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Background:GulfWar Illness (GWI) has affectedmanyGulfWar veterans. It involves several organs,most notably
the brain. Neurological-cognitive-mood-related symptoms frequently dominate and are at the root of chronic ill-
health and disability in GWI. Here we investigated the neural mechanisms underlying brain dysfunction in GWI
in the absence of mental health disorders.
Methods: Eighty-six veterans completed diagnostic interviews to establish thepresence ofGWI and assessmental
health status. Participants diagnosedwith GWImet both Center for Disease Control and Kansas criteria.We stud-
ied 46 healthy controls and 40 veterans with GWI without mental illness. They all underwent a resting-state
magnetoencephalographic (MEG) scan to assess brain communication based on synchronous neural interactions
(SNI; Georgopoulos et al., 2007).
Findings: We found substantial differences in SNI between control and GWI groups centered on the cerebellum
and frontal cortex. In addition, using the maxima and minima of SNI per sensor as predictors, we successfully
classified 94.2% of the 86 participants (95% sensitivity, 93.5% specificity).
Interpretation: Thesefindings document distinct differences in brain function between control andGWI in the ab-
sence of mental health comorbidities, differences that are excellent predictors of GWI.
Funding: U.S. Department of Veterans Affairs and University of Minnesota.
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1. Introduction

Many Allied military personnel who served in the 1990–1991 Per-
sian Gulf War experience various chronic physical and neurocognitive
complaints, now commonly referred to as Gulf War Illness (GWI). At
least 25% of Gulf War veterans have been affected by diffuse symptoms
such as fatigue, musculoskeletal pain, neurological/cognitive/mood
(NCM) complaints, respiratory symptoms, gastrointestinal problems,
and rashes (Fukuda et al., 1998; Gray et al., 2002; Kang et al., 2009;
Steele, 2000). Several population-based studies have demonstrated
that these symptoms occur at significantly higher rates in Gulf War vet-
erans relative to their non-deployed peers and other veteran groups
(Fukuda et al., 1998; Kang et al., 2009; Steele, 2000).

However, these symptoms typically do not meet criteria for
established medical diagnoses, fueling speculation that they primarily
1B), Minneapolis VAHCS, One

.

ss article under the CC BY-NC-ND lic
reflect psychological distress and related psychiatric disorders (e.g.,
Posttraumatic Stress Disorder, PTSD) superimposed on vulnerable
organ systems (Engel et al., 2000; Weiner et al., 2011), a supposition
that has been refuted (National Research Council, 2010). Brain-based
objective indicators of psychiatric andmedical disorders are increasing-
ly being identified, allowing a fresh approach to this challenge.
Burgeoning evidence supports the utility of magnetoencephalography
(MEG) in identifying aberrant and disease-specific neural activity
(Engdahl et al., 2010; Georgopoulos et al., 2007, 2010; James et al.,
2013; Wilson et al., 2016). One approach focuses on characteristic
anomalies in synchronized neural interactions (SNI) derived from
task-free MEG. Using that approach, we have demonstrated that SNI
anomalies accurately discriminate various brain disorders, including
PTSD, multiple sclerosis, Alzheimer's disease, schizophrenia, Sjögren's
syndrome, temporomandibular pain disorder, and chronic alcoholism
from normal healthy brain function, providing compelling evidence of
candidate biomarkers (Georgopoulos et al., 2007). Similarly, we hy-
pothesized that GWI could also be characterized by SNI abnormalities,
i.e., neural miscommunication patterns. Here, by applying MEG to
ense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Relations of a given, reference sensor (yellow filled circle) to the remaining 247
sensors with respect to Group effect in the ANCOVA (see text). The grayscale is
proportional to the F value of the Group effect (brighter circles correspond to higher F
values) on the SNI between the reference sensor and the gray one, indicated by
connecting line.
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GWI, we sought, first, to identify differences in SNI between GWI and
controls and, second, to investigate the possibility that such differences
may serve as predictors of GWI.

2. Materials and Methods

2.1. Study Participants

A total of 86 GulfWar veterans participated in this study as paid vol-
unteers. VA medical records were reviewed to identify potential partic-
ipants. Veteranswhohad completed theGulfWar Registry Examination
(Murphy et al., 1999) and did not meet exclusionary criteria were re-
cruited for participation. Exclusionary criteria included cardiac pace-
makers or implanted ferrous metal (due to magnetic effects on MEG),
central nervous system disorders (e.g. Parkinson's disease, dementia,
cerebrovascular accidents, a history of traumatic brain injury, etc.), life-
time psychotic diagnoses, and current alcohol or drug dependence.
Since our participants fulfilled the Kansas GWI case definition (Steele,
2000), they did not suffer from any additional conditions specified as
exclusionary by that Kansas GWI criteria. Veterans whomight have dif-
ficulty with the protocol were also excluded. Study participants provid-
ed written informed consent prior to initiating study procedures and
participants were compensated for their time. The study protocol was
approved by the Institutional Review Board at the Minneapolis VA
Health Care System.

