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Abstract: Vaccine hesitancy refers to delay in acceptance or refusal of vaccines despite the availability
of vaccine services. Despite the efforts of United States healthcare providers to vaccinate the bulk of
its population, vaccine hesitancy is still a severe challenge that has led to the resurgence of COVID-
19 cases to over 100,000 people during early August 2021. To our knowledge, there are limited
nationwide studies that examined the spatial distribution of vaccination rates, mainly based on the
social vulnerability index (SVI). In this study, we compiled a database of the percentage of fully
vaccinated people at the county scale across the continental United States as of 29 July 2021, along
with SVI data as potential significant covariates. We further employed multiscale geographically
weighted regression to model spatial nonstationarity of vaccination rates. Our findings indicated that
the model could explain over 79% of the variance of vaccination rate based on Per capita income and
Minority (%) (with positive impacts), and Age 17 and younger (%), Mobile homes (%), and Uninsured
people (%) (with negative effects). However, the impact of each covariate varied for different counties
due to using separate optimal bandwidths. This timely study can serve as a geospatial reference to
support public health decision-makers in forming region-specific policies in monitoring vaccination
programs from a geographic perspective.

Keywords: COVID-19; GIS; multiscale GWR; vaccination; vaccine hesitancy

1. Introduction

The United States has reported over 35 million COVID-19 cases and more than 600
thousand COVID-19 deaths at the end of July 2021 [1], nearly one and a half years after
the beginning of the global pandemic in March 2020 [2]. Various vaccines such as Pfizer-
BioNTech, Moderna, and Johnson & Johnson are mass-produced and distributed in the
United States. Previous studies indicated that the best way to control the pandemic is to
vaccinate and immunize a large portion of the population to achieve herd immunity [3]. By
the end of July 2021, almost 165 million people (~50.9% of the country’s total population)
have been fully vaccinated against the virus, and 190 million people received at least one
dose of one of those vaccines in this country. However, millions of people still have not
been vaccinated, resulting in over 100 thousand new daily COVID-19 cases and 500 new
daily COVID-19 deaths occurring during early August 2021 [4].

According to the World Health Organization (WHO), “vaccine hesitancy refers to
delay in acceptance or refusal of vaccines despite the availability of vaccine services” [5].
The average acceptance rates of the COVID-19 vaccines are relatively low across the
world, particularly in the Middle East, Russia, Africa, and several European countries. For
example, Kuwait (23.6%), Jordan (28.4%), Italy (53.7%), and Russia (54.9%) have reported
the lowest COVID-19 vaccine acceptance rates [6]. The United States also struggles with
low COVID-19 acceptance rates (56.9%) [6], and approximately one-third of the South or
Mountain West populations in this country are hesitant or unsure of getting the vaccine [7].
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The primary reasons for vaccine hesitancy are low confidence in the efficacy of the COVID-
19 vaccine, concerns regarding vaccine safety, the spread of misinformation, and mistrust
of the government and public health system, especially among minorities [8,9]. Despite
the efforts of the federal and state governments and numerous nationwide companies
that have offered various COVID-19 vaccine incentives (e.g., lotteries, scholarships, and
services) and rewards to increase vaccination rates [10], vaccine hesitancy is still one of the
most crucial barriers to control the COVID-19 pandemic.

Prior research has indicated a significant impact of socioeconomic determinants on
becoming immunized against Influenza regardless of pre-existing risk factors [11]. A
recent study also found that being younger and income loss during the pandemic were
significantly associated with refusal and delay in immunization against the COVID-19
virus [9]. Another study explored the spatial relationship between COVID-19 incidence
and environmental, socioeconomic, and demographic variables and found that income
inequality could explain a considerable variance of COVID-19 incidence in the United
States [12]. However, research on the COVID-19 vaccine hesitancy in the United States is not
exhaustive, and inadequate studies have examined the role of specific social vulnerabilities
for COVID-19 vaccination rates [13]. Social Vulnerability Index (SVI), developed by the
Centers for Disease Control and Prevention (CDC), assesses the resilience of communities
against infectious disease outbreaks who are at risk of being impacted by any public health
crisis [14]. The SVI consists of socioeconomic status, household composition, minority
status, housing type, and transportation [15]. This study used SVI data and geospatial
modeling techniques to investigate the spatial pattern of COVID-19 vaccination hesitancy
in the United States. Several geospatial models have previously been used to analyze and
model COVID-19 cases [16], infection [17], case fatality ratio [18], and mortality [19].

