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Drug-induced liver injury (DILI) is a common adverse drug reaction, with abnormal elevation
of serum alanine aminotransferase (ALT). Several clinical studies have investigated whether
a combination of two drugs alters the reporting frequency of DILI using traditional statistical
methods such as multiple logistic regression (MLR), but this model may over-fit the data.
This study aimed to detect a synergistic interaction between two drugs on the risk of
abnormal elevation of serum ALT in Japanese adult patients using three machine-learning
algorithms: MLR, logistic least absolute shrinkage and selection operator (LASSO)
regression, and extreme gradient boosting (XGBoost) algorithms. A total of 58,413
patients were extracted from Nihon University School of Medicine’s Clinical Data
Warehouse and assigned to case (N = 4,152) and control (N = 54,261) groups. The
MLR model over-fitted a training set. In the logistic LASSO regression model, three
combinations showed relative excess risk due to interaction (RERI) for abnormal elevation
of serum ALT: diclofenac and famotidine (RERI 2.427, 95% bootstrap confidence interval
1.226–11.003), acetaminophen and ambroxol (0.540, 0.087–4.625), and aspirin and
cilostazol (0.188, 0.135–3.010). Moreover, diclofenac (adjusted odds ratio 1.319, 95%
bootstrap confidence interval 1.189–2.821) and famotidine (1.643, 1.332–2.071)
individually affected the risk of abnormal elevation of serum ALT. In the XGBoost
model, not only the individual effects of diclofenac (feature importance 0.004) and
famotidine (0.016), but also the interaction term (0.004) was included in important
predictors. Although further study is needed, the combination of diclofenac and
famotidine appears to increase the risk of abnormal elevation of serum ALT in the
real world.

Keywords: machine-learning (ML) algorithms, liver function, drug induced liver injury (DILI), alanine
aminotransferase, drug interaction, relative excess risk due to interaction (RERI), synergistic effect

Edited by:
Elena García-Martín,

University of Extremadura, Spain

Reviewed by:
Jeff Woodhead,

Simulations Plus, United States
Augusto Garcia-Agundez,

Brown University, United States

*Correspondence:
Yasuo Takahashi

takahashi.yasuo@nihon-u.ac.jp

Specialty section:
This article was submitted to

Pharmacoepidemiology,
a section of the journal

Frontiers in Pharmacology

Received: 01 April 2022
Accepted: 21 June 2022
Published: 06 July 2022

Citation:
Akimoto H, Nagashima T,
Minagawa K, Hayakawa T,

Takahashi Y and Asai S (2022)
Detection of Synergistic Interaction on
an Additive Scale Between Two Drugs

on Abnormal Elevation of Serum
Alanine Aminotransferase Using
Machine-Learning Algorithms.
Front. Pharmacol. 13:910205.

doi: 10.3389/fphar.2022.910205

Frontiers in Pharmacology | www.frontiersin.org July 2022 | Volume 13 | Article 9102051

ORIGINAL RESEARCH
published: 06 July 2022

doi: 10.3389/fphar.2022.910205

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.910205&domain=pdf&date_stamp=2022-07-06
https://www.frontiersin.org/articles/10.3389/fphar.2022.910205/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.910205/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.910205/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.910205/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.910205/full
http://creativecommons.org/licenses/by/4.0/
mailto:takahashi.yasuo@nihon-u.ac.jp
https://doi.org/10.3389/fphar.2022.910205
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.910205


INTRODUCTION

Drug-induced liver injury (DILI) is a common adverse drug
reaction and a cause of acute liver failure (Senior, 2007; Lee,
2013). Various clinical studies have been conducted worldwide to
assess the effect of individual drugs and therapeutic drug classes
on the risk of DILI (Sgro et al., 2002; Björnsson and Olsson, 2005;
Takikawa et al., 2009; Chalasani et al., 2015; Akimoto et al., 2021).
In particular, several retrospective studies regarded patients who
met Hy’s law as cases of hepatocellular DILI when assessing acute
liver injury caused by potential hepatotoxic drugs (Robles-Diaz
et al., 2014; Uetake et al., 2018; Shen et al., 2019). Hy’s law cases
are generally defined as patients who experienced increased
serum alanine aminotransferase (ALT) >3 × the upper limit of
normal (ULN) and total bilirubin (TBL) >2 × ULN. However,
Hy’s law cases are very rare events, and all drugs that can cause
Hy’s law cases more frequently cause elevation of serum ALT>3
× ULN without appreciable elevation of TBL (Church and
Watkins, 2018). For this reason, abnormal elevation of serum
TBL is less likely to detect modest DILI. It is known that aspartate
aminotransferase (AST) is less liver-specific than ALT, and
alkaline phosphatase (ALP) is an indicator of cholestasis (Pratt
and Kaplan, 2000). An isolated increase in serum AST or ALP is
considered only as a biochemical abnormality rather than a sign
of liver injury (Teschke et al., 2013). Thus, it is important to test
for abnormal elevation of ALT when evaluating potential risk
factors for modest-to-severe DILI.

