e addition of the weight decay

term has modified the learning rule to multiplicatively
shrink the weight vector by a constant factor on each step,
just before performing the usual gradient update.

3.4. Dropout. Overfitting is a common problem in machine
learning matters. In order to further solve the problem of
overfitting, we usually adopt the integration that trains
multiple models and combines their advantages together.
-e problem is that the model is time consuming to train
and test. Dropout strategy can effectively alleviate the oc-
currence of overfitting and achieve regularization. Generally,
dropout can be used as a trick for training deep networks. In
this paper, dropout is adopted after the final MS-block
network training. -e contributions of dropout activation
are as follows: the firstly is the averaging effect. -e strategy
can effectively prevent the problem of overfitting, and the
random deletion of half of the hidden neurons leads to a
different network structures, and the whole dropout process
is equivalent to averaging a host of different neural networks.
-e second is reducing complex coadaptation relationships
between neurons in the network. -e updating of weights is
no longer dependent on the coaction of implicit nodes with
fixed relationships, which prevents some features from being
effective only under other specific features, forcing the
network to learn glowingly robust features, which also exist
in random subsets of other neurons.

4. Transfer Learning

Transfer learning is the ability of a system to recognize and
apply knowledge and skills learned in previous domains/
tasks to novel tasks/domains, which share some common-
ality. Given a source domain and source learning task, a
target domain, and a target learning task, transfer learning
aims to help improve the learning of the target predictive
function f (T(·)) using the source knowledge, where DS≠DT
or TS≠TT. -e domain consists of two components: a
feature space X� {x1, x2, . . ., xn} and a marginal distribution
P (X). Given a specific domain and label space Y� {y1, . . .,
yn}, for each xi in the domain, the task is to predict its
corresponding label yi where yi ∈Y. In general, if two tasks
are different, then they may have different label spaces or
different conditional distributions P (Y |X). Specifically, for
SAR ATR task, the domain task shares the same feature
space F� { f1, . . ., fn} with n dimensions, while the marginal
probability distribution is different due to different classi-
fication task. In this paper, transfer learning configurations
are implemented in Figure 5.

-e algorithm of transfer learning is shown as follows: for
the input, given the source dataset DS and target dataset DT,
set the initialized MS-CNN model MPre � f (x, θPre). Firstly,
fine-tune the MS-CNN model M0 based on MPre using DS to
get a well-pretrained MS-CNN model. -en, transfer the
shallow layer’s parameters by freezing the learned layer, and
the hyperparameters of MS-CNN are retrained on DT until
the model converges to the optimal solution. Specifically, for
example, as transferred the parameters of conv4, the pa-
rameter update of the layer before conv4 would be the
pretrained parameters, and the parameters of the rest layers
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would be trained from scratch. Finally, the small learning rate
are considered to further fine tune the model slightly, to make
the model more suitable for the SAR ATR task.

5. Experiments

All the experiments here are conducted on deep learning
acceleration computing service with Intel Core i3-7350K
CPU, on an Ubuntu 16.04 LTS operation system. -e
graphics card is NVIDIA GTX 1080ti, and the RAM is 8G.
All the proposed convolutional neural network models are
implemented using the publicly available Caffe framework.

5.1. Dataset. In this paper, experiments are conducted on
the MSTAR dataset which was derived from the MSTAR

project. Training and testing samples consisting of T72
(Main Battle Tanks), BMP2 (Armored Personal Carriers),
and BTR70 (Armored Personal Carriers) are utilized here.
-e total number of samples was 698 images. -e optical
images and SAR images are shown in Figure 6. Dataset
configuration is listed in Tables 2 and 3.

5.2. Training/Validation Methodology. In the training pro-
cess, 50 epochs are set to fine-tune the proposed models and
information regarding about the loss values and output
classification results is recorded. As shown in Figure 7, the
accuracy of training and validation is 100%, and the pre-
dicted loss value converges to zero fast at an earlier time
quantum. To evaluate the proposed model, we visualize the

(a) (b) (c)

Figure 4: -e trend of the regularizer. (a) Underfitting (large λ); (b) normal (proper λ); and (c) overfitting (small λ).

