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Abstract

Drosophila melanogaster egg production, a proxy for fecundity, is an extensively studied life-history trait with a strong genetic basis.
As eggs develop into larvae and adults, space and resource constraints can put pressure on the developing offspring, leading to a de-
crease in viability, body size, and lifespan. Our goal was to map the genetic basis of offspring number and weight under the restriction of a
standard laboratory vial. We screened 143 lines from the Drosophila Genetic Reference Panel for offspring numbers and weights to create
an "offspring index” that captured the number vs weight tradeoff. We found 18 genes containing 30 variants associated with variation in
the offspring index. Validation of hid, Sox21b, CG8312, and mub candidate genes using gene disruption mutants demonstrated a role in
adult stage viability, while mutations in Ih and Rbp increased offspring number and increased weight, respectively. The polygenic basis of
offspring number and weight, with many variants of small effect, as well as the involvement of genes with varied functional roles, support

the notion of Fisher's “infinitesimal model” for this life-history trait.
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Introduction

Aspects of life history, such as fecundity, lifespan, and body size,
can affect an organism’s evolutionary fitness. In Drosophila
melanogaster, the genetics, plasticity, and evolution of life-history
traits have been extensively studied (Flatt 2020). Drosophila fecun-
dity, measured through egg-laying behavior, was previously
shown to have a strong genetic component that differs between
young and old flies (Rose and Charlesworth 1981; Tatar et al.
1996; Leips et al. 2006; Durham et al. 2014) and is also influenced
by temperature and nutrition (Chippindale et al. 1993; Nunney
and Cheung 1997). Fecundity interacts with a number of physi-
ological processes. In support of an energy allocation model of
life history (van Noordwijk and de Jong 1986), fecundity has
been shown to tradeoff with longevity (Tatar et al. 1996;
Djawdan et al. 1996), indicating that investment into the next
generation can come at a cost to somatic maintenance via a
transfer of energy reserves. A genome-wide association study
(GWAS) revealed that age-specific fecundity is associated with
variants present across a large set of candidate genes, enriched
for genes involved in development, morphogenesis, neural
function, and cell signaling (Durham et al. 2014). Connecting
fecundity with neural function, quantitative trait locus and
deficiency mapping revealed that expression of a Drip aqua-
porin in corazonin neurons was positively correlated with

fecundity by modulating the neurohormone balance between
corazonin and dopamine (Bergland et al. 2012).

While the vast majority of Drosophila fecundity studies have
used egg production as a measure of fecundity, the number of
eggs laid may not translate perfectly to viable offspring due to
potential mortality at the multiple developmental stages. Under
both natural and laboratory conditions, larvae must contend
with a finite space and resource limitations given the constraints
of the rotting food substrate (Grimaldi and Jaenike 1984; Prout
and Barker 1989) or culture media, as well as competition be-
tween larvae. Increased larval density decreases egg-to-adult via-
bility (Barker 1973; Scheiring et al. 1984; Horvath and Kalinka
2016), body size (Miller and Thomas 1958; Scheiring et al. 1984;
Economos and Lints 1984; Santos et al. 1994; Baldal et al. 2005),
and longevity (Moghadam et al. 2015), while increasing develop-
ment time (Scheiring et al. 1984; Economos and Lints 1984; Santos
et al. 1994; Horvath and Kalinka 2016) and lowering starvation re-
sistance (Baldal et al. 2005). Highly fecund flies that lay a large
number of eggs may end up negatively affecting their offspring
due to the increased larval density. On the other end of the spec-
trum, flies producing fewer eggs may have large offspring capable
of weathering stress (Djawdan et al. 1998; Jumbo-Lucioni et al.
2010) that go on to produce more of their own offspring. But the
fitness associated with these strategies is context-dependent. For
example, a strategy of fewer, larger offspring may be effective
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amidst a high density of competitors, but ineffective in the pres-
ence of high predation. Moreover, a critical density of larvae is
needed to engage in cooperative food-burrowing (Dombrovski
et al. 2017), with cooperative food-burrowing more likely to occur
in conspecifics of high relatedness (Khodaei and Long 2019).
Taken together, these pressures mean that (1) finite space and re-
source limitation and (2) context-dependent changes in associ-
ated fitness likely impose a tradeoff between the number of
offspring and their body phenotypes.

Given that these tradeoffs come into play before and after egg-
laying, we set out to determine if there is a genetic basis for a gen-
otype’s position on the offspring number-quality tradeoff, by
measuring progeny phenotypes under standardized resource
conditions. We used the standard laboratory food vial to impose
both a space and food limitation on the developing offspring.
As a measure of quality, we measured the wet weight of recently
eclosed offspring; increased body weight is correlated with
increased starvation resistance (Jumbo-Lucioni et al. 2010), in-
creased nutrient stores, and increased immunity (Unckless et al.
2015), which indicate an investment in somatic maintenance. We
scored lines from the Drosophila Genetic Reference Panel or DGRP
(Mackay et al. 2012) for numbers of adult offspring and their
weight. In a GWAS, we found candidate genes with variants sig-
nificantly associated with a combined metric of offspring number
and weight. Mutation of these genes, in most cases, caused le-
thality or impaired survival at the adult stage, but in other cases,
shifted the balance between offspring weight and number.
Beyond these top hit genes, we found evidence that many genes
may contribute small effects to this tradeoff phenotype.