Recent vaccination statistics imply a higher social and racial disparity in regions with
fewer vaccination rates [20]. To our knowledge, this is the first spatial epidemiological
study that investigates the socioeconomic determinants of the COVID-19 vaccination
rate in the continental United States. The findings of this nationwide study can enhance
county-level policies in controlling the ongoing spread of disease and reinforce public
health decisions from geospatial perspective. This timely study seeks to understand spatial
patterns of COVID-19 vaccinations and identify potential socioeconomic determinants that
might prevent or promote the COVID-19 vaccination rate in the United States.

2. Materials and Methods
2.1. Study Settings

This geographic system information (GIS)-based retrospective study included a
database of COVID-19 vaccination rates as the response variable and SVI data as po-
tential significant covariates across the continental United States. We investigated the
county-level (n = 3103) impacts of socioeconomic determinants on the COVID-19 vaccina-
tion rate for fully vaccinated people. The COVID-19 vaccination rates were collected up to
29 July 2021 from the Bansal Lab at Georgetown University [21]. The Bansal Lab website
has integrated vaccination rates from the CDC Tracker Data website [22] and individual
state health departments at the county level across the United States.

We also downloaded the latest available SVI data from the CDC website [23], re-
leased in 2018. We used 15 social vulnerability variables as potential covariates in four
main themes:

(1) socioeconomic status: percentage of people below poverty, unemployment rate, per
capita income, percentage of people with no high school diploma,

(2) household composition and disability: percentage of people aged 65 and older, per-
centage of people aged 17 and younger, percentage of non-institutionalized people
with a disability, percentage of single-parent households with children,

(3) minority status and language: percentage of minority people (except white and
non-Hispanic),
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(4) housing type and transportation: percentage of housing in structures with 10+ units,
percentage of mobile homes, percentage of over-occupied housing units, percentage
of households with no vehicle available, and percentage of institutionalized group
quarters (e.g., correctional institutions, nursing homes).

We computed population density per square mile for each county and also included
the percentage of uninsured people in the total civilian non-institutionalized population as
other covariates (Table 1). The shapefiles of state and county boundaries were obtained
from the US Census TIGER/Line website [24] for further geospatial analysis. All data are
freely available from the above resources.

Table 1. The covariates used in this study [14].

No. Covariate Abbreviation Definition

1 Below poverty % POV Percentage of persons below federal poverty level
2 Unemployment rate % UNEMP Number of persons who are unemployed but seeking a job
3 Per capita income PCI Per capita annual income in dollars
4 No high school diploma % NOHSDP Percentage of persons with no high school diploma (age 25+)
5 Age 65 and older % AGE65 Percentage of persons aged 65 and older
6 Age 17 and younger % AGE17 Percentage of persons aged 17 and younger
7 Non-institutionalized with a disability % DISABL Percentage of civilian non-institutionalized population with a disability
8 Single-parent households with children % SNGPNT Percentage of single-parent households with children under 18
9 Minority (except white, non-Hispanic) % MINRTY Percentage minority (all persons except white, non-Hispanic)

10 Age 5+ who speak limited English % LIMENG Percentage of persons (age 5+) who speak English “less than well”
estimate

11 Housing in structures with 10+ units % MUNIT Percentage of housing structures with 10 or more units out of all
residential housing types

12 Mobile homes % MOBILE Percentage of mobile homes out of all residential housing types

13 Over-occupied housing units % CROWD Percentage of occupied housing units with more occupants than number
of rooms

14 Households with no vehicle available % NOVEH Percentage of households with no vehicle ownership

15 Institutionalized group quarters % GROUPQ Percentage of persons residing in institutionalized group quarters (e.g.,
correctional institutions, nursing homes)

16 Uninsured people % UNISUR Percentage uninsured in the total civilian non-institutionalized population
17 Population density per square mile POPDEN Number of persons per square mile

The following sections will identify potential significant covariates and examine their
impacts on the COVID-19 vaccination rate, based on three different models. The employed
models include a global ordinary least squares (OLS) as a baseline model and two local
models: geographically weighted regression (GWR) and multiscale GWR (MGWR). We
calibrated the models and evaluated the models’ accuracy in explaining the variance of
COVID-19 vaccination rate in the continental United States.