All participants completed diagnostic interviews to rule out psychi-
atric diagnoses and underwent a MEG scan. The Clinician-Administered
PTSD Scale for DSM-IV (CAPS; Blake et al., 1995) was administered to
evaluate current PTSD diagnostic status. Non-PTSD Axis I diagnostic sta-
tus was determined using the Structured Clinical Interview for DSM-IV-
TR Axis I Disorders (SCID; First et al., 2002). SCID screening questions
were administered to all participants; positive screening items were
further evaluated with the relevant SCID module. All participants com-
pleted a GWI symptom questionnaire developed for use in Kansas
GulfWar veterans (Steele, 2000) that evaluates the presence and sever-
ity of 6 kinds of symptoms characteristic of GWI – namely, fatigue, pain,
neurological/mood/cognitive, gastrointestinal, skin rashes, and respira-
tory. Items are rated on a scale from 0 to 3 (absent, mild, moderate and
severe, respectively). The questionnaire permits determination of case
status according to either the Centers for Disease Control and Preven-
tion (CDC) criteria (Fukuda et al., 1998) or the Kansas GWI case defini-
tion (Steele, 2000). Only participants meeting both sets of criteria were
included in this study. Participants were thus assigned into the follow-
ing 2 groups: healthy controls (N = 46) and GWI (N = 40).

2.2. Data Acquisition

As described previously (Georgopoulos et al., 2007, 2010), subjects
lay supinewithin the electromagnetically shielded chamber and fixated
their eyes on a spot ~65 cm in front of them, for 60s. MEG data were
acquired using a 248-channel axial gradiometer system (Magnes
3600WH, 4-D Neuroimaging, San Diego, CA), band-filtered between
0.1 and 400 Hz, and sampled at 1017.25 Hz. Data with artifacts (e.g.
from non-removablemetal or excessive subjectmotion)were eliminat-
ed from further analysis.

2.3. Data Analysis

2.3.1. General
Standard statistical methods were used to analyze the data, includ-

ing analysis of covariance (ANCOVA), two-sample Kolmogorov-
Smirnov test, binary logistic regression, etc. The following packages
were employed: IBM-SPSS statistical package, version 23, Matlab (ver-
sion R2015b), and adhoc Fortran computer programs employing the In-
ternational Mathematics and Statistics Library (IMSL; Rogue Wave
Software, Louisville, CO, USA) statistical and mathematical libraries.
Prewhitening of the raw MEG series (see below) was performed using
programs in Python (Mahan et al., 2015).

2.3.2. Analysis of MEG Data

2.3.2.1. Preprocessing. Single trial MEG data from all sensors underwent
‘prewhitening’ (Box and Jenkins, 1976; Priestley, 1971) using a
(50,1,3) ARIMA model (Mahan et al., 2015) to obtain innovations (i.e.
residuals). All possible pairwise zero-lag crosscorrelations (N =
30,628, given 248 sensors) were computed between the prewhitened
MEG time series. Finally, the partial zero-lag crosscorrelations PCCij0-

between i and j sensors were computed for all sensor pairs (synchro-
nous neural interactions; SNI); thus, for any given pair of sensors
(from a total of 248) the effects of the remaining 246 sensors were
partialed out. The PCCij

0 was transformed to zij
0 using Fisher's (Fisher,

1958) z-transformation to normalize its distribution:

SNI ¼ z0ij ¼ atanh PCC0
ij

� �
ð1Þ

2.3.2.2. Group Comparisons. Overall SNI frequency distributions were
compared between the 2 groups using the two-sample Kolmogorov-
Smirnov test. For each {i, j} sensor pair, parametric SNI group differences
were assessed using an ANCOVA, where Group was a fixed factor and
age and gender were covariates.

2.3.2.3. GWI Prediction. Therewere 247 SNIs for eachMEG sensor. Spatial
plots of those SNIs for individual sensors (see below) revealed an order-
ly variation in their sign andmagnitude suggesting a spatial tuning. Two
unique, characteristic values of this distribution are its highest and low-
est SNI. We used these two values per sensor as predictors of GWI in a
binary logistic regression analysis.