Materials and methods
Drosophila stocks and husbandry

We analyzed 143 lines from the DGRP (Mackay et al. 2012). All
stocks were maintained in incubators at 23°C, 12L:12D cycle and
reared on a yeast, cornmeal, and dextrose media (23g yeast/L,
30g cornmeal/L, 110g dextrose/L, 6.4g agar/L, and 0.12%
Tegosept). Experiments were carried out in polystyrene narrow
culture vials (25 x 95mm, #32-109, Genesee Scientific). Mutant
lines for validation were obtained from the Exelixis collection at
Harvard Medical School (Boston, MA, USA) (Thibault et al. 2004).
The w''® (#6326) genetic background was obtained from the
Bloomington Drosophila Stock Center (Bloomington, IN, USA) as
a control for the candidate gene validation mutant lines, as it is
the progenitor line for the Exelixis gene disruption collection.

Phenotypic measurements of DGRP lines

Bottles were seeded with 15 females and 15 males in 121:12D to
generate the parent flies that would go on to lay eggs for the ex-
periment. Ten females and five males (2-5 days old) from the par-
ent flies were placed in each of the three vials (along with ~30
grains of dry yeast) and left to oviposit for 2days at 23°C,
12L:12D. The parent flies were removed, and the vials were kept
at 23°C, 12L:12D until progeny began to eclose. From the start of
eclosion, all of the vials were examined every day over the course
of 10days. The number of females and males for each vial was
recorded, as well as the total wet weight (to 0.1 mg accuracy) of
the females and the total combined wet weight of the females
and males. Male weight was calculated by subtracting the female
weight from the total. Ten days were chosen to measure as many
offspring as possible without measuring any flies from the subse-
quent generation. One hundred and forty-three lines were tested

in two batches. One hundred and thirty-four lines were tested in
the first batch. The second batch included the 35 lines that did
not have all three vial replicates completed in the first batch, and
9 lines that were not tested at all in the first batch.

Calculating genetic correlation among traits
Genetic correlation and its 95% highest posterior density interval
(HPDI) among the four measured phenotypes were calculated us-
ing a multivariate normal mixed model with the brms package in
R (v2.8.0). The four phenotypes were the response variables and
the random effect (correlated across phenotypes) of DGRP line
was the predictor. Mass phenotypes were log-transformed prior
to modeling.

Genome-wide association mapping for offspring
index
The four phenotypes measured in this screen were the total
number of females (males) eclosed and the average weight of a
female (male) fly. Since lines were assayed in two batches, the 35
lines that were tested in both batches were used to check for a
batch effect. The batch effect for each of the four phenotypes
(number of 2 = —17, number of 3§ = —22, mean ? weight = 0.13,
mean 3 weight = 0.12) was corrected by applying an offset (differ-
ence of mean phenotype between the first and second batch) cal-
culated from the overlapping set of lines.

For offspring total counts, a random intercept linear model
was used to calculate the random effect of each DGRP line on vial
phenotype (each line had three vial replicates):

Yo =p+line;, +e,

where Y, is the vial phenotype measure (total offspring number
or mean weight) for line g, line, is the random effect of line a, and
¢ is the error term. For mean vial offspring weights, a random in-
tercept generalized linear model was used (model formula as
above), assuming a gamma distribution of mean weights and a
logarithm link function. The LME4 package (v1.1-21) in R (v3.5.3)
was used for modeling. To estimate broad sense heritability of
the vial phenotype, we used the R package brms (v2.8.0) and our
models to estimate the fraction of variance explained by line out
of all sources of variance (among-line and among-vial variance),
as well as the uncertainty in the estimate from the 95% HPDI.

Since we were interested in a single metric to summarize the
number of offspring and their average weight, we used prcomp
with scaling in R’s factoextra package (v1.0.5) to generate the
principal components of the dataset. The first principal compo-
nent explained 71% of the variance of the dataset, so we chose to
use the value of the rotated data (line phenotype values multi-
plied by the rotation values/loadings of the first principal compo-
nent) as our summary phenotype, which we called the offspring
index (Supplementary Table S3).

We used the DGRP2 webtool (Huang et al. 2014) to perform a
mapping of variants associated with the offspring index and each
of the four phenotypes. The webtool controls for inversions and
Wolbachia infection status prior to mapping. We chose a signifi-
cance threshold of P < 1E-5 to identify variants for further con-
sideration. A y* test was run to compare the observed
chromosomal distribution of variants to the expected distribution
given the proportion of all segregating variants on each chromo-
some in the DGRP dataset (Huang et al. 2014). Amedian Was calcu-
lated as the median of the y? test statistics for 1,896,156 DGRP
variants divided by the expected median of the y? distribution.
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Variant effect size estimation

Variant effect sizes were estimated for 1,907,562 DGRP variants
on each of the four measured traits using a linear regression of
measured phenotype against DGRP genotypes at a particular vari-
ant (0=homozygous reference, 1=heterozygous, 2 =homozygous
alternate).