2.2. Ordinary Least Squares Model (OLS)

The traditional ordinary least squares (OLS) regression model was fitted as the baseline
model. This global model is defined as [25]:

yi = β0 + βxi + εi (1)

where yi is the percentage of fully vaccinated people against COVID-19 at county i; β0 is
the intercept; β is the vector of the estimated coefficients of covariates; xi is the vector of
selected covariates, and εi is the error term in the model estimates.

To calibrate the OLS model, we scrutinized and removed redundant covariates. First,
among all potential covariates, we only selected covariates with the lowest Pearson product
correlation coefficient with others (|r| < 0.4). Moreover, the OLS model was selected based
on stepwise forward regression that captures the maximum variance (increased R2 the
most) and indicated little multicollinearity for each covariate (variance inflation factor (VIF)
< 3). Finally, the insignificant covariates were excluded from the OLS model (p < 0.05).

However, it should be noted that the OLS model suffers from two main assumptions.
First, OLS assumes spatial stationarity or homogeneity across the study area, while the
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relationship between the response variable and the covariates can vary in different counties
(spatial heterogeneity). Moreover, OLS assumes that the model’s residuals should not be
spatially autocorrelated [26].

2.3. Geographically Weighted Regression (GWR)

To relax OLS assumptions, the geographically weighted regression (GWR) model was
employed. Unlike OLS, GWR allows coefficients of each covariate to vary for different
counties across the United States, and thus GWR can capture spatial heterogeneity [27].
This local model uses an adaptive kernel (the same number of observations) to borrow a
subset of data from nearby counties to estimate model parameters at any county in the
United States [28].

The GWR model can be formulated as:

yi = βi0 +
M

∑
j=1

βijXij + εi i = 1, 2, .., M (2)

where yi is the percentage of fully vaccinated people against COVID-19 at county i; βi0
is the intercept for county i; βij is the estimation of coefficient for jth covariate; Xij is the
jth covariate at county i; M is the number of covariates, and εi is the error term in the
model estimates.

Although GWR addresses spatial heterogeneity, there are several limitations in using
this model [29]. First, the model applies a single and uniform spatial scale (bandwidth) for
all covariates. In other words, GWR disregards the possibility that the covariates affecting
the COVID-19 vaccination rate are often at different spatial scales, which might bias the
result by exaggerating or underestimating the contribution of each covariate. Moreover, the
presence of local multicollinearity can cause instability of the parameter estimates [30]. To
date, GWR has been applied to several COVID-19 morbidity and mortality studies [31–35].
However, to our knowledge, GWR has never been used in the geospatial modeling of
COVID-19 vaccination rates.

2.4. Multiscale Geographically Weighted Regression (MGWR)

To overcome GWR drawbacks, Fotheringham et al. (2017) developed an extension of
GWR: multiscale GWR (MGWR) [29]. MGWR allows the relationship between covariates
and the COVID-19 vaccination to vary locally using separate bandwidths for each covariate.
Moreover, MGWR can alleviate the multicollinearity problem by minimizing the overfitting
and concurvity of GWR, leading to more reliable model estimates [30]. Therefore, we
refined GWR by applying MGWR to examine the effects of scale for each covariate on the
COVID-19 vaccination rate. Using the same notation as in Equation (2), the model can be
expressed as follows:

yi =
M

∑
j=1

βbwjXij + εi (3)

where βbwj is the estimation of coefficient for county i in which bwj is the jth optimal band-
width [29]. MGWR uses an iterative back-fitting algorithm using standard GWR estimates
and tests the goodness of fit for each covariate. Bandwidths control weighting intensity or
data-borrowing used by both GWR and MGWR. These models were calibrated based on
adaptive bandwidth using a bi-square kernel for weighting the data included within the
bandwidth [36]. Similar to GWR, in MGWR, optimal bandwidths were determined using
the corrected Akaike Information Criterion (AICc). The MGWR model has been used in
the study of COVID-19 at the national and global levels [16,18,36].