3. Results

3.1. Demographics

Both groups comprised predominantly men (44/46 controls, 33/40
GWI; statistically not significantly different proportions). The control
group participants were older (53.2 ± 1.58, mean ± SEM) than those



Fig. 4. Spatial distribution of SNIs of a single sensor (white circle) to illustrate the
maximum and minimum SNI. Color intensity is proportional to the absolute SNI value.
Green and red correspond to positive and negative SNIs, respectively.

Fig. 2. The average, ranked F-value (±95% Confidence Interval [CI], N = 248 sensors,
highest rank = 1) from the ANCOVA is plotted against its rank. It can be seen that F
decreases steeply and with small variation (vertical bars) as its rank increases. These
findings indicate that, although a given sensor has widespread relations with other
sensors (Fig. 1), the most influential relations are with 11 other sensors, on the average
(vertical line), corresponding to F(1,82) N 4.0 (P b 0.05, uncorrected; horizontal line).
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in the GWI group (48.7 ± 1.0) (P = 0.018, t-test, equal variances not
assumed).

3.2. Group Differences in SNI

The SNI distributions differed significantly among the 2 groups
(P b 0.025, Kolmogorov-Smirnov test). The parametric ANCOVA carried
out for each sensor pair yielded results that helped identify differential
involvement of neural interactions. The basic finding was that, for a
given sensor, the Group F-statistic in the ANCOVA (essentially, a sig-
nal-to-noise ratio) varied between that sensor and the remaining 247
sensors (this sensor's “domain”) in a graded fashion, an example is illus-
trated in Fig. 1. When the F-values for each sensor were rank-ordered,
aligned to their maximum, averaged across sensors, and plotted against
their rank, an orderly decline in the average F-value was observed with
small variation within each rank (Fig. 2). This indicates a very similar
distribution of the F-values from sensor to sensor, although the spatial
(in sensor space) distribution per sensor was quite distinct. The relative
importance of each sensor in distinguishing between control and GWI
groups was visualized by a heatmap (Fig. 3) where the color in a given
Fig. 3. 3-D and 2-D heatmaps of distribution of Group effects in sensor space. The color scale
demarcate approximate areas (a, cerebellum; b, right frontal cortex; c, medial frontal; d, left fr
sensor location was varied according to the maximum F-value of that
sensor, among the 247 F-values associated with it. It can be seen that
major effects were centered around the cerebellum and frontal lobes bi-
laterally, and frontal lobe midline.

3.3. Participant Classification

The finding that ANCOVA-based group differences varied within a
sensor SNI domain in a graded fashion suggested that the variation of
SNIs themselves may be good predictors of group assignment. We in-
vestigated this possibility by assessing, first, the distribution of SNIs
within a sensor domain. We found that SNIs varied in a graded fashion,
as illustrated for a specific sensor in Fig. 4. Two characteristic values of
these SNI distributions are their highest (maximum) and lowest (mini-
mum) values, as seen in Figs. 4 and 5. Therefore we used those two
values per sensor as predictors (total predictors = 248 sensors × 2 pre-
dictors per sensor=496) in a stepwise binary logistic regressionwhere
the group membership of a participant (control, GWI) was the depen-
dent variable. We carried out this analysis using the Forward
is proportional to F value in the ANCOVA (uncorrected probability range). White ellipses
ontal cortex).



Fig. 5. Average SNI (over 248 sensors) are plotted against their rank to illustrate the
maximum and minimum points.

Fig. 6. ROC curve of the classification outcomes (see text for details).
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Conditional option in the IBM-SPSS statistical package (version 23). This
analysis identified 9 predictors which yielded a 94.2% correct classifica-
tion (Table 1). The sensitivity was 95% (38/40) and the specificity 93.5%
(43/46). Fig. 6 shows theReceiver OperatingCharacteristic (ROC) curve;
the area±SE under the curvewas 0.942±0.029 (P=1.8× 10−12).We
carried out two validation procedures of this classification. In the first,
we selected randomly 25 participants from each group and applied
the binary logistic regression analysis using the 9 predictors above on
1000 such random samples. The mean ± SEM correct classification
rate was 99.5 ± 0.063%; the median was at 100% correct. In the second
analysis, we applied the logistic regression analysis to 1000 random
bootstrap samples of 46 control and 40GWI participants. Themean cor-
rect classification rate was 99.6.0 ± 0.047%; the median was at 100%
correct.

Finally, it should be pointed out that the 9 predictors above were
minima or maxima of 9 specific sensors. Thus, although those 9 sensors
were the same across brains, the specific minimum or maximum value
for a specific sensor could refer to the SNI of the pair between that
(fixed) sensor-predictor and any of the remaining 247 sensors. Now,
we found that sensors involved in those minimum or maximum SNIs
(for each one of the 9 sensor-predictors) were very similar from brain
to brain. Fig. 7 outlines the approximate SNI territories of those sensor
pairs superimposed on the similarly scaled heatmap of Fig. 3. It can be
seen that these territories roughly correspond to the areas in Fig. 3
that showed strong Group effects in the ANCOVA.
Table 1
Participant classification results yielded by the binary logistic regression. (see text for details.)

