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Abstract

Protein phosphorylation is a key post-translational modification that plays a central role in 

many cellular processes. With recent advances in biotechnology, thousands of phosphorylated 

sites can be identified and quantified in a given sample, enabling proteome-wide screening of 

cellular signaling. However, for most (> 90%) of the phosphorylation sites that are identified in 

these experiments, the kinase(s) that target these sites are unknown. To broadly utilize available 

structural, functional, evolutionary, and contextual information in predicting kinase-substrate 

associations (KSAs), we develop a network-based machine learning framework. Our framework 

integrates a multitude of data sources to characterize the landscape of functional relationships 

and associations among phosphosites and kinases. To construct a phosphosite-phosphosite 

association network, we use sequence similarity, shared biological pathways, co-evolution, co-

occurrence, and co-phosphorylation of phosphosites across different biological states. To construct 

a kinase-kinase association network, we integrate protein-protein interactions, shared biological 

pathways, and membership in common kinase families. We use node embeddings computed 

from these heterogeneous networks to train machine learning models for predicting kinase-

substrate associations. Our systematic computational experiments using the PhosphositePLUS 

database shows that the resulting algorithm, NETKSA, outperforms two state-of-the-art algorithms, 

including KinomeXplorer and LinkPhinder, in overall KSA prediction. By stratifying the ranking 

of kinases, NETKSA also enables annotation of phosphosites that are targeted by relatively less-

studied kinases.
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1. Introduction

Protein phosphorylation is one of the most important post-translational modifications that 

play an important role in cellular signaling. Phosphorylation involves phospho-proteins 

whose activity can be altered by the phosphorylation of their specific sites (a.k.a substrate), 

kinases that phosphorylate the phospho-proteins at specific sites, and phosphatases that 

dephosphorylate these proteins. Dysregulation of the kinase-substrate associations are 

regularly observed in complex diseases, including cancer. Therefore, kinases have emerged 

as an important class of drug targets for many diseases.1

Recent advances in mass spectrometry (MS) based technologies drastically enhanced the 

accuracy and coverage of phosphosite identification and quantification. However, most 

identified phosphosites do not have kinase annotations, and large scale and reliable 

prediction of which kinase can phosphorylate which phosphosites remains challenging. In 

the last decade, several computational methods are developed to predict kinase-substrate 

associations (KSAs). The earlier KSA prediction methods focus mainly on sequence motifs 

recognized by the active sites of kinases..2–4 Later methods integrate other contextual 

information such as protein structure and physical interactions to improve the accuracy 

of prediction methods.5–8 Recently, we developed CophosK,9 the first kinase-substrate 

prediction algorithm that utilizes large-scale mass spectrometry based phospho-proteomic 

data to incorporate contextual information. While these tools improve the kinase-substrate 

associations prediction, the knowledge about the substrates of kinases is still unequally 

distributed, where 87% of phosphosites are assigned to 20% of well-studied kinases.10

In parallel, machine learning algorithms that utilize network models gain significant 

traction in computational biology.11,12 Inspired by these developments, we here develop 

a comprehensive framework for integrating broad functional information on kinases 

and phospho-proteins to build machine learning models for predicting kinase-substrate 

associations. Our framework uses heterogeneous network models to represent the functional 

relationships between phosphorylation sites, as well as kinases. Namely, we integrate 

structural, evolutionary, functional, and contextual information to characterize the landscape 

of functional relationships and associations among phosphosites and kinases. Since 

MS-based phosphoproteomic data can present a relatively unbiased view of signaling 

states, we also incorporate co-occurrence and co-phosphorylation across multiple MS-

based phosphoproteomic studies into network construction. After constructing phosphosite 

association and kinase association networks, we use node embedding algorithms to derive 

low-dimensional vector representations for phosphosites and kinases, which are in turn used 

to train machine learning models.

We systematically investigate the predictive performance of reliability of the 

proposed framework, NETKSA, using established kinase-substrate associations from 

PhosphositePLUS. Using a cross-validation framework in two problem settings (link 

prediction and prioritization), we investigate the effect of the network embedding 

algorithms, the contribution of different types of networks, the value added by network 

topology, and compare the performance of NETKSA against state-of-the-art algorithms. 