In 2004, it was reported that using two or more potential
hepatotoxic drugs increases the risk of acute liver failure by a
factor of 6 compared to using one in the UK population (de
Abajo et al., 2004). Following this study, several studies have
investigated whether there are combinations of two drugs that
alter the reporting frequency of DILI using a multiple logistic
regression (MLR) model, which is one of the traditional statistical
models (Suzuki et al., 2009; Suzuki et al., 2015; Yazici et al., 2015).
Although aMLRmodel can evaluate associations between drugs and
the risk of DILI with adjustment for covariates, the generated
regression model may over-fit the data (Kim et al., 2018).
Machine learning is an alternative analytical approach that can
handle complex relationships between variables in very large data
sets. Machine-learning algorithms have been used to predict DILI
and are superior to traditional statistical models because they handle
non-linearity and complex feature interaction (Cruz-Monteagudo
et al., 2008; Ekins et al., 2010; Rodgers et al., 2010; Liu et al., 2011;
Low et al., 2011; Zhu et al., 2014). However, few studies have
investigated the associations between a combination of two drugs
and the risk of DILI. Hence, the aim of this study was to investigate
whether there is a combination of two drugs that has combined
effects on the risk of abnormal elevation of serum ALT using
machine-learning algorithms.

MATERIALS AND METHODS

Data Source
The present study was a population-based case-control study
utilizing electronic medical records from the Nihon University

School of Medicine’s Clinical Data Warehouse (NUSM’s CDW)
between April 1, 2004 and July 1, 2021. NUSM’s CDW is a
centralized data repository that integrates separate databases,
including patient demographics, diagnoses, and laboratory
data, from the hospital information systems at three hospitals
affiliated with the NUSM; Nihon University Itabashi Hospital,
Nerima Hikarigaoka Hospital, and Surugadai Nihon University
Hospital. To protect patient privacy, patient identifiers are
replaced by anonymous identifiers in all databases of the CDW.

Study Subjects and Binary Outcome
First, 122,285 Japanese patients who underwent liver function
tests at least three times within 90 days and had serumALT values
within the normal range [4.0–44.0 units per liter (U/L)] on the
first and second measurement days were extracted from NUSM’s
CDW. The latest measurement day was regarded as the index
date. Among these patients, those whose ALT value reached >3 ×
ULN [>132.0 U/L] on the index date were regarded as patients
with abnormal elevation of serum ALT and were assigned to the
case group (outcome = 1; N = 14,634). On the other hand, those
whose ALT value was within the normal range on all
measurement days including the index date were assigned to
the control group (outcome = 0;N = 80,484). Patients who had an
ALT value between >44.0 and ≤132.0 U/L on the index date were
excluded because mild-to-moderate elevation of serum ALT also
occurs in patients with other diseases including dyslipidemia,
diabetes and metabolic syndrome (Clark et al., 2003; Liu et al.,
2014). Next, among the patients in the case and control groups,
patients who met the following exclusion criteria were excluded.
The remaining 58,413 patients (the case group N = 4,152; the
control group N = 54,261) were included in the development and
testing of a prediction model derived from machine-learning
algorithms (Supplementary Figure S1).

