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Abstract
Conditionally replicating adenoviruses (CRAds) armed with antitumor transgenes hold

promise for cancer treatment. In previous studies, we showed that the 1504-siRNA targeting

potential oncogene EphA3 was an efficient therapeutic transgene and that the telomerase

reverse transcriptase promoter (TERTp) driving the CRAd was a more advanced genera-

tion of CRAd. Therefore, we combined Ad-TERTp-E1A-1504 by inserting 1504-siRNA into

the CRAd to study its antitumor effects and mechanism of action, using Ad-TERTp-E1A-NC

and nonreplicating adenovirus carrying 1504-siRNA as controls. Cell viability assays and

ED50 studies of growth inhibition confirmed that Ad-TERTp-E1A-1504 has 3.5- and 1,400-

fold greater ability to kill EphA3- and TERT-expressing tumor cells compared to Ad-TERTp-

E1A-NC and Ad-ΔE1A-1504, respectively. Also, Ad-TERTp-E1A-1504 had little effect on

cells that modestly expressed EphA3 and TERT such as 2BS. The antitumor efficacy of Ad-

TERTp-E1A-1504 was also validated in vivo. Furthermore, the virus yield of Ad-TERTp-

E1A-1504 in C4-2B was ~1,000 times greater than that in 2BS. No obvious differences

were observed between Ad-TERTp-E1A-1504 and Ad-TERTp-E1A-NC. Both acridine or-

ange staining and Beclin1 protein measurements indicated that autophagy with Ad-TERTp-

E1A-1504 at 5 and 10 MOI was higher than that of Ad-TERTp-E1A-NC. Finally, the classical

negatively regulated autophagy signaling pathway, PI3K/AKT/mTOR, was suppressed (re-

duced phosphorylated form) in contrast to NC, and that this was mediated by 1504-siRNA.

Thus, Ad- TERTp-E1A-1504 does not harm normal cells but has dual inhibiting and killing

effects on TERT- and EphA3-positive tumor cells, and this effect is mediated by the AKT/

mTOR signaling pathway via induction of autophagy. These data may offer a foundation for

novel antitumor therapies targeting this mechanism.
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Introduction
EphA3 is recognized as a potential oncogene due to its greater expression or greater incidence
of mutation in diverse human tumors, such as hematopoietic and lymphoid tumors, primary
leukemia, and T-cell lymphomas, renal and colon carcinomas, malignant melanomas. Further-
more, EphA3 is poorly expressed at normal tissues [1–4], which we observed as well (S1 Fig).
EphA3 has important roles in growth and migration/invasion of some cancer cells in vitro as
well as a role in tumor growth, invasiveness, angiogenesis, and metastasis in vivo. In many
studies, soluble EphA3 (Fc fusion proteins) and anti-Eph Mabs, agonists and drugs that stimu-
late Eph receptor degradation were utilized as anti-tumor drugs [5,6]. Recently, small interfer-
ing RNAs (siRNA), duplexes to attain sequence-specific RNA knockdown, represent a
powerful tool for treating cancer. Previously, a positive correlation between EphA3 expression
and Gleason grades in prostate cancer was reported and that EphA3 promotes proliferation
and migration of prostate cancer cells was also confirmed [7]. Also, we constructed a plasmid
carrying siRNA targeting EphA3, and after 1504-siRNA knockdown of EphA3 expression, we
observed growth inhibition of tumors that expressed EphA3 such as C4-2B, HGC27, and
HCT116 [8,9]. Thus, 1504-siRNA may be a new therapeutic gene to target for cancer therapy.

In traditional gene therapy, nonreplicative adenoviruses are used as the delivery system.
However, short durations and low levels of gene expression remain major challenges for eradi-
cating cancers. In recent years, conditionally replicating adenoviruses (CRAds) that replicate
specifically in tumor cells with subsequent oncolysis and release of viral progeny to further in-
fect and destroy neighboring cancer cells have been developed as a gene therapy delivery plat-
form. This technique increases the specificity of the transgene and increases its cancer killing
potency [10]. CRAds have undergone two generations of deletion/mutation CRAds and
tumor/tissue-specific promotor driving CRAds, respectively. Reverse transcriptase telomerase
promoter (TERTp) driving the CRAd is among the most advanced CRAds because it targets
approximately 90% of human cancers and has greater potency for replicating in cancer cells
and destroying them [11]. Therefore, we inserted 1504-siRNA into TERTp driving CRAd to
construct a novel CRAd: Ad-TERTp-E1A-1504, with the intent to more efficiently destroy tu-
mors with less damage to adjacent normal cells. In addition, we also explored the mechanism
behind the recombinant CRAd form the perspective of autophagy to understand how future
combinations with other therapeutic antitumor drugs might be achieved.

Materials and Methods

Ethics Statement
All procedures for animal experiment were approved by the Animal Experiment Committee of
the Institute of Biotechnology and performed in accordance with the institution guidelines.