Target task

Feature extraction Feature classification

Source task

Transferred 
parameters

Feature
transferred 

Classification 
learning

Feature 
learning

MS-CNN transferred module

2S1 BMP2 BRDM_2 BTR60 BTR70

D7 T62 T72 ZIL131 ZLU_2/34

T72_SN132 BMP2_SCN21

MS-CNN transferred module

Training
samples

Training
samples

Feature extraction Feature classificationBTR70_SNC71

Figure 5: Transferred MS-CNN model.
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network layer by layer, which is shown in Figure 8. Ob-
serving the feature map from Conv1, the model learned
some fundamental features from the input, such as edges
and corners from all directions. -e deeper the layers, the
more complex and richer the learned features, including
outlines, background, and higher-level semantic in-
formation. Features in the later layers are more discrimi-
native containing the corresponding label information; thus,

the learned feature in feature map is more targeted based on
the belonging class.

5.3. Performance Evaluation

5.3.1. Evaluation on Various MS Blocks. Performance on
various blocks of MS-CNN is explored for the designed
model. A different network model is reconstructed to

Figure 6: SAR image instance.

Table 2: Configuration of MSTAR three-target database.

Training set Number Testing set Number

T72_SN132 232
T72_SN132 196
T72_SN812 195
T72_SNS7 191

BMP2_SCN21 233
BMP2_SCN21 196

BMP2_SCN9563 195
BMP2_SCN9566 196

BTR70_SNC71 233 BTR70_SNC71 196

Table 3: Configuration of extended MSTAR three-target database.

Training set Number Testing set Number

T72_SN132 84, 912
T72_SN132 196
T72_SN812 195
T72_SNS7 191

BMP2_SCN21 85, 278
BMP2_SCN21 196

BMP2_SCN9563 195
BMP2_SCN9566 196

BTR70_SNC71 85, 278 BTR70_SNC71 196
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Figure 7: Predicted train/validation loss value. (a) Train/validation loss; (b) train/validation accuracy.
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validate on SAR image databases, and the accuracy of
network feature extraction under variables is tested. -e
confusion matrix of the test dataset is shown in Figure 9. It is
apparent that the network did not work efficiently as the
Max-slice number is six, as the overfitting is caused by
inadequate feature selection. From eight MS-blocks to
twelve MS-blocks, the performance is relatively superior
gradually and acquires excellent result at ten MS-blocks.

5.3.2. Evaluation of Data Amplification. Ten MS-blocks are
selected in the proposed network for further performance
evaluation.We performed both the operations on data process
and without pooling on the chosen network and noticed that
the algorithm adopted quite excellently served to the model.
As shown in Table 4, results without ROI extraction and data
amplification are 74.51% and 80.66%, respectively.

5.3.3. Evaluation on Various Activation Function.
Meanwhile, motivated by the advantage that activation
function contributes to advancing the understanding of the
obtained features and boosting the performance of classi-
fication, ablation study on MS-CNN is also processed in this
paper. -e traditional activation function, such as ReLU,
TanH, and Sigmoid, does not yield the top accuracy as
expected. -e Power function is negative due to the logistics
operation that undermines the amount of the output fea-
tures. -e ELU is a common idea, and compared with the

negative value of ReLU, the average value of cell activation
ELU can be close to zero, similar to the effect of batch
normalization but with lower computational complexity and
soft saturation, and the accuracy of ELU is 95.93%. -e
model with sigmoid activation could achieve 96.70 accuracy.
-e result is shown in Figure 10.