In order to mitigate the bias toward well-studied kinases in the KSA prediction,13 we 
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propose a kinase stratification strategy based on the number of known substrates. Our results 

show that NETKSA, outperforms state-of-the-art methods in overall prediction performance. 

Finally, we observe that the performance of NETKSA is robust to the choice of network 

embedding algorithms, while each type of network contributes valuable information that is 

complementary to the information provided by other networks.

2. Materials and Methods

The workflow of the proposed framework for kinase-substrate association prediction is 

shown in Figure 1. As seen in the figure, we first construct two networks, one to model 

the functional relationship between phosphorylation sites and the other to model the 

functional relationship between kinases. Subsequently, for each phosphosite and for each 

kinase, we compute low-dimensional embeddings using a node embedding algorithm on the 

respective network. Finally, we use these embedding as feature vectors and kinase-substrate 

associations obtained from PhosphoSitePLUS as training examples to train models for 

predicting kinase-substrate associations.

2.1. PhosphoSite Association Network

We define a PhosphoSite Association Network as a network Gs(Vs, Es)that represents 

potential functional relationships between pairs of phosphosites. In this network, Vs denotes 

the set of nodes in the network, each of which represents a phosphorylation site. The edge 

set Es denotes the set of pairwise functional relationships between phosphosites, where 

an edge sisj ∈ E between phosphosites si, sj ∈ V may represent one of the following 

relationships:

• Functional, Evolutionary, and Structural Association. PTMCode is a database 

of known and predicted functional associations between phosphorylation and 

other post-translational modification sites.14 The associations included in 

PTMCode are curated from the literature, inferred from residue co-evolution, or 

are based on the structural distances between phosphosites. We utilize PTMcode 

as a direct source of functional, evolutionary, and structural associations between 

phosphorylation sites.

• Sequence Similarity. We download the sequences within ±7 residues around 

each site in the protein sequence from PhosphositePLUS, and perform sequence 

alignment using BLOSUM62 scoring method. There is an edge between two 

sites si and sj if their distance is less than 3 standard deviation below average 

across all pairs of sites.

• Shared Pathways. We use PTMsigDB as a reference database of site-specific 

phosphorylation signatures of kinases, perturbations, and signaling pathways.15 

While PTMSigDB provides data on all post-translational modifications, we here 

use the subset that corresponds to phosphorylation. There are 2398 phosphosites 

that are associated with 388 different perturbations and signaling pathways. 

We represent these associations as a binary network of signaling-pathway 

associations among phosphosites, in which an edge between two phosphosites 

Ayati et al. Page 3

Pac Symp Biocomput. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indicates that the phosphorylation of the two sites is involved in the same 

pathway.

• Co-Occurrence. Li et al.16 show that phosphorylation sites that are modified 

together tend to participate in similar biological process. Based on this 

observation, they construct a binary occurrence profile for each phosphosite, 

where a 1 indicates that the site is identified in a given study, They then assess 

the co-occurrence of pairs of sites in terms of the mutual information between 

the respective occurrence profiles. Here, following Li et al.,16 we use high-

throughput MS analyses across 88 different studies from phosphoSitePLUS17 to 

assess the co-occurrence of phosphorylation site. These studies include data from 

16 human tissue as well as 28 cultural cell lines and 44 disease cells. We include 

an edge between two sites si and sj if the p-value of their co-occurrence is less 

than 0.005.

• Co-Phosphorylation. Co-phosphorylation (Co-P) refers to correlated 

phosphorylation of two phosphosites across samples withing a given study.18 

While co-occurrence captures the relationship between pairs of sites that tend 

to appear in similar contexts at a broader scale, Co-P captures finer-scale 

correlations between the dynamic ranges of the phosphorylation levels of site 

pairs. To incorporate Co-P in the site association network, we use data from 

9 mass spectrometry-based phosphoproteomic studied that represent a broad 

range of biological states and provide sufficient number of samples to enable 

reliable assessment of Co-P.9 These datasets include data from three breast 

cancer studies,19–21 two ovarian cancer studies,20,22 one colorectal cancer,23 one 

lung cancer,24 one Alzheimer’s disease25 and one retinal pigmented eputhelium 

data.26

Using each pair of sites that are identified in each dataset, we compute as cD(i, j) the co-P 

between site i and site j as measured by Biweight-midcorrelation of their phosphorylation 

profiles in dataset D. We then compute R2 values for each pair of sites in each dataset by 

adjusting for the number of samples nD in dataset D:

RD
2 (i, j) = 1 − nD − 1

nD − 2 1 − cD(i, j)2
(1)

Finally, we integrate these individual co-P scores as follows:

cintegrated (i, j) = 1 − ∏
D ∈ Dij

1 − RD
2 (i, j)

(2)

where Dij denotes the set of datasets in which sites i and j are both identified. In the 

integrated Co-P network, we include an edge between two sites si and sj if the absolute value 

of their co-phosphorylation is larger than 2 standard deviation of the average across all pairs 

of sites.

Note that the integrated phosphosite association network is a heterogeneous multiplex 

network, where the nodes are from a common space (phosphorylation sites) and edges 
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in each network have different semantics. In recent years, many algorithms have been 

developed for computing embeddings for multiplex networks, which also account for the 

heterogeneity of the edges.27–29 However, these algorithms are usually based on the inherent 

assumption that the overlap between the nodes of the networks is considerably large,30 

which is not the case in our application. For this reason, we here focus on assessing the value 

of the overall network model, as opposed to the algorithm used for integrating the networks 

or computing multiplex embeddings. With this motivation, we represent each network as a 

binary network by applying conservative edge inclusion criteria separately for each network, 

as described above. Subsequently, we integrate these networks into a single network by 

including an edge between two sites if there is an edge between them in at least one of the 

networks.

2.2. Kinase Association Network

We define a Kinase Association Network as a network Gk(Vk, Ek) that represents functional 

relationship between pairs of kinases. In this network, Vk denotes the set of nodes each 

of which represents a kinase. The edge set Ek denotes the set of pairwise functional 

relationships between kinases. There is an edge kℓkr ∈ Ek between kinases kℓ, kr ∈ Vk if 

the two kinases have one of the following relationships:

• Protein-Protein Interaction (PPI). If two kinases kℓ and kr physically interact, 

then there is an edge between kℓ and kr. In our experiments, we use the PPIs 

that are annotated as ”physical” in the BIOGRID PPI database31 to infer the PPI 

edges in the network.

• Biological Pathways. If two kinases kℓ and kr are reported to have a role in the 

same pathway, then there is an edge between kℓ and kr. In our experiments, 

we use mSigDB, which provides a collection of canonical pathways and 

experimental signatures.32

• Kinase Families. If two kinases kℓ and kr belong to the same family according to 

the Human Kinome database,33 then there is an edge between them.

2.3. Computing Network Profiles for Sites and Kinases

To obtain a network profile for each phosphosite and each kinase, we use node embedding. 

Given a graph G, a node embedding is a mapping f: vi → yi ∈ Rd such that d ≪ |V| and 

the function f preserves some proximity measure defined on graph G.34 In other words, a 

node embedding maps each node to a low-dimensional feature vector, aiming to preserve the 

network proximity between nodes. Many node embedding algorithms have been developed 

in recent years, and the performance of these algorithms depends on the application, the 

nature of the learning problem, and the topology of the network. For this reason, in our 

experiments, we use four different node embedding algorithms34–37 to comprehensively 

evaluate the value of the information provided by the networks we utilize, independent 

of the node embedding algorithm that is used. For each site si in Gs, we compute node 

embedding xi ∈ ℝd and for each kinase kℓ in Gk we compute node embedding yℓ ∈ ℝd. We 

do this separately for each network embedding algorithm, using the default parameters in 

each algorithm, and using different values of d.
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2.4. Predicting Kinase-Substrate Associations

We use the sets of known KSAs obtained from PhosphoSitePLUS (PSP)17 as a 

positive reference for training and testing our models. We generate negative training 

sets of equal size by selecting, uniformly at random, kinase-substrate pairs that are 

not reported to be associated in PSP. To train the models, we concatenate the network 

profiles of site-kinase pairs to obtain a 2d-dimensional feature vector for the pair: 

f si, kℓ = xi yℓ = xi
(1), …, xi

(d), yℓ
(1), …, yℓ

(d) . We consider two variants of KSA prediction:

(I) Link Prediction.—We formulate the KSA prediction problem as a binary 

classification problem for a given kinase-site pair, i.e., given a list of established kinase-site 

associations, site-site association and kinase-kinase association networks Gs and Gk, and a 

kinase-site pair (si, kl), our objective is to assess the likelihood that si is a target site for kl. 