Cells and cell culture
The human cell lines C4-2B, LNCap (prostate cancer), MGC803, HGC27(gastric carcinoma),
SMMC-7721, Bel-7402(hepatic carcinoma), WCY, MCF-7(Breast cancer), H1299, 95D(pul-
monary cancer), Hela(cervical cancer), HT29, HCT116(colon carcinoma), LO2(hepatocyte),
2BS(normal lung fibroblast), HEK293(embryonic kidney) and B16(melanoma) origing from
mice, were obtained from Nanjing keygen Biotech company. All cell lines were cultured ac-
cording to the vendor’s instructions.
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Generation of recombinant CRAd and identification
Generation of recombinant plasmids (S2 Fig). pshuttle, pTE-TPE (the E1 region-bearing

plasmid, the region containing the promoter of E1A was replaced by TERTp) were kindly pro-
vided by Professor Lu from Chinese Center for Disease Control and Prevention [12]. The
1504-siRNA and NC sequence, amplified by PCR from pGP-U6-1504-shRNA and
pGP-U6-NC respectively, was first subcloned into pshuttle to form psh-1504-siRNA and psh-
NC. Then the sequence of TERTp and E1A and E1B excised from pTE-TPE was subcloned
into psh-1504-siRNA or psh-NC to generate psh-TETPE-1504 or psh-TETPE-NC which was
recombinated homologously with pAd-easy in Escherichia coli BJ5183. The nonreplicative ade-
novirus, Ad-4E1A-1504 and Ad-4E1A-NC was also made through pAd-easy, pGP-U6-
1504-siRNA, and pGP-U6-NC. Each recombinant plasmid was identified by enzyme excision
and sequencing accordingly.

Generation of recombinant adenoviruses. CRAds and nonreplicating adenoviruses were
packaged and amplified in 293 cells according to the manual for the AdEasy system
(Cat.240009, Stratagene, La Jolla, CA), and then purified by double CsCl gradient ultracentrifu-
gation. The function of recombinant adenoviruses were identified by cytopathetic effects
(CPE), Western blot, or an MTT assay.

MTT assay
Cells (1×104 cells/well in 96 well plate) infected with adenoviruses or mock infected were treat-
ed with MTT (3-[4,5-dimethlythiazol-2-yl]-2, 5-diphenyltetrazolium bromide) as a measure-
ment of the cytotoxicity of adenovirus vectors, absorbance at 495nm was recorded and survival
was calculated as a percentage of the measurements taken in untreated cells.

ED50, effective dose for inhibiting cancer cell growth by 50% were calculated through point
slope method.

Treatment index (TI) was the ratio of ED50 of adenoviruse for 2BS to that for tumor cells.

Cytotoxicity assay
Cells were grown subconfluently in 24 well plate and infected with adenoviruses with indicated
titers or mock treated for 2 h followed by replacement of infection media with growth media. 3
days post-infection, the cells were stained with crystal violet and quantified.

Human tumor xenograft model in nude mice
HGC27 cells (5×106cells in 100μl of PBS) were inoculated s.c into the two sides of flanks of the
same female BALB/c nude mouse at the age of 4–5 weeks. Treatment with viral constructs was
initiated when tumor xenografts reached a diameter of>0.5cm. Six mice were chosen. Each
mouse of three received three daily intratumoral injections of Ad-TERTp-E1A-1504 or Ad-
TERTp-E1A-NC at 1×107 plaque-forming units (pfu) at one side. Control mouse of the other
three received injection of PBS only. Xenograft sizes (width and length) were measured by a
vernier caliper twice a week. Tumor volume (V) was calculated by the formula: V =W2 x L/2.
Animals were euthanized about 30 days after injection. Growth rate = (V-V0)/V0, (V or V0,
was volume of xenograft at the end of experiment or beginning volume when it was treated
with viruses). The tumor sample was used for protein extraction and western-blot.

Virus progeny production assay
C4-2B and 2BS cells were seeded in 24-well plates at a density of 1×105 per well and infected
with the CRAds at a multiplicity of infection (MOI) of 10. After incubation for 2 h, viruses
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were removed, and then rinsed twice with culture media containing 2% FBS, and 600μl of fresh
media were added to each well. Cells were collected and combined with culture supernatant 24,
48, 72h post-infection. Lysates were prepared by three cycles of freeze-and-thaw and titrated
by limiting dilution assay on 293 cells [13].

Western Blotting
Cells were infected with CRAds or replicative adenoviruses at respective MOIs and were har-
vested 36~48h post infection, followed by protein expression levels testing. Primary antibodies
of E1A and EphA3 were obtained from Santa Cruz Biotechnology, and that of AKT, pAKT,
mTOR, pmTOR, 4EBP1, p4EBP1, Beclin1, and p62 were from cell signaling corporation.

Autophagy assay
For fluorescent microscope analyzing, C4-2B cells were grown in square coverslips 24 h before
infection. Next day, cells were infected with 1, 5, 10 MOI of Ad-TERTp-E1A-1504 or Ad-
TERTp-E1A-NC or were mock infected. After 2 h absorption, unbound viruses were removed
and fresh portion of growth media were added. At 40 h post-infection, the cells were rinsed
with PBS and stained with 1 μg/mL acridine orange (Sigma-Aldrich) for 20 min at 37°C follow-
ing a rinse with PBS. Thereafter 10 visual fields of cells selected randomly were taken pictures
under a fluorescent microscope and Photometrics Cool Snap HQ camera connected to a Delta
vision RT Restoration Imaging System (Applied Precision), and were analyzed through photo-
shop, counting the red-colored cells and total cells respectively, and calculating the percentage
of the red-colored cells. For flow cytometer analyzing, the cells in six well plates were infected
with CRAds, then detached with trypsin and stained with Acridine as above. Finally cells were
analyzed using the PerCP-Cy5.5-A channel with a BD FACS Canto II (BD Biosciences) flow
cytometer.

Statistics
Data are presented as mean values ± standard deviation. Statistical difference was assessed with
a two-tailed Student’s t-test. A p-value of<0.05 was considered significant.