Y =p+varg: + ¢,

where Y is the Wolbachia and inversion adjusted phenotype mea-
sure, vargy is the fixed effect of the alternate allele, and ¢ is the er-
ror term. The sign of the final variant effect size was flipped if the
reference allele was the major allele in the DGRP mapping popu-
lation to match the webtool effect size calculation of one-half of
the difference between means of the major and minor alleles
(Huang et al. 2014). The model was implemented in Python 3.8
with scikit-learn v0.24.1.

Parental density analysis

Six DGRP lines were chosen from the overall screen based on
their offspring index values: two lines with an extreme negative
index (RAL 176: —3.2, RAL 327: —2.9), two lines with an index
around zero (RAL 49: —0.04, RAL 350: —0.22), and two lines with a
highly positive index (RAL 812: +3.6, RAL 894: +3.8). Five density
conditions were used: 12, 13; 59, 13; 109; 53, 259; 103; and 509,
203. Lines were reared in bottles at 23°C, in incubators on a
12L:12D light cycle, and a minimum of 5 (maximum of 10) repli-
cates per line-density combination were set up, with the excep-
tion of RAL 894 at the highest density, where no replicates were
set up due to an insufficient number of flies. Parent flies were 3—
Sdays old at the time of experiment set-up and the egg-laying
conditions were the same as the DGRP phenotype screen. Given
the delayed eclosion of offspring in the high-density treatments,
an extended window of 25days was used to evaluate offspring
phenotypes. Daily records after the 12th day were monitored for
increases in offspring number that could be indicative of a large
number of offspring from the next generation, but as flies were
removed daily from the vials, likely even before mating, a signifi-
cant influence of next-generation offspring on the counts was
deemed unlikely.

To estimate the impact of DGRP line and density on offspring
counts, we used a generalized linear model, assuming a negative
binomial distribution of the response along with a logarithm link
function. A negative binomial model was used because of the
large spread and right-skew of the offspring count distribution
that made a regular linear model a poor fit. For offspring weight,
a generalized linear model with a gamma response distribution
and logarithm link function was used. The formula for both mod-
els was as follows:

Yo = u+ line, + density, + linegxdensityy, + «,

where Yyis the phenotype measure for a particular line-density
combination, line, is the fixed effect of line a, density, is the fixed
effect of a density treatment b, lines*density, is the interaction
term, and ¢ is the error term. DGRP line and density were treated
as ordered factors in the model. DGRP lines were treated as or-
dered factors since the lines for this experiment were chosen to
span the range of offspring index values. The lines were coded
from 1 to 6: line 1 with the most negative offspring index and line
6 with the most positive offspring index. As above, the LME4
package was used, in addition to the MASS package (v7.3-51.1) for

the negative binomial model. To evaluate the significance of a
predictor, a likelihood ratio 4* test using the anova function in R’s
STATS (v3.5.3) package was used to compare models with and
without the predictor.

Validation of candidate genes

Mutant lines for validation of candidate genes were obtained
from the Exelixis collection®* for six genes containing variants
associated with the offspring index at a P<1E-5 threshold.
The mutant lines were as follows: PBac{PB}hid®**%?
PBac{WH}Sox21b°*%?° PBac{WH}Rbp/*’?"”, PBac{RB}CG8312°"12%%
PBac{WH}CG8312°%52° PBac{WH}mub©?*", PBac{WH}N1*°
and PBac{RB}Ih®°**%° (#17970 BDSC). All lines were made homozy-
gous for the insertion prior to testing. The genetic background for
this gene disruption panel was w*!*®. To generate the parental flies
for each mutant line and the control, ~30 females and 10 males
were placed in bottles at 22°C, 12L:12D to lay for 7-10days to gen-
erate the experimental flies. Ten females and five males from the
experimental flies were put into a single vial with ~30 yeast grains
(10 replicates per mutant line) and allowed to lay for 2days at
22°C, 12L:12D. The parental flies were removed, and the progeny
were phenotyped the same way as for the DGRP phenotype screen.
The validations were done in two batches staggered by 1 week.
There was no significant batch effect, so replicates were combined
across batches. Mutant lines were compared to the w'''® genetic
background control using Dunnett’s test with a family-wise confi-
dence level of 95%. Offspring index for the mutant lines was calcu-
lated using the principal component loadings calculated from the
DGRP data.

Data availability

Data and analysis code are available at https://zenodo.org/re-
cord/4671125and http://lab.debivort.org/genetic-basis-of-off
spring-number/. Offspring index GWAS QQ plots and LD matrix
are reported in Supplementary Figure S1; heritability estimates
for measured phenotypes in Supplementary Table S1; GWAS
results for all four measured phenotypes in Supplementary Table
S2; Principal Component Analysis (PCA) variance proportion
explained and loadings in Supplementary Table S3; correlation in
gene expression among top hits and between gene expression
and phenotype in Supplementary File S1. Supplementary mate-
rial is available at figshare: https://doi.org/10.25387/g3.14403323.