For this purpose, we train a Random Forest model by using the concatenated embeddings 

as features. Using 5-fold cross validation, we assess the overall performance of the method 

using area of the ROC curve (AUC).

(II) Prioritization of Kinases for Phosphosites.—In practice, the kinase-substrate 

association prediction often manifests itself as a prioritization problem. The scientist 

discovers a new phosphorylation site that is associated with a certain process and phenotype 

and would like to know which kinase is responsible for the phosphorylation of that site. This 

problem is formulated as follows: Given a list of established kinase-site associations, site-

site association and kinase-kinase association networks Gs and Gk, and a site si, rank kinases 

based on their likelihood of being associated with si. For this task, we use a Random Forest 

model using concatenated embeddings as well, but we use leave-one-out cross-validation to 

assess the performance of the resulting models. In this case, we use hit@k accuracy as the 

performance criterion. Namely, using each site as a test site, we report the fraction of times 

in which the actual kinase responsible for phosphorylating the site is ranked in the top k for 

that site, where k ∈ {1, 5, 10, 20}.

2.5. Elucidating and Mitigating Bias in KSA Prediction

In order to study the bias in the KSA predictions toward the more well-studied kinases,13 

we stratify the kinases based on the number of their known substrates which are in the 

phosphosite association network. Letting δℓ denote the number of known substrates of kinase 

kℓ, we partition the kinases into three categories: (i) The poor kinases where δℓ < 5, (ii) the 

average kinases, where 5 ≤ δℓ < 20, and (iii) The rich kinases where δℓ ≥ 20. We then train 

separate models for each kinase category, by using kinases that belong to a specific category 

while training the respective model. Subsequently, when prioritizing the kinases for each 

phosphosite, we rank the kinases within their own category.

The premise of this approach is that the kinases in each category should compete with the 

kinases in the same category as themselves, and scientists should be able to separately 

investigate the rankings in each category. This will potentially enable discovery and 

experimental validation of relatively less-studied kinases. We evaluate the performance of 

the all the methods by considering this stratified analysis, as well as by ranking all kinases. 

This approach provides insights into the bias associated with each approach, i.e., how much 
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a method improves its chances of making an accurate prediction by preferring well-studied 

kinases.

3. Results and Discussion

We use PhosphoSitePLUS as a reference dataset for kinase-substrate associations (KSAs).17 

Considering the phosphosites and kinases in our networks, we use 2083 KSAs from 

PhosphositePLUS in our computational experiments. To evaluate the performance of the 

kinase-substrate association prediction method, we limit the site network to the known 

substrates obtained from PhosphoSitePLUS. We remove the individual nodes that are not 

connected to any other nodes from both of the networks. The number of sites and edges 

in the final kinase-kinase and phosphosite-phosphosite association networks and their types 

are shown in Figure 2(a). The overlaps between different types of association networks 

are shown in Figure 2(b). The low overlap between different phosphosite-phosphosite 

association networks suggests that all different types of networks provide information that 

are potentially complementary with each other.

3.1. Kinase-Substrate Association as Link Prediction

We first use different embedding methods, and 5-fold cross validation to evaluate the 

performance of NETKSA in predicting KSAs formulated as link prediction. In our 

computational experiments, we consider different numbers of embedding dimensions and its 

effect on the performance. We find out that d = 16 is optimal for all algorithms considered, 

thus we perform all remaining experiments using 16 dimensions for the embedding vectors.

The link prediction performance of NETKSA using different embedding algorithms is 

presented in Figure 3(a). We evaluate the performance for all the KSAs, as well as KSAs 

that its kinase belongs to different category (i.e. poor, average, rich) separately. In this 

analysis, there are 103 kinases in the poor category (δ < 5), 64 kinases in the average 

category (5 ≤ δ < 20), and 21 kinases in the rich category (δ ≥ 20) (the rest of kinases in 

the kinase-kinase association network do not have any target sites that are present in the 

site-site association network). These kinases corresponds to 218 KSAs in poor category, 

613 KSAs in the average category and 1252 KSAs in the rich category. The negative 

set for the training of the model is randomly generated while keeping the proportion of 

KSA categories. The bar plots show the average across 10 runs. As seen in the figure, the 

prediction performance highly depends on the the kinase category and the AUC observed by 

considering all kinases together closely follows the prediction performance for rich kinases. 