Results

Construction and identification of Ad-TERTp-E1A-1504
A diagram of E1A-competent adenoviruses showed that 1504-siRNA was incorporated into
TERTp driving the E1A adenovirus vector, while Ad-TERTp-E1A-NC was produced by re-
placing 1504-siRNA with a negative control sequence (Fig 1A). The structure was confirmed
by experiments as follows:

Protein expression data (Fig 1B and 1C) show that only TERT-mediated CRAds elevated
E1A expression in cells that greatly expressed TERT (Fig 1D), such as C4-2B and HGC27. Rep-
lication-defective adenoviruses (MOI of 300) did not increase E1A expression in C4-2B cells
and TERT-mediated CRAds did not induce E1A expression increases in TERT-negative cells.

Fig 1E shows that the viral yield in C4-2B increased significantly (from 0.6 to 100 IU/cell)
whereas viral yield in 2BS cells increased slightly (from 0.01 to 0.1 IU/cell). Thus, CRAds could
replicate specifically in tumor cells. Also, the replication capability of Ad-TERTp-E1A-1504
was similar to that of Ad-TERTp-E1A-NC, indicating that the enhanced antitumor efficacy of
Ad-TERTp-E1A-1504 compared to Ad-TERTp-E1A-NC was not due to replication-inducing
tumor cell lysis.
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Effects of Ad-TERTp-E1A-1504 on telomerase-positive and -negative
cells
Two human tumor cell lines highly expressing EphA3 and TERT(C4-2B and HGC27 cell) and
cell line that expressed little EphA3 and TERT (2BS cell) were infected with Ad-TERTp-E1A-
1504, Ad-TERTp-E1A-NC, or Ad-ΔE1A-1504 or Ad-ΔE1A-NC at the indicated titers. Then, 3
days after infection, Ad-TERTp-E1A-1504 killed most of the tumor cells (1–10 MOI) but Ad-
TERTp-E1A-NC had the same effect at 100 MOI. Ad-ΔE1A-1504 or Ad-ΔE1A-NC killed
fewer cells at 100 MOI (Fig 2A and 2B). Compared with tumor cell lines, 2BS was less sensitive
to Ad-TERTp-E1A-1504; few cells died at 100 MOI (Fig 2C). Thus, Ad-TERTp-E1A-1504 of-
fered dual killing effects for cell lines highly expressing TERT and EphA3 and had little effect
on negative cell lines.

Inhibition effects of Ad-TERTp-E1A-1504 on C4-2B cells
MTT experiments revealed that the longer infection duration, the lower MOIs were needed to
attain high inhibition rate, and MOIs of Ad-TERTp-E1A-1504 was lower than that of Ad-
TERTp-E1A-NC. For example, to attain inhibition rate of 60%MOIs for Ad-TERTp-E1A-
1504 and NC were 2 and 10(6 days), 0.08 and 0.4(8 days) respectively. Ad-TERTp-E1A-1504
was more inhibitory than Ad-TERTp-E1A-NC (Fig 3A–3C), whereas inhibition with Ad-
ΔE1A-1504 was less than that of Ad-TERTp-E1A-1504 and Ad-TERTp-E1A-NC (Fig 3D–3F).

Fig 1. Traits of Ad-TERTp-E1A-1504 and Ad-TERTp-E1A-NC. A: illustration of E1A-completent adenoviruses. 1504-siRNA was incorporated into TERTp
driving the E1A adenovirus vector, and Ad-TERTp-E1A-NC was produced by replacing 1504-siRNA with a negative control sequence. B: EphA3 and E1A
expression after viral infection of C4-2B. C: TERT expression in 3 cells lines (Western blot) D: EphA3 and E1A expression viral infection of C4-2B, HGC27,
and 2BS. E: Replication of CRAds in TERT-positive tumor cell lines and TERT-negative cells. Viral yield in C4-2B increased significantly with greater
exposure and viral yield in 2BS cells increased slightly 24 to 72 h after infection.

doi:10.1371/journal.pone.0126726.g001
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Fig 2. Ad-TERTp-E1A-1504 enhances oncolytic potency. C4-2B, HGC27, and 2BS were infected with Ad-TERTp-E1A-1504, Ad-TERTp-E1A-NC, Ad-
4E1A-1504, or Ad-4E1A-NC at the indicated MOIs. After 3 days, adherent cells were stained with crystal violet and quantified. Data represent examples of
two independent sets of experiments. A-B: Ad-TERTp-E1A-1504 killed almost all tumor cells at 1–10 MOI, however Ad-TERTp-E1A-NC had the same effect
at 100 MOI and Ad-ΔE1A-1504 or Ad-ΔE1A-NC killed fewer cells at 100 MOI. C: Compared with tumor cell lines, 2BS was less sensitive to Ad-TERTp-E1A-
1504 (few cells died at 100 MOI).

doi:10.1371/journal.pone.0126726.g002

Fig 3. Inhibition effects of Ad-TERTp-E1A-1504 on C4-2B cells. Inhibition of proliferation of C4-2B cells was measured with MTT. A, B and C: inhibition
resulting from Ad-TERTp-E1A-1504, Ad-TERTp-E1A-NC at different MOIs 3, 6, and 8 days after infection. They showed that the longer infection duration, the
lower MOIs were needed to attain high inhibition rate, and MOIs of Ad-TERTp-E1A-1504 was lower than that of Ad-TERTp-E1A-NC. For example, to attain
inhibition rate of 60%MOIs for Ad-TERTp-E1A-1504 and NC were 100 and 100(3 days), 2 and 10(6 days), 0.08 and 0.4(8 days) respectively. D, E, F:
inhibition from Ad-ΔE1A-1504 at different MOIs at 3, 6, and 8 days after infection. Increasing infection duration and greater MOI did not inhibit proliferation as
impressively as Ad-TERTp-E1A-1504 and Ad-TERTp-E1A-NC. *, P<0.05.

doi:10.1371/journal.pone.0126726.g003
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Inhibition effects of Ad-TERTp-E1A-1504 on TERT+EphA3- cell line
(293T) and TERT-EphA3- cell line (2BS)
Fig 4A and 4B indicated that with increasing of MOIs of both Ad-TERTp-E1A-1504 and Ad-
TERTp-E1A-NC, there was no significant difference of the inhibition on 293T cells. Further-
more, both Ad-TERTp-E1A-1504 and Ad-TERTp-E1A-NC did not inhibit 2BS growth with
increasing MOIs.