Results

Genome-wide association mapping for offspring
life-history index

We collected four fecundity and body weight phenotypes from
143 DGRP lines by vial: total number of female progeny, total
number of male progeny, and their respective mean weights
(in milligrams). We found inter-line differences for all four phe-
notypes measured (Figure 1A), as well as strong phenotypic and
genetic correlations between the phenotypes (Figure 1B). The esti-
mated broad-sense heritability of the vial mean female weight
(0.64, 95% HPDI: 0.55-0.72) was lower than for the vial mean male
weight (0.73, 95% HPDI: 0.65-0.80). Both weight phenotype
heritabilities were higher than previously estimated heritabilities
for body weight (Jumbo-Lucioni et al. 2010; Nelson et al. 2016).
The heritabilities of the total number of female progeny (0.47,
95% HPDI: 0.37-0.57) and male progeny (0.48, 95% HPDI: 0.39-
0.58) were higher than the heritabilities previously estimated
on number of eggs laid (Durham et al. 2014) (Supplementary
Table S1).
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Figure 1 DGRP lines show variation in offspring number and weight. (A) Plot of phenotypes measured (+ 1 SE) with the DGRP lines sorted by the mean
value for each phenotype (three replicates/line). (B) Correlation matrix of the phenotypes measured. Points are DGRP genotypes; r = phenotypic Pearson
correlation (**P < 0.001), r¢ = genetic correlation with 95% highest density posterior interval in parentheses below.
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Figure 2 Scatter plots of variant effect sizes for ~2 million DGRP
variants. Each point is a variant plotted at 5% opacity. Lines are contours
containing 25%, 50%, 75%, and 95% of the points. Variant effects were
calculated as one-half of the difference between means of the major and
minor alleles (Huang et al. 2014).

We carried out a GWAS on each of the four phenotypes. The
top-associated variants are reported in Supplementary Table S2.
Surprisingly, no overlapping variants were found among the top
hits for offspring mass and number, despite strong correlations
between traits (Figure 1B). We hypothesized that the high correla-
tion may arise from many variants of small effect affecting our
phenotypes. Such variants would not necessarily be statistically
significant variants for both mass and number, but their esti-
mated effects on both phenotypes might be correlated, neverthe-
less. We estimated the effect size of 1,907,562 DGRP variants on
each of the four measured traits and examined the correlation
between these effects (Figure 2). We found correlations of variant

effects across our phenotypes closely mirroring the genetic and
phenotypic correlations [0.48 <abs(r) < 0.91]. These relations
were supported by many thousands of variants, consistent with
the hypothesis that the genetic and phenotypic correlations are
due to the small contributions of many variants.

Consistent with a tradeoff imposed by resource limitation, we
found that the number of offspring was negatively correlated
with the offspring weight (Figure 1B). The strong correlations be-
tween the offspring number and weight phenotypes prompted us
to combine the four measurements into a single metric. We did
this using principal component analysis and termed it the off-
spring index. Such an approach could provide more power to de-
tect important pleiotropic variants in a GWAS than analyzing
each trait independently. The first principal component
explained 71% of the variance in the data and is negatively
loaded for offspring number and positively loaded for offspring
weight (Supplementary Table S3). A negative index value indi-
cated many low-weight offspring, a positive index value indicated
few high-weight offspring, and an index value close to zero indi-
cated a balance between offspring number and weight.

We used this offspring index for a GWAS. Thirty variants were
associated with the offspring index using a threshold of P < 1E-5
(Table 1). The third chromosome had 12 significant variants,
while 16 were located on the second chromosome and only 2 on
the X chromosome (4 test, P=0.32). Most of the variants (23/30)
were within 1000 bp of a gene; roughly half of these (14/23) were
located in introns. Five of the associated variants were present in
genes previously associated with fecundity (Durham et al. 2014),
which is more overlap than expected given a random set of can-
didate genes (Supplementary Figure S1A). Among the candidate
genes, we did not find significant enrichment for particular bio-
logical processes or molecular functions using PANTHER’s
Overrepresentation Test with the GO-Slim annotation sets (Mi
et al. 2019). The QQ plot showed no systematic bias and a slight
enrichment (Amedian = 1.015) for P < 1E-5 (Supplementary Figure
S1B). The linkage disequilibrium heat map revealed no long-dis-
tance linkage between variants (Supplementary Figure S1C).

Offspring phenotype differences among lines are
stable under different parental densities

We measured the variation in offspring index under a specific pa-
rental density during egg-laying. To assess the generality of our
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Table 1 Variants significantly associated with the offspring index (P < 1E-5)

Chr Pos MAF Effect
3L 18174169 0.49 0.70
2L 10356660 0.10 -1.11
3L 14106797 0.46 —0.60
3R 5440058 0.10 —1.08
3R 5437737 0.09 -1.10
3R 11212396 0.07 —-1.26
3R 10285026 0.05 —1.48
3R 2150285 0.12 —0.98
2R 19814320 0.13 -0.91
2L 22137883 0.35 -0.70
2R 8813359 0.29 0.70
2R 10191983 0.06 —-1.33
2R 16280567 0.35 —0.60
2R 10186017 0.13 —-0.93
X 16619471 0.34 0.65
2R 18428402 0.05 —-1.39
2R 16643265 0.16 -0.82
3L 21865887 0.12 —-0.93
2R 10185377 0.06 -1.33
2L 14413190 0.05 -1.32
2L 14413193 0.06 —-1.25
3L 16206105 0.16 —-0.84
2R 10354544 0.05 —1.44
3L 16206075 0.15 —0.85
X 16619495 0.33 0.64
3R 6652348 0.21 —0.68
2L 19610094 0.07 -1.14
2R 10185828 0.08 -1.10
2L 14413263 0.05 -1.36
3R 14116444 0.35 0.65