A. Classification table

Pr

GW

Observed GWI 38
Control 3

Total 41

B. Analysis of the two-way classification table

Test Value

Pearson Chi-square (corrected for continuity) 63.6
Fisher's exact test

C. Mantel-Haenszel common odds ratio estimate

Estimated odds ratio (ω) 272.3 ln (ω)

95% lower bound: 43.2
95% upper bound: 1717.6

5.61
4. Discussion

Here, using MEG, we investigated dynamic brain function in control
and GWI participants in the absence of mental illness. Specifically, we
tested the hypothesis that GWI could be characterized by anomalies
in synchronized neural activity, as assessed by the SNI test
(Georgopoulos et al., 2007). Our results provide strong evidence for
this hypothesis at the group level and, moreover, extend the application
of the SNI test to the classification of participants based on the variation
(maxima and/or minima) of SNI distributions of individual sensors.

4.1. SNI Anomalies in GWI

We have previously demonstrated the power of SNI derived from
task-free MEG in successfully discriminating various brain diseases
from healthy brain function. Given that several GWI symptoms involve
the brain including memory loss, word finding difficulty, concentration
problems, dizziness, tremor, and mood changes, we similarly expected
and confirmed SNI differences between Gulf War veterans with and
without GWI. Moreover, we demonstrated that the differences were lo-
calized primarily around the cerebellum and frontal lobes. Prior studies
have identified various brain abnormalities in GWI involving the hippo-
campus, brainstem, basal ganglia, and frontal lobes (for review, see
White et al., 2016); few have investigated cerebellar abnormalities
edicted Total

I Control

2 40
43 46
45 86

DF Significance (2-sided)

1 P = 1.49 × 10−15

P = 2.19 × 10−18

SE of ln (ω) Asymptotic significance (2-sided)

0.94 P = 2.41 × 10−9



Fig. 7.Approximate SNI territories of the 10 successful sensor predictors in predictingGWI
(see text for details).

131B.E. Engdahl et al. / EBioMedicine 12 (2016) 127–132
and the findings have been mixed. Using magnetic resonance imaging,
Rayhan et al. (2013) reported reduced cerebellar volume and functional
anomalies in a small sample of GWI veterans. Others have identified en-
hanced cerebellar activation to noxious heat, presumably reflecting in-
creased pain perception, in some GWI veterans relative to controls
(Gopinath et al., 2012). In contrast, researchers using magnetic reso-
nance spectroscopy found no significant differences in metabolites in
various brain regions when comparing veterans with GWI to controls
(Weiner et al., 2011). The present study adds to this small body of liter-
ature and provides evidence of robust resting-state differences in the
cerebellum and frontal lobes between veterans with GWI and healthy
controls, as identified by MEG.

There is a remarkable parallel between the brain-related symptoms
observed in GWI and those observed in the “cerebellar cognitive
affective syndrome”; (CCAS; Schmahmann & Sherman, 1998). In the
case of CCAS, cerebellar lesions disrupt cerebellar modulation of
motor, sensory, cognitive, affective, and autonomic systems, giving
rise to executive function impairments, visuospatial difficulties, lan-
guage deficits, and personality change. Given the similarities between
GWI and CCAS at the symptom level, additional research aimed at fur-
ther investigating cerebellar functional and structural anomalies in
GWI and the relation of those anomalies to symptoms characteristic of
GWI is warranted.
4.2. Classification

Using properties of the SNIs, specifically the maxima and minima
SNI per sensor, we were able to correctly classify 93% of participants
as either GWI or control. The excellent results of random permutation
and bootstrap tests attested to the robustness of this finding across par-
ticipants, although a large sample would be needed for more extensive
validation. Remarkably, correct classification was obtained with merely
9 (out of 496) possible predictors.We hypothesize that this is due to the
kind of predictors used in this analysis, namely that were the maxima
and minima of interactions (SNIs) of a given sensor with the other sen-
sors, in contrast to previous studies (Georgopoulos et al., 2007, 2010;
James et al., 2014) where individual SNIs were used as predictors.
Since the current predictors were extracted from SNI distributions
(per sensor), it is reasonable to suppose that they are more informative,
hence more effective and efficient in classification. It would be interest-
ing to investigate whether such an approach would be successful in
other applications, including studies based on fMRI (Christova et al.,
2015).
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