Excluded Patients
1) Under 18 years old
2) Missing any of four liver function test values on both the first

measurement day and index date: serum AST, TBL, ALP
and ALT

3) Pre-existing liver disease (International classification of
disease 10 [ICD-10] codes are shown in Supplementary
Table S1): infectious hepatitis such as viral hepatitis,
alcoholic liver disease, nonalcoholic fatty acid disease,
malignant neoplasm of liver, and other causes

4) Taken any hepatoprotectants: glycyrrhizic acid (Anatomical
Therapeutic Chemical [ATC] fifth level: A05BA08),
glutathione (V03AB32), lactulose (A06AD11), L-arginine
glutamate (A05BA01), tiopronin (G04BX16), lactitol
(A06AD12), rifaximin (A07AA11), ursodeoxycholic acid
(A05AA02), liver hydrolysate (not applicable), or branched
chain amino acid preparations (not applicable)

Features
We obtained 1,375 features in the eligible patients: six
demographic characteristics, medical history which included
five diagnoses, use or non-use of 180 different drugs, 1,050
product terms of these drugs, and presence or absence of 134
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different therapeutic classes. The demographic information was
composed of age, sex, three hospitals (Itabashi, Hikarigaoka, and
Surugadai, dummy variables), and the number of concomitant
drugs. The number of concomitant drugs was the sum of drugs
that were continued to be used at least until the index date
irrespective of the start date. The medical history was composed
of hypertension (ICD-10 codes; I10), diabetes (E10.X, E11.X, and
E14.X), dyslipidemia (E78.0-E78.5), heart failure (I50.0, I50.1,
and I50.9), and sepsis (A40.X and A41.X), which are known as
risk factors for acute liver injury.

To detect departure from additivity in the association between
a combination of two drugs and the risk of abnormal elevation of
ALT, it is necessary to include a product term of the two drugs as
well as the effects of the individual drugs in a dataset for machine-
learning. In the eligible patients, 1,089 different drugs were newly
started within 90 days before the index date and continued to be
used at least until the index date. Continuation of drug use until
the index date means that there is a prescription date before and
after the index date (drugs A and B in Supplementary Figure S2),
or date that added days of supply to the latest prescription date
exceeds the index date (drugs C and D in Supplementary Figure
S2). Among these drugs, 180 different drugs were used in
combination with each other in ≥100 patients until the index
date, and the number of combinations was 1,050. Use and non-
use of the 180 different drugs were treated as features. Regarding
the combinations, 1,050 product terms (i.e., 1,050 two-way
interaction terms) between the 180 drugs were calculated and
treated as features. When the included product term is 1, it means
that the two drugs were used in combination on the index date,
whereas when it is 0, it means that one of the two drugs was used
or neither of them was used on the index date. That is, the present
study evaluated whether the 1,050 combinations of the 180 drugs
had a synergistic interaction on the risk of abnormal elevation
of ALT.

Of the 1,089 newly started drugs, the remaining 909 drugs
were used until the index date, but were not frequently used in
combination with each other (<100 patients). Since
approximately 1 in 100 patients develops DILI during
hospitalization (Meier et al., 2005), it is difficult to evaluate
the association between these infrequent drugs and DILI.
Hence, we classified these drugs into chemical subgroups using
the fourth levels of the ATC classification published by WHO
Collaborating Centre for Drug Statistics Methodology, and then
the chemical subgroups were assigned to 134 therapeutic classes
(Supplementary Table S2). The presence and absence of these
134 therapeutic classes were treated as features. Finally, a two-
dimensional dataset (58,413 × 1,375) for machine-learning was
generated. Data imputation was not performed because all the
observations in the dataset had no missing values.

Construction of Machine-Learning Models
and Model Evaluations
The dataset for machine-learning was randomly split into a
training set for the development of algorithms (70%; N =
40,889) and a testing set for evaluation (30%; N = 17,524). To
evaluate the effects of individual drugs and their product terms on

the risk of abnormal elevation of serum ALT, three machine-
learning approaches were utilized in this study: MLR model and
logistic least absolute shrinkage and selection operator (LASSO)
regression model, which are linear algorithms, and extreme
gradient boosting (XGBoost) tree model, which is a tree-based
algorithm. All machine-learning approaches were performed
using R software (version 4.0.4; R Foundation for Statistical
Computing, Vienna, Austria).

MLR was performed with the log odds for abnormal elevation
of ALT as a binary dependent variable. The independent variables
consisted of the 1,375 features; that is, the 1,372 features
excluding the individual effects of the two drugs of interest
and their product terms were regarded as covariates. The same
dataset was also used in the logistic LASSO regression and
XGBoost models. When constructing the logistic LASSO
regression model, we ran 10-fold cross-validation to determine
a lambda (λ) minimizing the misclassification error rate for the
training set and to avoid over-fitting to the training set using R
“glmnet” package. The LASSO regularized regression equation
was obtained using the optimized λ value (Supplementary Figure
S3). The XGBoost model was constructed using R “xgboost”
package. The hyperparameters of the XGBoost model are roughly
divided into the following four parameters: general, booster,
learning task, and command line parameters. Of these
parameters, booster parameters were optimized by grid search.
Finally, the XGBoost model with the optimized hyperparameters
was constructed (Supplementary Table S3).