P-value Gene Class
3.4E-07 hid Intron
7.7E—07 CG5367 Upstream (63 bp)
9.2E-07 Sox21b Del (12 bp—Intron)
1.0E-06 CG8312 Intron
1.0E-06 CG8312 Intron
1.4E—-06 Rbp Intron
2.0E-06 cv-c Intron
2.7E-06 Osil7 Intron
3.0E-06 CG2812 3 UTR
3.2E-06 CG42748 Intron
3.9E-06 sug Intron
4.0E-06 — —
4.0E-06 — —
4.2E-06 Th 3’ UTR
4.3E-06 CG32572 Intron
4.9E-06 px Synonymous
5.6E—06 — —
5.9E-06 mub Intron
5.9E-06 Ih Intron
6.2E-06 — —
6.2E—06 — —
6.4E—06 CG13073 Downstream (46 bp)
6.9E-06 — —
7.1E—-06 CG13073 Downstream (76 bp)
7.4E-06 CG32572 Intron
7.9E—06 Cad86C Upstream (453 bp)
8.3E-06 Lar Intron
8.3E-06 Ih Intron
9.6E—06 — —
9.9E-06 1(3)05822 Synonymous

Chromosome coordinates represented in dm5 assembly coordinates. MAF = minor allele frequency, Del = deletion, and numbers in parentheses represent the
number of basepairs to the closest gene. Genes in bold were previously identified to contain variants associated with age-specific fecundity (Durham et al. 2014).
Effect of variant on offspring index is unitless, as offspring index is a principal component score, derived from a PCA on scaled features.

findings, we examined whether differences among DGRP lines in
offspring phenotypes would persist under different parental den-
sities. We chose six lines from our screen that were representa-
tive of negative offspring index (many low-weight offspring),
intermediate offspring index, and positive offspring index (few
high-weight offspring) to assay for offspring phenotypes at differ-
ent densities of parents during egg-laying (Figure 3). We found
that parental density was a significant predictor of offspring
number (;° test; females: P=1.8E—7, males: P=4.7E—6) and off-
spring weight (;° test; females: P=2.2E—12, males: P=3.1E—12).
As expected, increasing parental density increased offspring
number and decreased offspring weight, though the effect of in-
creasing parental density increased sublinearly for most lines.
After including density as a predictor, we saw that the DGRP line
still had a significant impact on offspring number (;* test;
females: P=2.6E—5, males: P=1.8E-5) and offspring weight (¢
test; females: P=9.5E—8, males: P=2.7E—7). DGRP lines with
positive index (RAL 812: +3.6; RAL 894: +3.8) maintained a low
offspring number and high offspring weight under different
densities. RAL 237, a DGRP line with a negative index (—2.9), had
consistently high offspring numbers and low offspring weights.
Surprisingly, RAL 176, a DGRP line with a strongly negative index
(=3.2) yielded offspring with weights and counts similar to RAL
49, a line with an index close to zero (—0.04). We did not detect
significant line-by-density interactions for any phenotype (4° test;
female number: P=0.66, female weight: P=0.86, male number:
P=0.54, male weight: P=0.57).

Functional validation of associated variants

We chose six candidate genes to validate for involvement with
our fecundity phenotype—hid, Sox21b, Rbp, CG8312, mub, and Ih.

Genes for validation were chosen based on having a highly asso-
ciated variant and availability of mutant lines. We used mutant
lines from the Exelixis gene disruption panel, which contain
piggyBac inserts in the genes of interest, to validate our candidate
genes (Figure 4). For four of the six candidate genes (hid, Sox21b,
CG8312, and mub), we found that the available mutations se-
verely impacted pupal and adult viability, to the point where we
were unable to generate a stable homozygous line to use in our
validation experiments (Table 2). With the remaining genes, Rbp
and Ih, we found significant, opposite effects on the offspring
index, with the Ih insertion strongly decreasing the offspring in-
dex, while the Rbp insertion slightly increased it (Figure 4A).
Examining component phenotypes (Figure 4B), we saw that the Ih
insertion significantly increased the number of offspring and
decreased mean offspring weight, for offspring of both sexes.
Disrupting Rbp did not significantly affect the number of off-
spring, but there was a modest, but statistically significant, in-
crease in offspring weight (13% for males and 21% for females).
Both Ih and Rbp play a role in nervous system function. Ih encodes
a voltage-gated potassium channel, and [h mutants show defects
in locomotion, proboscis extension, circadian rhythm, and life-
span (Chen and Wang 2012; Gonzalo-Gomez et al. 2012). Rbp enc-
odes a protein involved in the organization of the presynaptic
active zone and is instrumental in proper vesicle release (Liu et al.
2011)—mutations in Rbp can result in neurological and locomotor
defects, and in some cases, lethality.