ED50s of Viruses and TI of Ad-TERTp-E1A-1504
The ED50 quantifies inhibition, and these values for C4-2B and 2BS appear in Table 1. ED50 de-
creased with increasing infection time, and ED50 values increased in the order of Ad-TERTp-
E1A-1504, Ad-TERTp-E1A-NC, and Ad-ΔE1A-1504. Furthermore, the antitumor efficiency
of Ad-TERTp-E1A-1504 at 8 days postinfection was stronger than Ad-ΔE1A-1504 and Ad-
TERTp-E1A-NC, by 1,400 and 3.5 times respectively.

Table 1 depicts TI of C4-2B normalized by the normal cell line. We observed that at 8 days
postinfection, TI of Ad-TERTp-E1A-1504 was 274.0 higher than that of Ad-TERTp-E1A-NC
(83.6) and Ad-ΔE1A-1504(6.6), suggesting greater safety and clinical utility compared to Ad-
TERTp-E1A-NC and Ad-ΔE1A-1504.

Antitumor activity in vivo
The in vivo antitumor efficacy of Ad-TERTp-E1A-1504 was examined with a HGC27 xeno-
graft model in nude mice (Fig 5) and we observed that Ad-TERTp-E1A-1504 at 1×107pfu sig-
nificantly inhibited growth of xenograft compared with Ad-TERTp-E1A-NC and PBS.
Western blot analyses showed that E1A expression was observed in xenografts treated with
Ad-TERTp-E1A-1504 and Ad-TERTp-E1A-NC, while EphA3 expression decreased in xeno-
grafts treated with Ad-TERTp-E1A-1504 only.

CRAds induced autophagy in TERT-positive tumor cells
Autophagosomes appeared in cells, and autophagy increased with increasing infectivity
(Fig 6A–6C). Autophagy caused by Ad-TERTp-E1A-1504 at 1, 5, and 10 MOI were 21.52,
39.60, and 68.35% respectively; and autophagy caused by Ad-TERTp-E1A-NC at 5 and 10
MOI were 21.60 and 43.88%. Autophagy of CRAds at 5 and 10 MOI were greater than control
and autophagy at 10 MOI exceeded that at 5 MOI. Data from flow cytometry(Table 2)

Fig 4. Inhibition effects of Ad-TERTp-E1A-1504 on TERT+EphA3- cell lines(293T) and TERT-EphA3-

cell lines(2BS). Proliferation inhibition was measured with MTT assay. A:With increasing of MOIs of Ad-
TERTp-E1A-1504 and Ad-TERTp-E1A-NC, the inhibition efficiency of 293T cells was increased, but no
significant difference between both of the CRAds. B: Ad-TERTp-E1A-1504 and Ad-TERTp-E1A-NC did not
inhibit 2BS growth at each MOI.

doi:10.1371/journal.pone.0126726.g004
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confirmed these results: Ad-TERTp-E1A-1504 induced more autophagy than Ad-TERTp-
E1A-NC.

The autophagy protein marker Beclin1 and p62 was measured by Western blot and the re-
sult showed that Beclin1 expressed higher at 5 and 10 MOI of Ad-TERTp-E1A-1504 treatment
than that of Ad-TERTp-E1A-NC while p62 showed lower expression. These data indicated
that autophagy was the major pathway for CRAds-induced tumor cell killing and was the rea-
son that Ad-TERTp-E1A-1504 could kill more tumor cells than NC (Fig 6D).

The effect of CRAds on the AKT signal pathway in TERT positive tumor
cells
Western blot confirmed that Ad-TERTp-E1A-1504 and Ad-ΔE1-1504 significantly sup-
pressed EphA3 and AKT, mTOR and 4-ebp1 phosphorylation compared with Ad-TERTp-

Table 1. ED50 of adenovirus for inhibiting proliferation and TIs.

Adenoviruses ED50 of C4-2B ED50 of 2BS TI

3d 8d 8d

Ad-TERTp-E1A-1504 11.99 0.04 10.96 274.00

Ad-TERTp-E1A-NC 12.94 0.14 11.70 83.60

Ad-ΔE1A-1504 136.00 56.34 371.5 6.60

The ED50 values listed in the table were calculated with point slope method. ED50s were decreased with the increasing of infection duration for the same

batch of experiment and ED50 value was decreased by the sequence of Ad-ΔE1A-1504, Ad-TERTp-E1A-NC and Ad-TERTp-E1A-1504. TI was the ratio

of ED50 of adenoviruse for 2BS to that for tumor cells. TI of Ad-TERTp-E1A-1504 was higher than that of Ad-TERTp-E1A-NC and Ad-4E1A-1504.