5.3.4. Evaluation on Dropout and Regularization. To get
insight into the strategy, the comparable study was con-
ducted as follows in Table 5. -e accuracy with dropout
strategy is 98.93%, boosting 1.64% compared with the one
without dropout. As indicated in Table 6, L2-regularization
has the advantages to enhance the performance by reducing
the redundancy via adjusting the weighted delay. -e L1-
regularization method achieved 90.40% accuracy, reducing
8.53% improvement by using the L2-regularization. It has
demonstrated that the L2-regularization has obtained ex-
cellent accuracy compared to other options, especially the
method without any regularization that caused overfitting
during the training stage.

5.4. Model Generalization and Robustness

5.4.1. Generalization on Various Classes. Given the pre-
trained model which is optimized on the MS-CNN, it is
supposed to acquire a good fit performance on the training
samples, but also expected that our provided pretrained

Input Conv1 MS1-block Conv2 MS2-block Conv3

MS3-blockConv4MS4-blockConv5MS5-block
Conv6

MS6-block Conv7 MS7-block Conv8 MS8-block Conv9

MS9-blockFC1MS10-blockFC2Softmax

Figure 8: Visualization of the proposed network.
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Figure 9: Confusion matrix-test dataset. (a) Six blocks; (b) eight blocks; (c) ten blocks; and (d) twelve blocks.

Table 4: Model performance on ROI extraction and data ampli-
fication variation.

Model ROI Data amplification Accuracy (%)

MS-CNN

No No 63.30
No Yes 74.51
Yes No 80.60
Yes Yes 98.93

95.97% 96.70% 96.19%

42.64%

95.90%
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Figure 10: Model performance evaluation on various activation
functions.

Table 5: Modelling performance of dropout strategy.

Model Dropout Accuracy (%)

MS-CNN No 97.29
Yes 98.93

Table 6: Modelling performance of various regularizations.

Model L1-regularization L2-regularization Accuracy (%)

MS-CNN
No No Overfitting
Yes No 90.40
No Yes 98.93

Table 7: Generalization on various classes.

Class number Pretrained model Accuracy (%)

3 Without 98.97
With —

6 Without 97.57
With 98.54

8 Without 97.26
With 98.61

10 Without 94.19
With 96.78
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model shares good generalization ability on an unknown
dataset. -e intuitive manifestation of metrics measurement
is the fitting performance and prediction performance on the
unknown dataset. To this regard, we selected the optimized
MS-CNN as the pretrained model to learn some sort of
information from various classes SAR images classification.
Specifically, we fine-tune the model by keeping all the layers
before the last fc layer fixed and modifying the three classes
as six, eight, and ten to attain more generic features.

Table 7 shows the generalization evaluation performance.
-e involved classes are randomly selected from the ten classes
SAR images. From class three to class ten, the accuracy is all
satisfactory, and they are 98.97%, 97.57%, 97.26%, and 94.19%,
while the performance using the pretrained model surpass the
one without it, and the improvements are 0.97%, 1.35%, and
2.59% from class six to class ten. Initiatively, the performance
by using the pretrained MS-CNN model outperforms the one
trained from scratch.

5.4.2. Robustness Evaluation

(1) Comparison to the State-of-the-Art Based on Small
Samples. Inspired by the superior performance on three

target classification tasks, we carried on the experiments on
different state-of-the-art networks. We randomly select 1/2,
1/3, 1/4, and 1/8 images from the raw training samples and
enrich the dataset by the method proposed in Section 3. -e
aim is to validate the robustness of MS-CNN by reducing the
raw images. Observed from Figure 11, the performance of
our proposed method is better than the LeNet, AlexNet, and
ResNet when applied to the SAR ATR. Generally, the deep
structure is not satisfactory to deal with the simple images
characterized with grayscale and small size, while our
proposed method can achieve the corresponding result as
the GoogleNet (VGG16).