For Ih, we had multiple mutant alleles whose effects could be
compared. [h****° was a viable line with increased offspring
count, while IW°**%> had impaired adult viability (Table 2). While
both insertions are in introns, Ih transcription has been shown to
be disrupted in W%, but not in h*****® (Chen and Wang 2012).
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The effect of the insertion on the final protein function of [h®°?*%°
is unknown, but RT-PCR shows that intronic insertion in W48

results in a null mutation (Hu et al. 2015).

Comparison with other DGRP life-history studies

We examined correlations between phenotypes measured in this
study and those measured in other DGRP studies that might

pertain to fecundity. We looked at the following phenotypes: star-
vation resistance (Mackay et al. 2012), chill coma recovery time
(Mackay et al. 2012), food intake (Garlapow et al. 2015), fecundity
and body size (Durham et al. 2014), nutritional indices and weight
(Unckless et al. 2015), and developmental time and egg-to-adult
viability under different densities (Horvath and Kalinka 2016).
Using a false discovery rate correction with all possible
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Table 2 Homozygous mutant genotypes used in candidate gene validation and their fecundity phenotypes and gene functions

Genotype Pupae Adult survival
PBac{PB}hid**%! Yes No
PBac{WH}Sox21b/0042° Yes Low
PBac{WH}Rbp/*"?" Yes Yes
PBac{RB}CG8312¢0*2%¢ Yes Low
PBac{WH}CG8312/°252> Yes No
PBac{WH }mub/?% No —
PBac{WH}IW°1%% Yes Low
PBac{RB}1h*°*% Yes Yes

Fecundity phenotype

+ offspring weight

+++ offspring number

Gene function

— BIR domain-binding protein; apoptosis regulator

— Transcription factor; transcription regulation
and development

RIM-binding protein; presynaptic active
zone organization

— Transcription regulation

— Transcription regulation

— Regulation of RNA splicing

Voltage-gated K* channel;

Voltage-gated K channel

— — — offspring weight

Gene function information was retrieved from FlyBase (Thurmond et al. 2019). Number of + or — is a qualitative representation of how much the measured
phenotype increased or decreased as compared to the control genetic background line (only statistically significant differences are shown).

Table 3 Correlations of phenotypes measured in our study (measured) with traits measured in previous DGRP studies (comparison)

Measured Comparison r q-value Reference

Mean weight (3) Body size (—y) 0.26 4.6E-2 Durham et al. (2014)
Mean weight (3) Body size (+y) 0.28 2.9E-2 Durham et al. (2014)
Mean weight (?) Mean weight (3-) 0.41 3.5E—4 Unckless et al. (2015)
Mean weight (3) Mean weight (3-) 0.39 6.9E—4 Unckless et al. (2015)
Total number (3) Mean weight (3+) —-0.30 2.9E-2 Unckless et al. (2015)
Mean weight (%) Mean weight (3+) 0.44 1.4E—4 Unckless et al. (2015)
Mean weight (3) Mean weight (3+) 0.41 3.5E-4 Unckless et al. (2015)
Mean weight (?) Mean weight (3) 0.46 6.4E-5 Unckless et al. (2015)
Mean weight (3) Mean weight (3°) 0.43 14E—4 Unckless et al. (2015)

Only correlations that remained significant after multiple testing correction are presented. Symbols are as follows: “—y” denotes a low yeast diet, “+y” denotes a
high yeast diet, “+” denotes a high glucose diet, “~" denotes a low glucose diet, and “cb” = overall effect when the data from the glucose diets are combined. P-
values were transformed into g-values using the Benjamini—Hochberg method to correct for multiple tests across all comparisons.

comparisons, we found that offspring weight measured in our
study was significantly correlated with body size and mean
weight measurements made in previous DGRP studies (Table 3).
There was no correlation found between our measurements of
total progeny number and fecundity measurements (P> 0.1 for
all comparisons). In addition, there was no correlation between
progeny weight and food intake (P>0.1 for all comparisons).
Though we found positive correlations between female starva-
tion resistance and female (r=0.18, P=0.028) and male (r=0.17,
P=0.046) weight measured in our study, these correlations
were no longer significant after correcting for multiple tests.
In addition, we found a negative correlation between number of
offspring and male and female development time under a high
larval density treatment [measured previously in 31 DGRP lines
(Horvath and Kalinka 2016)], but positive correlation between
offspring weight and development time. Egg-to-adult viability un-
der high larval density treatment was positively correlated with
offspring number and negatively correlated with offspring
weight. Though we observed a trend in the relationships between
development time, viability, and our phenotypes, only a few
correlations were nominally significant, and none remained sig-
nificant after the multiple testing correction.

Discussion

We investigated whether there was a genetic basis for the trade-
off between adult offspring number and weight under space and
resource limitation. We found that DGRP lines varied in the num-
ber of offspring produced and their mean weight, with numbers
negatively genetically correlated with weight, likely due to small
pleiotropic effects of many variants. Using a combined “offspring
index” derived from the first principal component of our offspring

phenotypes, we identified variants associated with variation in
offspring index (i.e., variation in the tradeoff between many low-
weight offspring to few high-weight offspring). We examined the
effects of mutation on six candidate genes and found that for all
tested insertion alleles of hid, Sox21b, CG8312, and mub, as well as
one allele of Ih, gene disruption caused phenotypes ranging from
pupal lethality to low adult survival. Disruption of Rbp caused a
small increase in offspring weight and an insertion allele of Ih
caused a large increase in offspring number coupled with a
decrease in offspring weight. When comparing our measured
phenotypes to life-history phenotypes measured in other DGRP
studies, we found consistency in our body weight measurements
and other measurements of weight and body size, but surpris-
ingly, we did not find a relationship between offspring number
and previous measures of fecundity.