doi:10.1371/journal.pone.0126726.t001

Fig 5. Enhanced tumor growth inhibition of HGC27 xenograft by Ad-TERTp-E1A-1504. HGC27 tumor xenografts were induced in balb/c nude mice by
s.c. injection of 5×106cells. Three daily injections of Ad-TERTp-E1A-1504, Ad-TERTp-E1A-NC(both at 1×107pfu) or PBS were given intratumorally when the
tumor xenogaft reached a diameter of >0.5cm. A: Representive xenografts when they were first treated with virus or PBS. The volume of them was similar.
B-C: Representive xenografts euthanized. The volume of xenograft treated with Ad-TERTp-E1A-1504 was smaller than that with Ad-TERTp-E1A-NC and
PBS in order. Growth rate was represented with mean±SE(n = 3). D: Western blot analysis of the expressions of E1A and EphA3 in xenograft tumor tissue
treated with Ad-TERTp-E1A-1504, Ad-TERTp-E1A-NC and PBS.

doi:10.1371/journal.pone.0126726.g005
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Fig 6. CRAds-induced autophagy in TERT+EphA3+ tumor cells. At 40 h postinfection (1–10 MOI) with CRAds, C4-2B cell autophagy was measured. A,
B, C: autophagosomes were stained with arcridine orange and observed microscopically. Autophagosomes are red vesicles in the cytoplasm. Bar = 40 Am.
Autophagy increased with increasing infective dose. Autophagy caused by Ad-TERTp-E1A-1504 (1, 5, and 10 MOI) exceeded that of Ad-TERTp-E1A-NC at
the same MOI. Autophagy of CRAds at 5 and 10 MOI exceeded that of control and autophagy at 10 MOI were greater than that at 5 MOI. D: Beclin1 and p62
protein was measured with Western blot after treatment with Ad-TERTp-E1A-1504 and Ad-TERTp-E1A-NC.

doi:10.1371/journal.pone.0126726.g006

Table 2. The increase of autophage rate determined by flow cytometry after cells were infected with
CRAds.

CRAds Increase rate of autophage(%)

5MOI 10MOI

Ad-TERTp-E1A-1504 56.3 37.9

Ad-TERTp-E1A-NC 49.9 14.8

An autophagy test was performed by flow cytometry and this was performed by counting autophage-

containing cells and dividing this number by counted control cells. Autophagy caused by Ad-TERTp-E1A-

1504 exceeded that of Ad-TERTp-E1A-NC at the same MOI.

doi:10.1371/journal.pone.0126726.t002
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E1A-NC and Ad-ΔE1-NC, respectively, in TERT- and EphA3-positive tumor cells. Thus,
1504-siRNA repressed the autophagy feedback signaling pathway to activate autophagy, and
this was why Ad-TERTp-E1A-1504 had greater anti-tumor efficacy than Ad-TERTp-E1A-NC
Fig 7A and 7B).

Discussion
Eph receptors and ephrins have been shown to affect the growth and migration/invasion of
cancer cells in culture as well as modify tumor growth, invasiveness, angiogenesis, and metasta-
sis in vivo. However, Eph signaling activities in cancer appear to be complex, and are character-
ized by puzzling dichotomies. For example, the EphA3 mutation in lung tissue promoted lung
cancer, indicating non-mutated EphA3 inhibited cancer [14]. Still, EphA3 is reported to be an
oncogene [4,7]. In our previous work, 1504-siRNA silencing of EphA3 was potent tumor sup-
pressor via the classic tumorgenesis pathway (AKT signaling pathway) [8,9]. However, the
method for delivering this gene for treating cancer was uncertain. Because tumor-specific
oncolytic adenovirus can amplify many times in infected cancer cells and dissolve them, a
TERT promoter driven CRAd was regarded to be the most widely targeting tumor (90% of
tumor) and a more potent replicating CRAd [11]. Thus, we used a TERT promoter driven
CRAd as a vector to carry 1504-siRNA.

Fig 7. The effect of CRAds on the AKT signal pathway in TERT+EphA3+ tumor cells. A: C4-2B cells were infected with Ad-TERTp-E1A-1504 and Ad-
TERTp-E1A-NC (10 MOI) and 2 days after infection the AKT/mTOR pathway was detected byWestern blot. p-mTOR, pAKT, and p4Ebp-1 were
downregulated by Ad-TERTp-E1A-1504 compared with NC. B: HGC27 cells were infected with Ad-ΔE1-1504 and Ad-ΔE1-NC (400 MOI) and 2 days after
infection the AKT/mTOR pathway was detected byWestern blot. p-mTOR, pAKT, and p4Ebp-1 were downregulated by Ad-TERTp-E1A-1504 compared with
NC.

doi:10.1371/journal.pone.0126726.g007
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1504-siRNA was constructed into TERTp specifically regulated oncolytic adenoviruses to
produce Ad-TERTp-E1A-1504. CRAds were identified by increased E1A expression and de-
creased EphA3 expression (Fig 1) EphA3- and TERT-positive cell lines (Fig 1B and 1C), in ad-
dition to no E1A expression in negative cells. Replication ability of CRAd in TERT-positive
cells was confirmed via selectively yielding CRAd in C4-2B cells.