2.5. Model Evaluation

To obtain scale-free bandwidths, all covariates and the response variable were con-
verted to standardized z-score (mean = 0, standard deviation = 1). This standardization
operation can also facilitate direct comparison of bandwidths and reduce computational
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runtime for local models [29]. MGWR 2.2 software that is available from [37] was used to
run all models based on the same significant covariates obtained from the OLS model.

We further compared the performance of models (i.e., OLS, GWR, and MGWR) based
on the combination of criteria: Adj. R2, AICc, residual sum of square (RSS), and mul-
ticollinearity. A larger adjusted R2 indicates the model can explain a larger variance of
COVID-19 vaccination rate and is preferred. While the lower values for AICc and RSS are
desired, these values imply the most parsimonious model and the amount of variance that
the model could not explain, respectively [38].

Global Moran’s I statistic was employed on the model’s residuals to determine whether
the residuals are spatially autocorrelated [39,40]. A significant spatial autocorrelation
among residuals indicates the model is missing key covariates [41,42]. To test local mul-
ticollinearity, we computed the local condition numbers for GWR and MGWR. The local
condition number between 15 and 30 or above are problematic and imply multicollinear-
ity [38]. We further mapped local condition numbers for GWR and MGWR to visually
check local multicollinearity. Moreover, local R2 values were mapped to compare the
goodness of fit spatial distributions for GWR and MGWR models.

After identifying the optimal model, we joined the estimations obtained from the
model to the corresponding county shapefile and mapped the coefficients to depict the
local effects of each covariate on the COVID-19 vaccination rate in the United States. All
maps were generated in ArcGIS Desktop 10.7 (ESRI, Redlands, CA).

3. Results

Preliminary results indicated that as of 29 July 2021, on average, 47.25% of people were
fully vaccinated against the virus across the continental United States (range: 8.9–87.4%).
Among all counties, 428 counties (13.8% of total counties) had reported over 50% (full) vac-
cination rates. In comparison, four counties (in Arkansas, North Dakota, South Dakota, and
Nebraska states) had less than 10% vaccination rates, while three counties in Massachusetts
(2 counties) and Colorado had reported above 80% (full) vaccination rates. The full vacci-
nation rates were higher in the Northeast region of the United States, with generally better
socioeconomic status. We classified US counties based on four regions: West, Midwest,
South, and Northeast. We then used a one-way analysis of variance (ANOVA) test to
examine if there were significant differences in the means of vaccination rates. Results of
the ANOVA test indicate that only the Northeast region had a significantly higher mean
full vaccination rate compared to the other three regions (p < 0.05) (Figure 1). Figure 1
demonstrates the boxplot for the used covariates for US regions. Table 2 summarizes the
mean values of the COVID-19 vaccination rates and covariates used in the models classified
based on US regions.

The final OLS model was constructed based on five statistically significant covariates.
According to Table 3, Per capita income and Minority (%) had positive relationships with
the COVID-19 vaccination rate, while Age 17 and younger (%), Mobile homes (%), and
Uninsured people (%) indicated negative associations with the response variable (p < 0.01).
The VIF values for all covariates were <2, indicating that multicollinearity is not a severe
problem. However, the residuals were highly clustered (Moran’s I = 0.30, z-score = 58.09,
p-value < 0.01), suggesting that the model overfitted in some counties and under fitted
in some other counties. The autocorrelated residuals in OLS violate the independence of
errors assumption; thus, the coefficient estimates should be interpreted with caution.
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Table 2. Mean values of the response variable and covariates used in the models classified based on regions in the United
States as of 29 July 2021.

US Region Fully
Vaccinated (%)

Per Capita
Income ($)

Age 17 and
Younger (%) Minority (%) Mobile Homes

(%)
Uninsured
People (%)

West 51.22 28,274 22.63 27.29 13.12 10.08
Midwest 45.51 28,127 22.66 11.84 7.96 7.84

South 42.41 24,875 22.39 31.31 17.76 12.18
Northeast 54.86 32,605 19.97 16.60 6.36 6.09

Table 3. Results of OLS model of COVID-19 vaccination rates in the United States.