We found that, similar to fecundity as measured by number of
eggs laid (Durham et al. 2014), there is a polygenic basis to off-
spring number and weight. While several of the candidate genes
we found were previously associated with fecundity (Durham
et al. 2014), most were not. When we examined the top variants
associated with each individual trait, we did not find any overlap-
ping variants between offspring mass and number, despite the
high genetic and phenotypic correlations between these meas-
ures. When we examined the correlation of estimated variant
effects, we found a highly significant, modest correlation among
many thousands of variants. Because so many variants are asso-
ciated with both traits, and because the correlation of their
effects is not extremely strong, the lists of top variants for each
trait are not expected to be overlapping (Figure 5). Overlap would
be expected if there were a few contributing variants of large
effect or the correlation of effects among many variants were
extremely tight. The latter is more the case with the correlation
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Figure 5 Overlap between top variants associated with two different
phenotypes is not guaranteed with highly polygenic genetic architecture.
(Left) Points in the scatter plot depict the effect sizes of numerous
moderately pleiotropic effects, while the colored points represent the
(nonoverlapping) top 10 variants associated with variation in example
traits 1 and 2, respectively. (Right) As previous, but for a genetic
architecture of fewer pleiotropic variants of larger effect. The top
variants overlap (magenta) in this scenario.

of variant effects between female and male offspring mass and
number, where we do observe a few overlapping variants among
the top hits (Supplementary Table S2). Among our candidate
genes, we were not able to find significant enrichment of
genes involved in particular biological processes or molecular
functions, though given the limited number of genes used in
this analysis, only a very strong enrichment could have been sig-
nificant. While only two of the six of the candidate genes tested
in our validation experiments are annotated as having roles in
developmental processes, we found that for most genes tested,
mutation disrupted the survival of either the larval, pupal or
adult stages severely enough to prevent us from even measuring
offspring number and weight.

The omnigenic model of genetic architecture (Boyle et al. 2017;
Zhang et al. 2019) could explain the functionally varied suite of
genes associated with offspring number and weight phenotypes.
One of the predictions of the omnigenic model is that essentially
all genes contribute to a trait through their expression at some
appropriate developmental point or in a particular tissue. This
leads to many loci in diverse genes being weakly associated with
the trait of interest. The omnigenic model also predicts that there
should be a network of genes whose action is essential and that
have correspondingly higher effect sizes. Interestingly, even
though we observed that disruptions to our candidate genes led
to strong effects, we did not find an enrichment for correlated
expression among them (see Supplementary File S1), i.e., they did
not appear to be part of known transcriptional networks. We
were also unable to find enrichment for particular biological
pathways or molecular processes among our candidate genes.
Since we were unable to identify a network uniting our candidate
genes, our results are not strictly consistent with an omnigenic
model, but perhaps reflect what was proposed in Fisher’s
“infinitesimal model” (Turelli 2017), in which a quantitative trait
is made up of tiny contributions of essentially all genes. We ob-
served strong correlations of variant effects between measured
phenotypes across almost 2 million DGRP variants (Figure 2),
lending further support to the “infinitesimal” model.

We found that insertion mutations in Rbp and Ih caused
opposite phenotypes. Mutations in Ih increased the offspring
number and decreased offspring weight, presumably due to the
constraints of the vial. Ih had not been previously implicated in

fecundity phenotypes as measured by egg-laying. While that
does not preclude that Ih mutants may lay more eggs, a higher
egg-to-adult viability for Ih mutants could also lead to the in-
crease in offspring number. Disruption of Rbp only increased
weight without significantly affecting offspring number. A small
effect on offspring number could have been obscured by limited
sample size, but our results still indicate that the weight increase
was more prominent than the decrease in offspring number. Rbp
is involved in neurological function and locomotion. This role
could affect body weight through a number of mechanisms in-
cluding foraging, feeding, gut peristalsis, etc. A decoupling of
weight from offspring number shows that there is an indepen-
dent axis where offspring weight can increase even though the
level of larval competition and other density effects remain the
same. This notion is supported by the second principal compo-
nent of our dataset, which is positively loaded for both weight
and offspring number, indicating that a tradeoff between the two
is not inevitable (Supplementary Table S3).

We observed that even within the same gene, different disrup-
tions can lead to different phenotypes. Both the [h*®***? and
In°145 alleles are intronic insertions that affect most transcripts
(Chen and Wang 2012; Hu et al. 2015), but In°'*%> shows impaired
viability, while 1h®°**° shows an increase in offspring number.
The 1W°2*> allele was reported to eliminate expression of all Ih
transcripts (Hu et al. 2015). In contrast, the Th®*% allele was
reported as having wild-type levels of expression (Chen and
Wang 2012). Based on its insertion position, the 1h®°**%° allele
would affect 8 of the 11 Ih transcripts. The phenotype difference
we observed between these alleles could depend on specific
transcripts. These results highlight a general caveat about using
mutant lines to make conclusions about the exact role of the
gene in determining the phenotype, rather than a more general
conclusion about whether or not the gene plays a role at all.