High antitumor efficiency specifically in TERT- and EphA3-positive cells of Ad-TERTp-
E1A-1504 was verified by cell killing and MTT experiments. Antitumor efficiency was better
than other TERTp driven CRAds. Ad-CD80-TPE-GM, with the granulocyte-macrophage colo-
ny-stimulating factor (GM-CSF) gene and CD80 inserted into a TERTp driven CRAd had an
oncolytic effect at an MOI of 0.1, and killed ~80% TERT-positive tumor cells within 7 days at
an MOI of 1 [15]. Our data showed that Ad-TERTp-E1A-1504 killed ~80% of C4-2B cells (Fig
3B) within 6 days at MOI of 0.1

The antitumor efficiency of Ad-TERTp-E1A-1504 exceeded that of Ad-TERTp-E1A-NC
and Ad-ΔE1A-1504. A cell killing assay indicated that at the same MOI Ad-TERTp-E1A-1504
was more oncolytic to C4-2B than Ad-TERTp-E1A-NC and Ad-ΔE1A-1504 suggesting that
Ad-TERTp-E1A-1504 had dual killing effects in cells that greatly expressed TERT and EphA3
(Fig 2). MTT data agreed with this. Ad-TERTp-E1A-1504 significantly inhibited growth of C4-
2B (Fig 3). The ED50 of Ad-TERTp-E1A-1504 for C4-2B was 1/3.5 as much as that of Ad-
TERTp-E1A-NC, and was 1/1400 as much as that of Ad-ΔE1A-1504 and this antitumor poten-
tial difference increased with prolonged infection (Table 1). Our in vivo experiment also con-
firmed that Ad-TERTp-E1A-1504 injection resulted in significant reduction of primary tumor
size than Ad-TERTp-E1A-NC. The results may be explained by replication and oncolysis be-
cause Ad-ΔE1A-1504 had no replicating ability and 1504-siRNA was weaker at inhibiting tu-
mors with prolonged infection time. In contrast, both Ad-TERTp-E1A-1504 and Ad-TERTp-
E1A-NC could replicate in tumor cells and offer more oncolysis. Moreover, replication of Ad-
TERTp-E1A-1504 resulted in increasing copy number of 1504-siRNA which could inhibit
tumor proliferation. Therefore, Ad-TERTp-E1A-1504 was more efficacious at eradicating tu-
mors than Ad-TERTp-E1A-NC.

Ad-TERTp-E1A-1504 selectively killed TERT-positive cells more so than negative cells, as
confirmed by a cell killing assay. Ad-TERTp-E1A-1504 killed almost all TERT-positive tumor
cells, C4-2B and HGC27 at 0.1–10 MOI at 3 days postinfection, but fewer TERT-negative cells
were killed (2BS), even at 100 MOI.

The therapeutic index (TI) can offer data about clinical utility. An antitumor drug with a
greater TI may be safer and more appropriate for clinical use. Thus, we measured ED50s of di-
verse viruses in normal cells (2BS) and tumor cells (C4-2B) to obtain a TI. The TI of Ad-
TERTp-E1A-1504 at 8 days postinfection was 3.5, 41 times greater than Ad-TERTp-E1A-NC
and Ad-ΔE1A-1504, indicating that Ad-TERTp-E1A-1504 had more clinical utility.

The mechanisms of tumorigenesis and tumor development are perplexing. Single treat-
ments have limited effects against tumors, so combinations of antitumor treatments are need-
ed. This means that we must understand each antitumor mechanism of action to design the
most optimal combinations. From our study, Ad-TERTp-E1A-1504 with CRAd armed with
1504-siRNA, was more efficacious for killing tumor cells than Ad-TERTp-E1A-NC, with a
simple CRAd without the treatment gene. CRAd can execute oncolysis by varied mechanisms.
First, CRAds induce anti-tumoral immunity to kill tumor cells directly or to enhance the sensi-
tivity of infected cells to cytokines such as TNF or IFN which in turn accelerate lysis of the in-
fected cells. Next, CRAds replicate and enter tumor cells to lyse their membranes and cause cell
death. Some toxic proteins are produced during replication and these can directly kill cells via
necrosis or apoptosis or autophagy [16]. Apoptosis is largely the result of caspase-mediated de-
struction of the cellular structure [17]. Clearly, CRAds caused cell death through many
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pathways, including apoptosis, autophagy and necrosis, which was dependent on the cell type
and the CRAds, viral dose and infection time. Here, we only focused on measuring cell death.

Because autophagy was an initial method of cell death, we studied the effects of Ad-TERTp-
E1A-1504 and Ad-TERTp-E1A-NC on autophagy. Theoretically autophagy is caused by meta-
bolic stress and CRAds provide this stress by generously replicating in tumor cells Research
shows that TERTp driven CRAd caused autophagy. Other work suggests that certain drug/OV
combinations induce autophagy and that intact autophagy pathways do it [18,19]. In our
study, 40 h after Ad-TERTp-E1A-1504(1, 5, and 10 MOI) and Ad-TERTp-E1A-NC(5 and 10
MOI) infection of C4-2B cells, autophagy increased compared to control. Ad-TERTp-E1A-
1504 had dose-effect response for autophagy and this was greater than that of Ad-TERTp-
E1A-NC at the same dose. Furthermore, Beclin1 in Ad-TERTp-E1A-1504-infected C4-2B cells
was higher than that in Ad-TERTp- E1A-NC-infected cells. Beclin 1 and P62, autophage mark-
er proteins, were positively and negatively related to autophage respectively [20–22]. Low ex-
pression of Beclin1 in 115 node-positive colon cancer specimens was associated with a
significantly worse 5-year overall survival (47% versus 67%), which meant that reducing
Beclin1 expression promoted cell proliferation and increasing Beclin1 inhibited tumor devel-
opment. In our research CRAds-induced Beclin1 increases and p62 decreases in expression
agreed with our autophagy data, suggesting that CRAd killing of tumor cells was a major path-
way, and that Ad-TERTp-E1A-1504 had more potential for killing tumors than Ad-TERTp-
E1A-NC.