Covariate Coefficient (EST.) SE T (EST/SE) p-Value VIF

Intercept 0.000 0.013 0.000 1.000 –
Per capita income 0.360 0.017 21.446 0.000 1.599

Age 17 and younger (%) –0.244 0.015 –16.643 0.000 1.217
Minority (%) 0.338 0.016 21.471 0.000 1.408

Mobile homes (%) –0.259 0.017 –15.510 0.000 1.587
Uninsured people (%) –0.190 0.018 –10.761 0.000 1.763
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Compared to OLS, both local models yielded better fits with improving adjusted R2 by
at least 32%, which means that the local models could explain at least 77.7% of the variance
of COVID-19 vaccination rates in the United States. However, MGWR showed a slightly
better fit (Adj. R2 = 79.1) than GWR (Adj. R2 = 77.7). The MGWR was also the most parsimo-
nious model (AICc = 4437.25) compared to GWR (AICc = 4676.53), while the OLS was the
least parsimonious model (AICc = 6954.02). Similarly, MGWR produced the lowest residual
sum of squares (RSS = 569.38), followed by GWR (RSS = 598.47) and OLS (RSS = 1697.984).
The Moran’s I indicated that the residuals of GWR had a clustered distribution but with
less intensity than OLS (GWR Moran’s I = 0.01, z-score = 2.77, p < 0.05). In contrast, the dis-
tribution of residuals in MGWR was dispersed (Moran’s I = –0.02, z-score = –3.5, p < 0.05).
Table 4 summarizes the evaluation metrics for all models.

Table 4. Comparison of OLS, GWR, and MGWR models of COVID-19 vaccination rates in the United
States.

Model

Evaluation Statistic OLS GWR MGWR

AICc 6954.21 4676.526 4437.25
Adj. R2 45.3 77.7 79.1

RSS 1697.984 598.47 569.38
Log-Likelihood −3469.992 –1849.97 –1772.57

The local R2 of MGWR ranged between 20.8% and 90.5% (median = 63.5%, standard
deviation = 13.26%) compared with the local R2 of the GWR model ranging between 18.3%
and 89.4% (median = 60.8%, standard deviation = 13.8%). This indicates that MGWR
achieved a better local fit than GWR. Figure 2 shows the geographic distribution of local
R2 for both models. According to this map, the models have the best fit in Texas, Florida,
Michigan, Ohio, and several counties in the Western United States. Moreover, the local
condition numbers in MGWR were between 1.72 and 8.63 (median = 3.52, standard devia-
tion = 1.05), while these numbers ranged between 2.15 and 28.7 for GWR. Since the usual
value for the local condition number is between 15 and 30, there is a possible indication
of multicollinearity in GWR. Figure 2 depicts the spatial distribution of local condition
numbers for both local models.

The GWR model yielded an optimal bandwidth of 104, showing the number of coun-
ties with non-zero weighting in the model calibration. In comparison, MGWR produced
distinct bandwidths for each covariate. Table 5 provides optimal bandwidths pertaining
to each covariate, effective number of parameters, and the adjusted critical t-values for
significance testing at a 95% confidence interval. Bandwidth confidence intervals were also
measured at a 95% confidence level. Almost all t-values are higher (more conservative)
than conventional t-value. The t-values for Age 17 and younger (%) from MGWR are larger
than the corrected t-value from GWR of 3.39 (i.e., more conservative), while others are
smaller (i.e., less conservative). The large bandwidth for Mobile homes (%) indicates that
this covariate has the largest scale of influence than the others, while Per capita income and
Age 17 and younger had the most local impacts as indicated by their smaller bandwidths
(Figure 3).
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Table 5. Comparison of bandwidths, the effective number of parameters, and critical t-values for GWR and MGWR models.