When we collected offspring from parents at different densi-
ties, we found a sublinear increase in the number of progeny as
the density of parents increased, consistent with the effects of re-
source limitation. We also found that offspring phenotypes were
strongly determined by DGRP line at all densities. To first approx-
imation, DGRP lines that produce fewer larger offspring contin-
ued to produce fewer larger offspring regardless of the number of
parents allowed to oviposit in the vial. There appear to be paral-
lels between the variation in offspring phenotypes among DGRP
lines and r and K-selection (MacArthur and Wilson 2001). In an
ecological context, an r-selected species is one that produces
many offspring with low chances of survival. A K-selected species
invests in few high-quality offspring in order to be able to com-
pete in more crowded environments with limited resources. If the
/K framework plays out as a plastic trait within a genotype, we
might expect lines to converge on smaller offspring in conditions
of higher crowding. We observed no such convergence, nor in-
deed any significant line-by-density effects. The genetically de-
termined variation in offspring phenotypes among our lines
seems to reflect a within-species continuum between r and K-se-
lected types, perhaps consistent with a Pareto frontier of equiva-
lently fit phenotypic combinations. Given that we are studying
this trait in a collection of inbred lines meant to capture the ge-
netic variation of an outbred population, it is also possible that
outbred D. melanogaster populations exhibit less variation on this
continuum, while the inbred lines lock in diverse phenotypes
based on their varied genetic compositions.

Comparing our phenotypes to those measured in other DGRP
studies, we found correspondence between our weight measure-
ments and body weight/size measurements from other studies,
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affirming that DGRP line phenotypes can remain consistent
across different study environments. We note that our approach,
by design, only controls for parental density and not larval den-
sity, which would reduce the concordance between the findings
of our study and other DGRP studies. As such, we find that the
heritability of body weight measured in this study is higher than
that measured previously (Jumbo-Lucioni et al. 2010), where lar-
val density was controlled. Offspring body weight can be consid-
ered as the integrated result of several processes, including egg
fertilization and hatching. Maternal genetic effects, via egg size,
play a role in positively regulating viability and hatchling weight,
though the direct effect of egg size on offspring weight was not
clearly established (Azevedo et al. 1997). In our study, we did not
control for variation in these other intermediate phenotypes
among the DGRP genotypes, as we were interested in their final
integrated effect on body weight. Our observation of higher heri-
tability of body weight, compared to other studies, could reflect
several factors. Gene-by-environment interactions or genetic drift
in the mapping populations could affect the measures of herita-
bility, or the final body weight phenotype in our study could re-
flect an effective average of the contributions of intermediate
phenotypes, like egg fertilization and egg hatching. We speculate
that this could result in a higher signal-to-noise ratio in the rela-
tionship between genetic variation and progeny weight variation,
compared to the signal-to-noise of intermediate traits. It is also
important to note that we did not control for the masses of the
female parents, a possible maternal effect, when examining
variation in our focal phenotypes. We used groups of 10 females
reared in density-controlled bottles to generate the offspring
scored for the GWAS, which would average out differences within
lines, but not between lines. There may also be among-genotype
variation in parental female mass that is nongenetic, e.g., due to
parental rearing conditions. Nongenetic variation would add
noise to our measurements, though we still observed robust
genetic correlations in our study.

To our surprise, we did not see a correlation between our fe-
cundity measure (the number of offspring) and prior fecundity
measures (number of eggs laid). This may be indicative of sub-
stantial line-to-line variation in mortality post-egg-laying but
pre-eclosion. Alternatively, there could be a positive correlation
between egg survival (fertilization and hatching) and offspring
number, but that a negative correlation between number of eggs
laid and egg survival. The combination of these two mechanisms
could yield no correlation between number of eggs and offspring
number. Another possible explanation for the lack of correlation
could be fecundity having been previously assayed with individ-
ual females (Durham et al. 2014), whereas we housed females in
groups of 10 for our assay. The number of eggs laid per female
was shown to decrease in more crowded conditions (Barker 1973;
Ohnisni 1976), along with differential genotype effects (Ohnisni
1976), could lead to the lack of correlation observed. We also ob-
served that our measure of fecundity (producing more offspring)
was correlated with a lower developmental time and higher egg-
to-adult viability under a high-density treatment in previous
studies. Though these correlations were not significant after a
multiple testing correction, it does indicate that lines producing
more offspring may have adapted to high-density lab rearing con-
ditions (Santos et al. 1994; Horvath and Kalinka 2016).

Overall, our results point to a polygenic basis for offspring
number and weight. Validation of six candidate genes implicates
diverse biological processes in controlling adult stage viability.
Combining our results with results from studies on other
Drosophila life-history traits, we find support for the idea that

traits closely related to fitness (e.g., offspring number) may be
influenced by a large set of genes, perhaps ultimately encom-
passing the vast majority of functional genes.
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