Because the typical autophagy negative pathway PI3K/Akt/mTOR should participate in
autophagy, we investigated whether Ad-TERTp-E1A-1504 inhibited the pathway more than
Ad-TERTp-E1A-NC. After 5 or 10 MOI of Ad-TERTp-E1A-1504 and Ad-TERTp-E1A-NC
was used, respectively, to infect C4-2B cells, both EphA3 and phosphorylated AKT, mTOR,
4EBP1 were inhibited via 1504-siRNA, confirming that the AKT signal pathway was inhibited
in our previous experiments [9,10].

In summary, Ad-TERTp-E1A-1504 did not harm TERT-negative cells but was oncolytic
and inhibited TERT- and EphA3-positive tumor cells, which was also validated in vivo. Antitu-
mor effects of Ad-TERTp-E1A-1504 was 1,400-fold that of Ad-ΔE1A-1504, and 3.5-fold that
of Ad-TERTp-E1A-NC, and these effects were mediated by autophagy via inhibition of the
AKT/mTOR cell signaling pathway. We created a novel recombinant oncolytic adenovirus and
offer an innovative method for personal virus-gene design. However, we lacked comparisons
with other antitumor drugs as well as investigations on the safety of this novel therapy.

Supporting Information
S1 Fig. Selection of EphA3-highly expressing cell lines. To select EphA3-highly expressing
cell lines, EphA3 protein was measured among fourteen cell lines of seven tumor types, C4-2B,
LNCaP of prostate cancer, HGC27, MGC803 of gastric carcinoma, WCY, MCF7 of mammary
adenocarcinoma, H1299, 95D of lung cancer, SMMC-7721, Bel-7402 of hepatoma carcinoma,
Hela of cervical cancer, HT29, HCT116 of colon carcinoma originating from human, B16 of
melanoma originating from mice and one normal cell line, LO2. After three batches of experi-
ments C4-2B, HCT116, Bel-7402, SMMC-7721, MCF7, WCY, HGC27 cell lines were con-
firmed to have more EphA3 protein (S1 Fig). No lung cancer cell lines highly expressed
EphA3, confirming that EphA3 was a tumor suppressor gene in lung cancer [17].
(TIF)

S2 Fig. Construction maps of plasmids. (A) Plasmid maps of pshuttle-1504, pU6-
1504-siRNA, and pshuttle. 1504-siRNA was amplified by PCR with pU6-1504-siRNA as the
template using T7 and T3 primers. PCR production cut with KpnI and pshuttle cut with KpnI
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and EcoRI were ligated to produce pshuttle-1504 that contains 1504-siRNA (5’GCG GTC
AGC ATC ACA ACT AAT 3’). (B) Plasmid maps of pshuttle-1504-TETPE and pTE-TPE.
pTE-TPE containing the total E1 region except for the promoter of E1A and the promoter of
telomerase reverse transcriptase (TERTp) and pshuttle-1504 were all digested with MfeI and
NotI and then recovered portions were ligated to generate pshuttle-1504-TETPE which con-
tains 1504-siRNA and the TERTp driven E1A region. (C) Plasmid Maps of pAdEasy-1 and
pAd-1504-TETPE. pshuttle-1504-TETPE linearized with PmeI and pAdEasy were mixed and
cotransformed into competent BJ5183 cells to produce pAd-1504-TETPE, which contains
1504-siRNA, TERTp, E1A and an Ad backbone.
(TIF)

Acknowledgments
We wish to thank Drs Zhuozhuang Lu (National Institute for Viral Disease Control and Pre-
vention, Chinese Center for Disease Control and Prevention), Jinsong Wang and Yuefeng
Yang (Beijing Institute of Radiation and Medical Research) for technical support.

Author Contributions
Conceived and designed the experiments: JW JZ. Performed the experiments: YZ HL RW. An-
alyzed the data: JW JZ. Contributed reagents/materials/analysis tools: SL PWHW.Wrote the
paper: YZ JW.

References
1. Hafner C, Schmitz G, Meyer S, Bataille F, Hau P, Langmann T,et al. (2004) Differential Gene Expres-

sion of Eph Receptors and Ephrins in Benign Human Tissues and Cancers. Clin Chem 50: 490–499.
PMID: 14726470

2. Wimmer-Kleikamp SH, Lackmann M (2005) Eph-modulated cell morphology, adhesion and motility in
carcinogenesis. IUBMB life 57: 421–431. PMID: 16012051

3. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. (2008) Somatic mutations af-
fect key pathways in lung adenocarcinoma. Nature 455:1065–1075.

4. Smith LM, Walsh PT, Rüdiger T, Cotter TG, Mc Carthy TV, Marx A, et al. (2004) EphA3 is induced by
CD28 and IGF-1 and regulates cell adhesion. Exp Cell Res 292: 295–303. PMID: 14697337

5. Vearing C, Lee FT, Wimmer-Kleikamp S, Spirkoska V, To C, Stylianou C, et al. (2005) Concurrent bind-
ing of anti-EphA3 antibody and ephrin-A5 amplifies EphA3 signaling and downstream responses: po-
tential as EphA3-specific tumor-targeting reagents. Cancer Res 65:6745–6754. PMID: 16061656

6. Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev
Cancer 10: 165–180. doi: 10.1038/nrc2806 PMID: 20179713

7. WuR, Wang H, Wang J, Wang P, Huang F, Xie B, et al. (2014) EphA3, induced by PC-1/PrLZ, contrib-
utes to the malignant progression of prostate cancer. Oncol Rep 32:2657–2665. doi: 10.3892/or.2014.
3482 PMID: 25231727

8. Zhao YL, Wu RQ, Li HL (2012) Inhibition effect of 1504-siRNA on EhpA3 expressed HCT116 cells. Mil
Med Sci 36: 272–275.