To assess the prediction performance of each algorithm, area
under the receiver operating characteristic curve (AUROC; C
statistic) was calculated and compared between the three
algorithms using the DeLong Test. However, the dataset was
strongly imbalanced since the ratio of patients in the control and
case groups was approximately 93:7. When doing machine-
learning with such an imbalanced dataset, it is important to
evaluate the proportion of true positive cases among positive
predictions (Saito and Rehmsmeier, 2015). Thus, sensitivity
(recall), positive predictive value (PPV, precision), specificity,
negative predictive value (NPV), F1-score, and area under the
precision-recall curve (AUPR) were also calculated. R “pROC”
and “PRROC” packages were used to calculate these metrics.

Detection of Synergistic Interaction on an
Additive Scale Between Two Drugs for Risk
of Abnormal Elevation of ALT
The adjusted odds ratio (aOR) and corresponding 95% confidence
interval (95%CI), which represent the association of a feature with
the risk of an outcome, can be calculated from regression coefficients
and their standard errors in the MLR model. However, as the MLR
model over-fitted the training set, detection of synergistic interaction
was not performed in the MLR model. In the logistic LASSO
regression model, a point estimate for each feature is calculated,
but its SE is not. Thus, 95%CI for aOR was estimated with a
bootstrap percentile method (Jung et al., 2019). To obtain 95%
bootstrap percentile CI (95%BootCI), 2,000 bootstrap samples, each
of which was the same size as the training set, were generated by
resampling with replacement from the training set. After a
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parameter estimate was calculated from each bootstrap sample,
2,000 parameter estimates in all the bootstrap samples were
sorted in ascending order. The interval between the 50th and
1950th quantile values of the 2,000 parameter estimates was
regarded as the 95%BootCI.

Relative excess risk due to interaction (RERI) has been used to
detect whether there are combined effects of two exposures on an
outcome. RERI can be calculated by substituting the regression
coefficients from the logistic LASSO regression model into the
following formulae (1) and (2) (Knol et al., 2007). A RERI of 0
indicates no interaction on an additive scale. β̂1, β̂2, and β̂3
represent regression coefficients for drug 1, drug 2, and a
product term of drugs 1 and 2, respectively. 95%CI for RERI
was estimated as BootCI by substituting parameter estimates in
all the bootstrap samples into these formulae.

(eβ̂1+β̂2+β̂3 − 1) ≠ (eβ̂1 − 1) + (eβ̂2 − 1) (1)

and

RERI � eβ̂1+β̂2+β̂3 − eβ̂1 − eβ̂2 + 1 (2)
In the present study, combinations that had a product term

with a lower limit of aOR 95%BootCI >1 and a lower limit of
RERI 95%BootCI >0 were considered to have a positive synergy
for the risk of abnormal elevation of ALT. Furthermore, feature
importance was obtained to confirm whether these combinations
that have a synergistic interaction on an additive scale could also
be important predictors in the XGBoost model.

Statistical Analysis
To compare the patient characteristics between the case and
control groups and between the training and testing sets,

unpaired 2-tailed Welch’s t-test or Wilcoxon rank-sum test for
continuous data and chi-squared test for categorical data were
performed. The level of statistical significance was set at 5.0% for
all statistical analyses. All statistical analyses were performed
using R software.

RESULTS

Patient Characteristics
A total of 58,413 patients were extracted fromNUSM’s CDW and
assigned to the case (N = 4,152) and control (N = 54,261) groups.
Differences in patient characteristics are shown in Table 1. Mean
age (standard deviation) in the case and control groups was 63.8
(16.6) and 57.0 (19.6) years, respectively. The male percentage
and the number of concomitant drugs in the case group were
higher than those in the control group. There were significant
differences between the two groups in all patient characteristics
(p < 0.001, respectively). On the other hand, patients in the case
and control groups had similar characteristics between the
training and testing sets (Supplementary Tables S4, S5).