(2) Transfer Learning vs Scratch. As is shown in Figure 11,
from LeNet to MS-CNN, we notice that our proposed model
could outperform partial networks, while some results are
not satisfactory. Another brick in the wall is introducing the
transfer learning approach. We trained the MS-CNN by ten
class SAR images and transfered the weights to the three SAR
image classification. From MS-CNN to MS-CNN (Transfer
learning) in Figure 11, we notice that themodel used transfer
learning that could significantly surpass the performance of
the model trained from scratch. Specifically, it has achieved
an improvement over the currentMS-CNN by 6.22%, 2.93%,
3.34%, and 1.61% in the 1/8, 1/4, 1/3, and 1/2 dataset. -is
observation validates the effectiveness of the transfer
learning. -e model trained from scratch is not satisfactory
than the model using the pretrained model.

5.5. Performance Comparison with State-of-the-Art Algorithms.
-e performance comparison is illustrated in Table 8. -e
traditional method, such as SVM [41], has reached the
accuracy of 90.00% in the SAR ATR. -e performance of
AE&LSVM [42] is the same as DNPP-L1 [43], about 94.14%.
AF-CNN [44] is an additional feature-based CNN archi-
tecture which does not need additional preprocessing
process or pose information, which boosts 4.38% im-
provement compared with SVM. -e traditional CNN [46]

LeNet AlexNet ResNet-50 GoogleNet MS-CNN Transferred
MS-CNN

 1/8 79.90% 75.60% 62.42% 81.98% 80.59% 86.81%
 1/4 86.30% 81.54% 70.40% 90.04% 87.03% 89.96%
 1/3 85.71% 72.89% 65.05% 90.55% 88.64% 92.09%
 1/2 85.93% 81.98% 76.48% 91.21% 92.75% 94.36%

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

Model

(%)

Figure 11: Result on state-of-the-art model on small samples.

Table 8: Performance comparison with other proposed methods.

Method Accuracy (%)
SVM [41] 90.00
AlexNet 93.55
AE&LSVM [42] 94.14
DNPP-L1 [43] 94.14
AF-CNN [44] 94.38
Gabor & LPQ & ELM [45] 94.80
CNN [46] 95.90
Unsupervised K-means & data amplification [47] 96.67
LeNet [48] 97.29
ResNet-50 [24] 97.66
SARNet [49] 98.30
JLSND&SRC 1 [50] 98.30
Proposed 98.93
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could achieve 95.90% applied into SAR ATR, which is 0.77%
lower than the unsupervised K-means & data amplification
[47] method. SARNet [48] is a lightweight CNN model,
which obtained the result of 98.30%. Performance on
JLSND&SRC 1 [24] is little inferior than that of our pro-
posed method, about 98.89%. As shown in Table 8, com-
pared with other state-of-the-art approaches, the proposed
methods have obtained better recognition performance.

6. Conclusion

In this paper, a novel transferred MS-CNN structure with L2-
regularization is proposed to solve the overfitting problem
caused by the insufficient samples and model design for
computational consumption. -e data process pipeline is
employed to address the data acquisition limitation and reduces
the computation and redundancy for SAR target recognition. It
is testified that combining the ROI extraction and data am-
plification algorithm has potential advantages to solve the
sample problems. -e transferred MS-CNN structure is
available to refine the extracted features and contributes to SAR
ATR. Furthermore, the methodology of dropout strategy and
regularization term in this model has reflected despeciation to
avoid the overfitting phenomenon. Overall, the performance
conducted on extended MSTAR dataset indicates that our
method is discriminative and effective and also proves that our
proposedmethod is of good regularization and robustness. Due
to the computational complexity and insufficient samples, a
more efficient method, such as transfer leaning, a few shot
learning will be explored in our future work.
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SARATR system using regularization and prioritized classes,”
in Proceedings of the 2017 IEEE Radar Conference, pp. 772–
777, Seattle, WA, USA, May 2017.

[33] Y. Meng, Z. Zhou, Y. Liu, and Q. Luo, “Adaptive pseudo-p-
norm regularization based de-speckling of SAR images,”
Remote Sensing Letters, vol. 9, no. 12, pp. 1177–1185, 2018.