Bandwidth (95% CI) Effective Number of Parameters Critical t-Value (95%)

GWR MGWR GWR MGWR GWR MGWR

Model n/a n/a 420.840 388.934 3.388 n/a
Intercept 104 (98, 107) 44 (44, 46) n/a 181.954 n/a 3.642

Per capita income 104 (98, 107) 95 (88, 107) n/a 69.082 n/a 3.384
Age 17 and younger (%) 104 (98, 107) 74 (67, 82) n/a 98.274 n/a 3.48

Minority (%) 104 (98, 107) 322 (278, 384) n/a 14.508 n/a 2.927
Mobile homes (%) 104 (98, 107) 1283 (1042, 1936) n/a 3.77 n/a 2.478

Uninsured people (%) 104 (98, 107) 245 (213, 278) n/a 21.345 n/a 3.046
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MGWR model.

According to Figure 3, Minority (%) positively impacted the vaccination rate that
steadily increased from East to West. Conversely, Uninsured people (%) had a negative
impact on the vaccination rate that also increased from East to West. Mobile homes (%)
showed a constant negative impact that steadily decreased from North to South. Both Per
capita income and Age 17 and younger (%) indicated more local effects than the other
covariates. Per capita income had the highest impacts in Midwest and Western regions. In
contrast, Age 17 and younger (%) had a steadily positive association with vaccination rates,
with the most effects mainly in South-central areas and Montana.

4. Discussion

WHO has classified vaccine hesitancy as one of the top-ranked crucial global health
threats in 2019 due to the resurgence of vaccine-preventable diseases and the declining
vaccination rates [43]. This GIS-based retrospective study aimed to analyze spatial hetero-
geneity of COVID-19 full vaccination rates across all counties in the continental United
States using SVI data. We used 15 SVI covariates in four themes, including socioeconomic
status, household composition and disability, minority status and language, and housing
type and transportation, in addition to population density and percentage of uninsured
people at the county scale. The OLS model could not account for spatial variations of
vaccination rates, as its residuals were highly autocorrelated, emphasizing the necessity of
using local models. With fewer assumptions about data, the local models could explain
nearly 80% (MGWR Adj. R2 = 79.1 and GWR Adj. R2 = 77.7) of the variances of COVID-19
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vaccination rates. The results of the MGWR model, as the best-fitted model in this study,
showed that the model fitted well in most areas of New Mexico, Colorado, Utah, Wyoming,
Florida, Ohio, Michigan, and Northeast Texas based on Per capita income, Age 17 and
younger (%), Minority (%) (except white and non-Hispanic), Mobile homes (%), and Unin-
sured people (%). However, the model was mainly under-fitted in most counties of South
Dakota, Kansas, Oklahoma, and Mississippi, which also had reported lower vaccination
rates. The poor performance of the model in counties with low vaccination rates can
indicate evidence for missing key covariates such as environmental, demographic, and
health-related variables. However, these covariates were outside of the research objectives.

Our findings confirmed the strengths of MGWR compared to the GWR model not only
because of a more accurate model fit with fewer covariates but also due to addressing the
scale issue. In other words, instead of using a single average bandwidth for all covariates
in the widely used GWR model, which could mask the actual spatial variations, MGWR
provided separate optimal scales for each covariate. Although distinct bandwidth signifi-
cantly increased the computational complexity of the model, it better revealed the spatial
pattern of the effect of each covariate on the COVID-19 vaccination rate. For instance, the
larger bandwidth (e.g., Mobile home (%)) indicated a more stable relationship, and smaller
bandwidth (e.g., Age 17 and younger) suggested a more local association with COVID-19
vaccination rates.

Vaccine hesitancy among ethnic minorities might be rooted in the history of racial
injustices and their negative experiences with the culturally insensitive healthcare system,
which has adversely impacted the COVID-19 vaccine uptake in the United States [44].
Some studies have reported a significant portion of vaccine hesitancy, particularly among
blacks, women, and conservatives in the United States [45,46]. However, based on the
SVI definition of minorities (all persons except white, non-Hispanic), we found a positive
impact of minorities on COVID-19 vaccination rates, particularly a higher positive rate in
the West and the Northwestern United States than in Eastern counties. The inconsistency
between our findings and [45,46] regarding the vaccination rates among minorities might
be due to the differences in the definition of minorities and the scale of analysis. Thus,
further study should investigate the heterogeneity between minority groups. Prioritizing
these underserved and vulnerable communities as well as allocating health resources based
on their population size may avoid increasing existing health disparity in the United States.