Predictive Performance of
Machine-Learning Algorithms
Confusion matrices for three machine-learning models were
shown in Table 2. Among the patients (N = 17,524) in the
testing set, 1,236 patients who experienced abnormal elevation of
serumALT (“Actual: Cases” inTable 2). The XGBoost model had
the highest number of these patients and the 966 patients were
correctly classified into the case group. The XGBoost model (C
statistic, 0.962; 95%CI, 0.958–0.965) had the highest AUROC in
the training set (Figure 1A), followed by the MLR (0.902;

TABLE 1 | Patient characteristics in case and control groups.

Characteristics Case
group (N = 4,152)

Control
group (N = 54,261)

p value

Age (years), mean (SD) 63.8 (16.6) 57.0 (19.6) <0.001
Male, n (%) 2,639 (63.6) 21,941 (40.4) <0.001
Number of concomitant drugs, median (IQR) 7.0 (4.0–10.0) 4.0 (2.0–6.0) <0.001
Hospital, n (%) <0.001
Itabashi 3,425 (82.5) 42,311 (78.0)
Hikarigaoka 370 (8.9) 6,107 (11.3)
Surugadai 357 (8.6) 5,843 (10.8)
Medical history, n (%)
Hypertension 1,203 (29.0) 9,399 (17.3) <0.001
Diabetes 1,412 (34.0) 15,035 (27.7) <0.001
Dyslipidemia 737 (17.8) 6,930 (12.8) <0.001
Heart failure 871 (21.0) 5,623 (10.4) <0.001
Sepsis 319 (7.7) 616 (1.1) <0.001

Liver function tests, median (IQR)
ALT (U/L) 182.0 (150.0–276.2) 14.0 (11.0–20.0) <0.001
AST (U/L) 171.0 (105.0–342.0) 19.0 (15.0–23.0) <0.001
TBL (mg/dl) 0.8 (0.5–1.5) 0.5 (0.4–0.7) <0.001
ALP (U/L) 361.0 (239.0–618.0) 209.0 (165.0–264.0) <0.001

Unpaired two-tailed Welch’s t-test was performed for differences in age. Wilcoxon rank-sum test was performed for differences in number of concomitant drugs and liver function test
values. Chi-squared test was performed for differences in categorical variables such as sex, hospital, andmedical history. ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; IQR, interquartile range; SD, standard deviation; TBL, total bilirubin; U/L, units per liter.
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0.896–0.908) and logistic LASSO regression models (0.871;
0.864–0.878), and AUROC was significantly different among
the three algorithms (p < 0.001, respectively). However, in the
testing set, AUROC in the logistic LASSO regression model
(0.843; 0.830–0.854) exceeded that in the MLR model (0.814;
0.798–0.828) (p < 0.001). Regarding AUPR, the XGBoost model
(AUPR, 0.826) was also the highest among the three algorithms in
the training set, followed by MLR (0.590) and logistic LASSO
regression (0.508). However, similar to AUROC, the logistic
LASSO regression model (0.424) had higher AUPR than the
MLR model (0.395) in the testing set. Other predictive
performance metrics for the testing set are shown in Table 3.
The XGBoost model had the best performance among the three
algorithms, with sensitivity of 78.2%, PPV of 21.2%, specificity of
78.0%, NPV of 97.9%, and F1-score of 0.334. After this model, the
logistic LASSO regression model had sensitivity of 74.8%, PPV of
20.7%, specificity of 78.3%, NPV of 97.6%, and F1-score of 0.324.

The magnitude of regression coefficients in each linear
algorithm is shown in Supplementary Table S6. The
estimated coefficients in the MLR model were very large
compared with those in the logistic LASSO regression model.
In addition, the MLR model showed poorly-calibrated prediction

because the calibration curve was far from the diagonal plot, when
compared to the other algorithms (Supplementary Figure S4).
Hence, theMLRmodel over-fitted the training set due to the large
regression coefficients, poorly-calibrated prediction, and lowest
evaluation metrics for the testing set.

Detection of Synergistic Interaction on Risk
of Abnormal Elevation of ALT in Logistic
LASSO Regression
Among the 1,050 combinations, product terms in three
combinations of six drugs were significantly associated with
increased risk of abnormal elevation of ALT in the logistic
LASSO regression equation: diclofenac*famotidine (aOR,
2.026; 95%BootCI, 1.160–4.317), acetaminophen*ambroxol
(1.540; 1.075–4.829), and aspirin*cilostazol (1.232;
1.143–8.138). The associations of these three product terms
and six individual drugs with abnormal elevation of ALT are
shown in Figure 2. For the combination of diclofenac and
famotidine, a significantly increased risk of abnormal elevation
of ALT was observed for each of diclofenac (aOR, 1.319; 95%
BootCI, 1.189–2.821) and famotidine (1.643; 1.332–2.071) as well
as the product term. On the other hand, for the remaining two
combinations, there was no significant association between the
risk of abnormal elevation of ALT and each of the four individual
drugs: acetaminophen (aOR, 1.000; 95%BootCI, 1.000–1.518),
ambroxol (1.000; 0.702–1.258), aspirin (0.825; 0.483–1.000), and
cilostazol (0.815; 0.379–1.000).