This observation demonstrates the importance of performing stratified analyses to accurately 

characterize the performance of KSA prediction as a function of what is already known 

about the kinase and characterize the bias in algorithms.

As seen in Figure 3(a), the prediction performance of NETKSA is robust to the choice of 

network embedding algorithms. We select DNGR for further analyses due to its slightly 

better overall performance that is also most balanced across different kinase categories.

To evaluate the value added by the network to the prediction, we randomly permute site 

association and kinase association networks while preserving the degree distribution and 
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apply NETKSA by using the permuted networks in place of the actual networks. The 

results of this analysis are presented in Figure 3(b). As seen in the figure, the prediction 

performance using original networks is one or more standard deviation(d) above the 

prediction performance of the method when using permuted networks. This result shows the 

networks contribute valuable information for KSA prediction. Importantly, randomization 

of the prediction performance declines more when the phosphosite network is permuted, 

suggesting that the functional information on the phosphosites provides significant and 

specific information on the kinase(s) that target(s) the phosphosites.

It is also interesting that the poor kinase category benefits the most in comparison with other 

categories when the original networks are used. This shows that the information provided 

by functional associations among sites and kinases reduce the gap between under-studied 

and well-studied kinases. Note that the models that are based on permuted networks 

perform better than what would be expected at random, suggesting that these models 

can learn bias in the benchmarking data to appear as if they are learning what they are 

designed to learn. However, the performance of the model that is trained on both permuted 

networks is equal to what would be expected at random for poor kinases, demonstrating 

that the validation strategy we employ here (stratification of kinases and comparison against 

permuted networks) provides significant insights into what these models actually learn.

3.2. Contribution of Different Networks on Prediction Performance

In order to evaluate the contribution of different types of networks in capturing the landscape 

of functional association among phosphosites and kinases, we evaluate the performance of 

KSA predictions using different networks. For this analysis, we perform KSA prediction 

using 5-fold cross validation, by adding one network at a time to the integrated network 

of kinase-kinase and phosphosite-phosphosite associations, while keeping the other network 

fully integrated. The results of this analysis are shown in Figure 4. As seen in the figure, 

as we add different types of functional information for the sites and kinases, the prediction 

performance improves. We also evaluate the KSA coverage as the proportion of existing 

KSAs for which prediction can be made. The new networks add information about the the 

individual sites and kinases and connect them to other nodes, and consequently increase the 

KSA coverage. Finally, we observe that the information contributed by different phosphosite 

networks is more complementary to each other as compared to the kinase networks, which is 

not surprising as the overlap between these networks is also considerably low.

3.3. Prioritization of Kinases for Phosphorylation Sites

To test the effectiveness of our method, we use leave-one-out cross validation. Namely, 

for each phosphosite, we hide the association between phosphosite and its known kinase 

(called the target kinase), and we use other reported KSAs to rank the likely kinases for 

that phosphosite. For this analysis, we use dngr as the embedding method and random forest 

with 100 classification trees as the score prediction model. For each phosphosite, we rank all 

kinases based on the calculated score and determine the rank of the target kinase across all 

kinases. If the target kinase is within the top k ∈ {1, 5, 10, 20}, it is considered a the true 

positive.
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We compare our method with two other state-of-the-art methods, KinomeXplorer and 

LinkPhinder, that also use the network for KSA prediction. KinomeXplorer5 utilizes the 

sequences match scoring and network proximity of kinases and substrates to predict KSAs. 

It is an improved version of NetworKIN4 and NetPhorest.38 LinkPhinder39 is also another 

predictive model that utilizes the motif characteristics to create a knowledge graph and 

uses statistical relational learning and node embedding to predict KSAs. The result of this 

analysis is presented in Figure 5. As seen in the figure, the proposed method with kinase 

stratification outperform all methods in overall prediction performance, and also average and 

rich categories. For the poor kinases, the LinkPhinder presents a better result for top 1 and 

top 5 ranking. We believe integration of different data sources in NetKSA help extracting the 

relationship among sites and kinases which leads to a better overall performance.