[34] J. C. Ni, Q. Zhang, L. H. Su, J. Liang, and W.-J. Huo, “L1/2
regularization SAR imaging via complex image data: regulari-
zation parameter selection for target detection task,” in Pro-
ceedings of the 2018 IEEE International Geoscience and Remote
Sensing Symposium, pp. 2298–2301, Valencia, Spain, July 2018.

[35] M.-S. Kang and K.-T. Kim, “Compressive sensing based SAR
imaging and autofocus using improved Tikhonov regularization,”
IEEE Sensors Journal, vol. 19, no. 14, pp. 5529–5540, 2019.

[36] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of
object categories,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 28, no. 4, pp. 594–611, 2006.

[37] Z. Wang, L. Du, J. Mao, B. Liu, and D. Yang, “SAR target
detection based on SSD with data augmentation and transfer
learning,” IEEE Geoscience and Remote Sensing Letters, vol. 16,
no. 1, pp. 150–154, 2019.

[38] C. Zhong, X. Mu, X. He, J. Wang, and M. Zhu, “SAR target
image classification based on transfer learning and model
compression,” IEEE Geoscience and Remote Sensing Letters,
vol. 16, no. 3, pp. 412–416, 2019.

[39] Y. Xu, H. Lang, L. Niu, and C. Ge, “Discriminative adaptation
regularization framework-based transfer learning for ship
classification in SAR images,” IEEE Geoscience and Remote
Sensing Letters, pp. 1–5, 2019.

[40] M. Al Mufti, E. Al Hadhrami, B. Taha, and N. Werghi, “SAR
automatic target recognition using transfer learning ap-
proach,” in Proceedings of the 2018 IEEE International Con-
ference on Intelligent Autonomous Systems (ICoIAS), pp. 1–4,
Singapore, March 2018.

[41] S. Chen, H. Wang, F. Xu, and Y.-Q. Jin, “Target classification
using the deep convolutional networks for SAR images,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 54, no. 8,
pp. 4806–4817, 2016.

[42] H. Ren, X. Yu, and X. Wang, “Discriminant neighborhood
preserving projections using L1-norm maximization for SAR
target recognition,” in Proceedings of the IGARSS 2018-2018
IEEE International Geoscience and Remote Sensing Sympo-
sium, pp. 8460–8463, IEEE, Valencia, Spain, July 2018.

[43] S. Deng, L. Du, C. Li, J. Ding, and H. Liu, “SAR automatic target
recognition based on euclidean distance restricted autoencoder,”
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 10, no. 7, pp. 3323–3333, 2017.

[44] J. Cho and C. Park, “Additional feature CNN based automatic
target recognition in SAR image,” in Proceedings of the 2017
Fourth Asian Conference on Defence Technology-Japan,
pp. 1–4, Tokyo, Japan, December 2017.

[45] L. Wang, F. Zhang, W. Li et al., “A method of SAR target
recognition based on gabor filter and local texture feature
extraction,” Journal of Radars, vol. 4, no. 6, pp. 658–665, 2015.

[46] Z. Tian, R. Zhan, J. Hu et al., “SAR ATR based on convolutional
neural network,” Journal of Radars, vol. 5, no. 3, pp. 320–325, 2016.

[47] Y. Zhai, J. Li, J. Gan, and Z. Ying, “A multi-scale local phase
quantization plus biomimetic pattern recognition method for
SAR automatic target recognition,” Progress in Electromag-
netics Research, vol. 135, no. 1, pp. 105–122, 2013.

[48] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[49] Y. Zhai, W. Deng, Y. Zhu et al., “A novel lightweight SARNet
with clock-wise data amplification for SAR ATR,” Progress in
Electromagnetics Research C, vol. 91, pp. 69–82, 2019.

[50] Y. Huang, G. Liao, Z. Zhang, Y. Xiang, J. Li, and A. Nehorai,
“SAR automatic target recognition using joint low-rank and
sparse multiview denoising,” IEEE Geoscience and Remote
Sensing Letters, vol. 15, no. 10, pp. 1570–1574, 2018.

Computational Intelligence and Neuroscience 13