The combined effect between these two drugs on the risk of
abnormal elevation of ALT is shown in Figure 3. The
synergistic interaction on an additive scale between
diclofenac and famotidine was the greatest among the three
combinations and was statistically significant (RERI, 2.427;
95%BootCI, 1.226–11.003). RERI on an additive scale of 2.427
means that the combined effect of diclofenac and famotidine is
2.427 more than the sum of the individual effects (Figure 3B).
Although there was no association of the individual effect of
acetaminophen and ambroxol with the risk of abnormal
elevation of ALT, the synergistic interaction was statistically
significant (RERI, 0.540; 95%BootCI, 0.087–4.625). The
synergistic interaction between aspirin and cilostazol was
also significant (RERI, 0.188; 95%BootCI, 0.135–3.010).
However, aOR for abnormal elevation of ALT in each of

TABLE 2 | Confusion matrices for three machine-learning models.

A

Actual: Cases Actual: Controls

Predicted: Cases 906 3,790
Predicted: Controls 330 12,498

B

Actual: Cases Actual: Controls

Predicted: Cases 924 3,537
Predicted: Controls 312 12,751

C

Actual: Cases Actual: Controls

Predicted: Cases 966 3,590
Predicted: Controls 270 12,698

(A) Multiple logistic regression model, (B) logistic least absolute shrinkage and selection
operator (LASSO) regression model, and (C) extreme gradient boosting (XGBoost)
model. FN, false negative; FP, false positive; TN, true negative; TP, true positive.

TABLE 3 | Prediction performance of each machine learning algorithm.

Machine-learning models

Evaluation metrics MLR Logistic LASSO regression XGBoost

Sensitivity (recall), % 73.3 74.8 78.2
PPV (precision), % 19.3 20.7 21.2
Specificity, % 76.7 78.3 78.0
NPV, % 97.4 97.6 97.9
F1-score 0.305 0.324 0.334
AUPR 0.395 0.424 0.448
AUROC [95%CI] 0.814 [0.798–0.828] 0.843 [0.830–0.854] 0.858 [0.846–0.868]

AUPR, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve; CI, confidence interval; LASSO, least absolute shrinkage and selection
operator; MLR, multiple logistic regression; NPV, negative predictive value; PPV, positive predictive value; XGBoost, extreme gradient boosting.
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aspirin and cilostazol tended to be lower than 1.000, and aOR
when these two drugs were concomitantly used (eβ̂1+β̂2+β̂3
=0.828) was similar to the individual effect of these drugs
such as eβ̂1 and eβ̂2 (Figure 3A). Therefore, the synergistic
interaction between the two drugs did not affect the increased
risk of abnormal elevation of ALT. RERI and the
corresponding 95%BootCI in all 1,050 product terms is
shown in Supplementary Table S7.

Feature Importance for Prediction in
Gradient Boosted Decision Tree Algorithm
Among all the 1,375 features, the top 50 important features in the
trained XGBoost model are shown in Figure 4. The number of
concomitant drugs, age, use of fentanyl, sex (male), and
carbapenems as a therapeutic class were detected as the most
important predictors, with importance scores of 0.129, 0.118,
0.055, 0.035, and 0.020. In the combination of diclofenac and
famotidine, the importance scores for the individual effects and
their product term were all included in the top 50 features:

diclofenac, 0.004; famotidine, 0.016; the product term, 0.004.
Meanwhile the product terms of the other two combinations were
not included in the top 50 important predictors.

DISCUSSION

In the present study, machine-learning models were developed to
detect the combined effect of two drugs on the risk of abnormal
elevation of serum ALT using electronic medical records. While
the MLR model had high C statistics (>0.90) in the training data,
this model showed all the lowest evaluation metrics in the testing
data. The logistic LASSO regression and XGBoost models showed
good prediction performance for the true positive patients among
the positive predictions in the testing data.