3.3.1. Kinase Stratification—In the kinase prioritization, we rank the kinases in each 

category (i.e poor, average, rich) separately, and determine if the target kinase is ranked in 

top k of its category. The premise of this approach is that the kinase that are understudied 

does not to compete with the well-studies kinases. Using kinase stratification, the hypothesis 

is that it is more likely that the target kinase wins the competition in ranking compare to the 

kinases in its own category. We apply this strategy on NETKSAand also KinomeXplorer and 

LinkPhinder. The result of this analysis is presented in Figure 5. For each bar in the figure, 

the dark section is the performance without kinase stratification, and the light-color section 

is the improvement of the performance using the kinase stratification.

4. Conclusion

In this paper, we integrated a multitude of data sources to characterize the landscape of 

functional relationships and associations among phosphosites and kinases. As a result, we 

construct two heterogeneous networks presenting functional association among phosphosites 

and kinases. These networks incorporating static and dynamic data and present an 

extraordinary value in prediction of kinase-substrate association, and have great potential 

for analysis of phosphoproteomics data and identification of drug targets. Generalizing the 

method to include all the identified phosphosites is a challenging task which may point 

to an interesting research avenue to be addressed by future studies. Moreover, the kinase 

stratification approach to mitigate the bias toward well-studied kinases provides a great 

opportunity to researchers to investigate and study kinases in different categories separately.
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Fig. 1. Workflow of NetKSA.
We first construct two networks to represent the functional relationships and associations 

among phosphosites and kinases. After construction of networks, we use node embedding 

algorithms on each network to compute a low-dimensional representation for each node. We 

then use the kinase-substrate associations (KSAs) obtained from PhosphoSitePLUS to train 

machine learning models for predicting KSAs.
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Fig. 2. Kinase-kinase and phosphosite-phosphosite association networks used in this study.
Plots show the edge overlap between different types of networks. Kinase networks are 

shown on the left, phosphosite networks are shown on the right. The number of edges in 

each network are given in the diagonals. In each subplot, the pie charts in the top right side 

indicate the overlap coefficients (size of intersection divided by the smaller of the size of two 

sets) between any two networks.
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Fig. 3. The contribution of embedding algorithms and functional networks on KSA prediction 
performance.
(a) The AUC of the predictions of NETKSA using four different node embedding algorithms. 

For each embedding algorithm, the AUC is shown for all KSAs (blue bar), the KSAs 

where the kinase belongs to the poor category (red), the average category (gold), and 

rich category (purple). (b) The prediction performance of NETKSA using DNGR for 

node embedding using real vs. randomized networks. AUC on the real kinase-kinase and 

phosphosite-phosphosite association networks (green bar), when only the kinase association 

network is randomly permuted by preserving node degrees (dark grey), when only the 

site association network is permuted by preserving node degrees (light grey), when both 

networks are permuted (white). Each bar shows the average AUC across 10 runs and the 

error bar shows standard deviation.
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Fig. 4. Contribution of different types of networks on the prediction of KSAs.
The cumulative effect of each (a) phosphosite-phosphosite association network and (b) 

kinase-kinase association network on the AUC of predictions (left y axis; blue), and the 

coverage of kinase-substrate associations (right y axis; red) - the fraction of KSAs for which 

both the kinase and the site are present in the integrated network so that a prediction can be 

made.
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Fig. 5. Performance of NetKSA, KinomeXplorer and LinkPhinder in prioritizing kinases for a 
given phosphosite.
For each phosphosite, we perform leave-one-out cross validation by hiding the association 

between the phosphosite and one of its associated kinases (target kinase) to rank the likely 

kinases for the phosphosite using KinomeXplorer(blue), LinkPhinder(red), and proposed 

method using constructed networks (gold). We report the fraction of phosphosites for which 

the target kinase is ranked in the top 1, top 5, top 10 and top 20 predicted kinases by 

each method. For each bar, the dark section presents the result when all the kinases are 

ranked together, and the light section presents the improvement of performance when the 

target kinase is ranked within its category (with stratification). Each panel presents the 

performance on each category of kinases: poor (δ < 5), average(5 ≤ δ < 20), and rich (δ ≥ 

20) kinases (as indicated in each panel).
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