9. Zhao YL, Wu RQ, Li HL (2012) Inhibition effect of 1504-siRNA on EhpA3 expressed HGC27 cells. Lett
in Biotech 23: 503–505.

10. ZouW, Luo C, Zhang Z, Liu J, Gu J, Pei Z, et al. (2004) A novel oncolytic adenovirus targeting to telo-
merase activity in tumor cells with potent. Oncogene 23: 457–464. PMID: 14724574

11. Yu ST, Chen L, Wang HJ, Tang XD, Fang DC, Yang SM (2009) hTERT promote the invasion of telome-
rase-negative tumor cells in vitro. Int J Oncol 35: 329–336. PMID: 19578747

12. Liu HY, Han BJ, Zhong YX, Lu ZZ (2009) A three-plasmid system for construction of armed oncolytic
adenovirus. J Virol Methods. 162: 8–13. doi: 10.1016/j.jviromet.2009.07.011 PMID: 19646479

13. Nyberg-Hoffman C, Shabram P, Li W, Giroux D, Aguilar-Cordova E (1997) Sensitivity and reproducibili-
ty in adenoviral infectious titer determination. Nat. Med 3: 808–811. PMID: 9212113

Oncolytic Adenovirus Therapy

PLOS ONE | DOI:10.1371/journal.pone.0126726 May 15, 2015 13 / 14

http://www.ncbi.nlm.nih.gov/pubmed/14726470
http://www.ncbi.nlm.nih.gov/pubmed/16012051
http://www.ncbi.nlm.nih.gov/pubmed/14697337
http://www.ncbi.nlm.nih.gov/pubmed/16061656
http://dx.doi.org/10.1038/nrc2806
http://www.ncbi.nlm.nih.gov/pubmed/20179713
http://dx.doi.org/10.3892/or.2014.3482
http://dx.doi.org/10.3892/or.2014.3482
http://www.ncbi.nlm.nih.gov/pubmed/25231727
http://www.ncbi.nlm.nih.gov/pubmed/14724574
http://www.ncbi.nlm.nih.gov/pubmed/19578747
http://dx.doi.org/10.1016/j.jviromet.2009.07.011
http://www.ncbi.nlm.nih.gov/pubmed/19646479
http://www.ncbi.nlm.nih.gov/pubmed/9212113


14. Zhuang G, SongW, Amato K, Hwang Y, Lee K, Boothby M, et al. (2012) Effects of cancer-associated
EphA3 mutations on lung cancer. J Natl Cancer Inst 104:1182–1197. doi: 10.1093/jnci/djs297 PMID:
22829656

15. Hu ZB, Wu CT, Wang H, Zhang QW,Wang L, Wang RL, et al. (2008) A simplified system for generating
oncolytic adenovirus vector carrying one or two transgenes. Cancer Gene Ther 15: 173–182. PMID:
18157145

16. Meerani S, Yao Y (2010) Oncolytic Viruses in Cancer Therapy.Euro J Sci Res 40: 156–171.

17. Logue SE, Martin SJ. (2008) Caspase activation cascades in Apoptosis. Biochem Soc Trans 36:1–9.
doi: 10.1042/BST0360001 PMID: 18208375

18. Ito H, Aoki H, Kühnel F, Kondo Y, Kubicka S, Wirth T, et al. (2006) Autophagic cell death of malignant
glioma cells induced by a conditionally replicating adenovirus. J Natl Cancer Inst 98: 625–636. PMID:
16670388

19. Yokoyama T, Iwado E, Kondo Y, Aoki H, Hayashi Y, Georgescu MM, et al. (2008) Autophagy-inducing
agents augment the antitumor effect of telerase-selve oncolytic adenovirus OBP-405 on glioblastoma
cells. Gene Ther 15: 1233–1239. doi: 10.1038/gt.2008.98 PMID: 18580968

20. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. (2003) Promotion of tumorigenesis by
heterozygous disruption of the beclin1 autophagy gene. J Clin Invest 112: 1809–1820. PMID:
14638851

21. Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, et al. (2006) Autophagic and tumour suppressor ac-
tivity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8: 688–699. PMID: 16799551

22. Nihira K, Miki Y, Ono K, Suzuki T, Sasano H (2014) An inhibition of p62/SQSTM1 caused autophagic
cell death of several human carcinoma cells. Cancer Sci 105:568–575. doi: 10.1111/cas.12396 PMID:
24618016

Oncolytic Adenovirus Therapy

PLOS ONE | DOI:10.1371/journal.pone.0126726 May 15, 2015 14 / 14

http://dx.doi.org/10.1093/jnci/djs297
http://www.ncbi.nlm.nih.gov/pubmed/22829656
http://www.ncbi.nlm.nih.gov/pubmed/18157145
http://dx.doi.org/10.1042/BST0360001
http://www.ncbi.nlm.nih.gov/pubmed/18208375
http://www.ncbi.nlm.nih.gov/pubmed/16670388
http://dx.doi.org/10.1038/gt.2008.98
http://www.ncbi.nlm.nih.gov/pubmed/18580968
http://www.ncbi.nlm.nih.gov/pubmed/14638851
http://www.ncbi.nlm.nih.gov/pubmed/16799551
http://dx.doi.org/10.1111/cas.12396
http://www.ncbi.nlm.nih.gov/pubmed/24618016