In the logistic LASSO regression model, three combinations
had significant synergistic interactions on the increased risk of
abnormal elevation of ALT. Especially, the combined effect of
diclofenac and famotidine was most strongly associated with the
risk. In the XGBoost model, although individual effects and the

FIGURE 1 | Comparison of predictive performance of each machine-learning algorithm between training and testing sets. (A) Area under receiver operating
characteristic curve (AUROC, C statistic) in training set and (B) testing set. (C) Area under precision-recall curve (AUPR) in training set and (D) testing set. AUC, area
under the curve; LASSO, least absolute shrinkage and selection operator; MLR, multiple logistic regression; ROC, receiver operating characteristic curve; XGBoost,
extreme gradient boosting.
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product term of these drugs were relatively important predictors
compared to the other drugs and product terms, these effects were
not very significant. According to the Drug Induced Liver Injury
Rank (DILIrank) dataset published by the U.S. Food and Drug
Administration, diclofenac and famotidine are regarded as DILI
concern drugs, and diclofenac is particularly included in the
verified Most-DILI-Concern drug category. Drugs in this
category have high DILI risk and have been verified as causal
drugs for DILI using a standardized clinical causality assessment
system such as the Roussel Uclaf Causality Assessment Method
(Chen et al., 2016; U.S. Food and Drug Administration, 2020). In
Japan, diclofenac is contraindicated in patients with severe
hepatic impairment, and was significantly associated with
increased risk of abnormal elevation of ALT in the present
study. According to the National Database of Health
Insurance Claims and Specific Health Checkups of Japan
between April 2018 and March 2020, among non-steroidal
anti-inflammatory drugs, diclofenac is commonly prescribed to
outpatients, following loxoprofen, celecoxib, and acetaminophen
(Ministry of Health, Labour and Welfare in Japan, 2021).
Famotidine is classified in the verified Less-DILI-Concern drug
category. Drugs in this category have been verified as causal drugs

for DILI, and DILI is described in warnings and precautions on
the package insert. In fact, famotidine was significantly associated
with the risk of abnormal elevation of ALT in this study. As
mentioned above, the association of diclofenac and famotidine
with the risk of abnormal elevation of ALT supports the
information from regulatory agencies in the U.S. and Japan,
and a synergistic interaction between these drugs was detected
in this study. Simultaneous administration of two drugs that are
associated with an increased risk of an adverse event further
increases the risk of that adverse event (i.e., synergistic
interaction) (Cascorbi, 2012). In the present study, diclofenac
and famotidine individually increased the risk of abnormal
elevation of ALT, and a synergistic interaction between these
drugs was detected. Thus, although further study is needed, it may
be necessary to pay attention to liver function when diclofenac
and famotidine are used together.

Acetaminophen is one of the verified Most-DILI-Concern
drugs in the DILIrank, and acetaminophen-induced liver
injury is described in the warning section on the package
insert in Japan; that is, acetaminophen is a causal drug for
DILI. However, there was no association between the
individual effect of this drug and the risk of abnormal

FIGURE 2 | Effects of individual drugs and their product terms on risk of abnormal elevation of ALT in logistic least absolute shrinkage and selection operator
(LASSO) regression model. Three product terms had a lower limit of adjusted odds ratio 95%BootCI >1. Blue and red circles represent estimated adjusted odds ratio in
original training set and median of adjusted odds ratio in 2,000 bootstrap replicates, respectively. Red horizon indicates adjusted odds ratio 95%BootCI. 95%BootCI,
95% bootstrap percentile confidence interval; OR, odds ratio.
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elevation of ALT in the logistic LASSO regression model.
Acetaminophen is a known hepatotoxin causing intrinsic
DILI, which is related to increasing dose (Ezhilarasan and
Raghunandhakumar, 2021). It is proposed that the safe dose
of acetaminophen to avoid liver injury is ≤ 4 g/day for an adult
(Jaeschke, 2015), and the maximum approved dose of
acetaminophen is 4 g/day in Japan. In addition, it is suggested
that the dose of acetaminophen is not a risk factor for
acetaminophen-induced liver injury in Japanese patients
(Kumagai et al., 2016; Hidaka et al., 2020). For these reasons,
administration of acetaminophen within the approved dose range
is unlikely to affect the risk of intrinsic DILI in the real world.
Ambroxol, an expectorant drug, was not associated with the risk
of abnormal elevation of ALT in this study. Many in vivo studies
have shown that ambroxol decreases serum inflammatory
cytokines and liver transaminases in rodent models of liver
injury due to its antioxidative and anti-inflammatory
properties (Piotrowski et al., 1996; Jiang et al., 2013; Khoury
et al., 2020). Meanwhile, few clinical studies have investigated the
effect of ambroxol on the risk of DILI. According to the results of
clinical trials and postmarketing surveillance described in the
package insert, none of the patients experienced abnormal
elevation of liver enzymes due to ambroxol. In the present