Our results indicated no relationship between the percentage of persons with no high
school diploma and vaccination rates at the county level. This finding was consistent with
an early survey in 2016 and 2017 on vaccine hesitancy in low- and middle-income countries,
including China, India, Bangladesh, Ethiopia, and Guatemala [47]. However, there is no
consensus about the relationship. A recent scoping review [48] in high-income countries
found that lower education level is positively associated with COVID-19 vaccine hesitancy.
A hypothesis that may explain this association is people without a college degree may
underestimate effectiveness or overestimate the risks of vaccines, compared to the educated
population who are more likely to distinguish authentic information from misinformation.

Our findings indicated that Per capita income and the Uninsured rate were positively
and negatively associated with vaccination rates, respectively. However, the strengths of
associations significantly varied by geographic location. This agrees with the published
data of CDC that indicates in states with higher median household incomes, a higher
vaccination rate is reported. For instance, in Maryland and New Jersey (with higher
median incomes), over 70% of populations have been vaccinated, while at the same time,
in states such as Mississippi and Arkansas with lower household income, only <30%
of the populations have been fully vaccinated. A recent US Census Bureau Household
plus survey [49] shows that most unvaccinated Americans live in households that make
less than $50,000 annually. Moreover, a study by Lindemer et al. [50] suggests that the
US counties with lower insurance coverage have significantly slower vaccine rollout. A
possible explanation may be the fear of the uninsured population of receiving a bill, even
though the vaccines are free to the public in the United States.
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Living in non-deprived neighborhoods can generally provide better health status
due to higher access to health care and social resources [51]. However, nearly 20 million
residents in the United States live in mobile homes, and over half of the mobile homes
are in rural areas [52]. This population is more likely to have environmentally related
diseases and can face health disparities [53]. Having a lower COVID-19 vaccination
rate and less immunity against the COVID-19 virus can exacerbate the adverse health
outcomes associated with their neighborhood environment (e.g., access to care, insurance
coverage, and financial situation). Moreover, our findings implied that the counties with
a higher proportion of uninsured individuals had lower COVID-19 vaccination rates.
Although effective preventive services may reduce health concerns, uninsured adults
receive significantly lower preventive services than insured people [54].

There are several caveats and inherent limitations in this study. First, due to the highly
dynamic nature of the disease, such as the highly contagious delta variant and continuous
change of the vaccination statistics, follow-up studies with more recent data are required
to provide up-to-date information for policymakers to fight against the disease. Moreover,
the findings of this study should only be explained at the county scale. In other words, sub-
county and individual inferences can be misleading due to ecological fallacy. In addition,
model results can change for different spatial units due to modifiable areal unit problems.
Thus, for future studies, conducting higher-resolution spatial analysis at multiple scales
together with incorporating environmental, demographic, and health-related variables is
recommended. Moreover, local healthcare facilities and available social resources that can
potentially impact the vaccination rate in different counties require further investigations.
Finally, age-specific modeling could not be implemented due to the lack of data for many
states.

5. Conclusions

In summary, our findings reveal that the geospatial disparity of COVID-19 vaccine
hesitancy in the United States is highly associated with socio-economics covariates. There-
fore, targeted interventions on potentially modifiable socioeconomic social vulnerability
factors faced by race/ethnic minorities, especially in underserved and vulnerable com-
munities, may maximize vaccine uptake. Policymakers should also increase public trust
and participation by engaging community groups, champions, and faith leaders to reduce
vaccine hesitancy rates [8]. Moreover, wider communication through media and fighting
against widespread misinformation would raise public awareness about the scale and
consequences of the COVID-19 pandemic. Evidence-based and scientific benefits of the
COVID-19 vaccine may also change the perception of the COVID-19 vaccination at both
individual and organizational levels as well as maximize COVID-19 vaccine acceptance.
To the authors’ knowledge, there is a lack of research on spatial modeling of COVID-19
vaccination in the United States; thus, this timely study can serve as a geospatial reference
to support public health decision-makers in forming region-specific policies in monitoring
vaccination programs.
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