study, although these two drugs did not individually affect the
risk of abnormal elevation of ALT (aOR = 1.000, respectively), the
combined effect increased the risk due to the existence of a
synergistic interaction (aOR = 1.540). Thus, it is probably
necessary to monitor patients who start taking acetaminophen
and ambroxol, because aOR for the combined use of these drugs
was larger than that for the individual drugs.

Although aspirin is one of the verified Less-DILI-Concern
drugs, aspirin-induced liver injury in adults is not as well
documented as Reye’s syndrome in children. Administration
of aspirin to infants with viral infections such as influenza,
cold, or chicken pox rarely causes Reye’s syndrome, which is
defined as acute noninflammatory encephalopathy with fatty
liver failure. Aspirin is an intrinsic hepatotoxin and this
hepatotoxicity is supported by pre-clinical studies (Tolman,
1998). However, few clinical studies have evaluated the risk of
liver injury due to aspirin in the adult population.
Furthermore, in a case report, it was reported that aspirin
rechallenge in an adult patient who had experienced Reye’s
syndrome during his childhood did not change liver function
test values (Magrum and Pickworth, 2020). For these reasons,
aspirin is unlikely to increase the risk of DILI in the adult
population. Cilostazol is classified into the verified

FIGURE 3 | Synergistic interactions on an additive scale between two drugs on increased risk of abnormal elevation of alanine aminotransferase. (A) Adjusted odds
ratio (aOR) for individual drugs and their interaction term, and a synergistic interaction measure. (B) Relative excess risk due to a combination of diclofenac and
famotidine. Gray bar indicates background (i.e., non-use of diclofenac and famotidine). Blue and light green bars indicate relative excess risk due to diclofenac (eβ̂1 − 1)
and famotidine (eβ̂2 − 1), respectively. Orange bar indicates relative excess risk due to interaction. (C) Relative excess risk due to a combination of acetaminophen
and ambroxol. The aOR for the combination of aspirin and cilostazol (eβ̂1+β̂2+β̂3 =0.828) was similar to the individual effects of aspirin (aOR, 0.825) and cilostazol (aOR,
0.815). 95%BootCI indicates 95% bootstrap percentile confidence interval.
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FIGURE 4 | Top 50 important features for prediction of abnormal elevation of alanine aminotransferase in extreme gradient boosting (XGBoost) tree model. The first
column includes the top 50 important features of all the features that were actually used in the XGBoost tree model. Feature importance (Gain) score indicates how
important each feature was in the construction of boosted decision trees within the XGBoost model. A higher value of this metric when compared to another feature
suggests that it is relatively more important for construction of a predictive model. The sum of all importance scores included in a trained XGBoost tree model is 1.
The symbol * indicates a product term of two drugs. HOS, hospital; MH, medical history; TC, therapeutic class.
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Ambiguous-DILI-Concern drug category. Drugs in this
category have a description of DILI in a boxed warning or
warnings and precautions on the package insert, but have not
been verified as the causal drug for DILI (Chen et al., 2016).
Additionally, cilostazol has a protective effect on liver injury
induced by ischemia-reperfusion or tioacetamide, which is a
hepatotoxin (Joe et al., 2015; Fujii et al., 2017). Therefore, these
drugs do not individually affect the risk of abnormal elevation
of ALT. A synergistic interaction between these drugs on the
risk of abnormal elevation of ALT was detected. However, as
mentioned in the Results section, the risk of abnormal
elevation of ALT due to concomitant use of these drugs was
similar to the individual effect. Thus, concomitant use of
aspirin and cilostazol is unlikely to increase the risk of
abnormal elevation of ALT.

In conclusion, we developed machine-learning models that
predicted an abnormal increase of serum ALT more accurately
than did traditional statistical models such as MLR. Furthermore,
not only do diclofenac and famotidine individually affect the risk
of abnormal elevation of serum ALT, but the combination of
these drugs can further increase that risk.
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