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Abstract
Cancer drug discoverers and developers are blessed and cursed with a
plethora of drug targets in the tumor cells themselves and the surrounding
stromal elements. This bounty of targets has, at least in part, inspired the rapid
increase in the number of clinically available small-molecule, biological, and
cellular therapies for solid and hematological malignancies. Among the most
challenging questions in cancer therapeutics, especially for small molecules, is
how to approach loss-of-function gene mutations or deletions that encode
tumor suppressors. A second mounting question is what are the optimal drug
combinations. This article will briefly review the recent advances in exploiting in

 and   synthetic lethal screens to expose cancer pharmacologicalvitro in vivo
targets with the goal of developing new drug combinations.
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Introduction
More than six decades of concerted laboratory and clinical 
labor have enabled us to control and even cure some cancers1,2.  
Nonetheless, these successes represent the minority, and many 
tumors either are innately resistant or become resistant to the  
available therapies. We know that human cancer is complex with 
vast numbers of genetic alterations and it remains a major cause 
of human morbidity and death. In large part, we still fail to  
understand why some cancers are responsive to certain drugs 
whereas other tumors are not. This issue has become even more 
complicated because there has been an enormous increase in the 
number of US Food and Drug Administration (FDA)-approved 
treatments for cancer. Last year, Santos et al.3 divided the 154  
FDA-approved cancer drugs broadly into four groups: 26 drugs 
are cytotoxic agents, such as those that disrupt DNA synthesis or  
integrity; 38 drugs are broadly cytotoxic and act at least partially 
through protein targets, such as the proteasome or microtubules; 
85 drugs mechanistically target cancer-associated proteins; and  
5 drugs act through unknown or non-protein targets. One should 
add to this list the two recent FDA approvals for chimeric antigen  
receptor–T cell (CAR–T) therapy to make a total of 156 agents 
(Figure 1). Combining multiple drugs to treat cancer is now 
standard clinical practice, but the actual components of the drug  
combinations often were generated empirically. The growth 

in the numbers of anticancer drugs makes this process much 
more challenging because of the number of possible theoretical  
combinations. Moreover, it is now believed that there are at least 
600 cancer drivers across different cancers and there is enormous 
heterogeneity in the genetic composition of cells, even in a single 
tumor from a patient, not to mention among the metastases.  
Furthermore, tumor cells even in the same tumor exist in diverse 
environmental conditions, including differences in nutrient  
availability, pH, cytokine concentrations, oxygen levels, and 
reactive oxygen species quantities. This enormous complexity  
portends the development of even more anticancer agents2.

Among the 600 cancer drivers, many, such as tumor  
suppressors, have been considered to be beyond the reach of tra-
ditional therapeutic intervention, but this concept is now being  
challenged1. This report examines one experimental approach 
that has recently become popular as a potential means to expose 
new druggable targets and to accelerate the identification of 
rational drug combinations: synthetic lethality screening. This 
somewhat mechanistically agnostic methodology enables one to 
uncover previously unknown cooperative interactions that sustain  
viability or another therapeutically relevant phenotype between the 
product of two genes, two compounds, or a compound and a gene  
product.

Figure 1. Mechanistic distribution of current US Food and Drug Administration-approved anticancer drugs. The classification scheme 
in this figure was inspired by Santos et al.3. CAR–T, chimeric antigen receptor–T cell.
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Theoretical approaches to discovering cancer drug 
combination synergy
The concept of enhancing a therapeutic effect by combining  
different independent agents is ancient. Originally, combinations 
were purely observationally driven by perceptive and persistent 
medical practitioners. The principle of combination chemotherapy 
is currently most widely practiced and advanced in cancer.  
Historically, clinicians avoided using drugs that had overlap-
ping organ toxicities and tried to apply drugs that had different  
molecular targets to reduce the potential for drug resistance. In 
the second half of the previous century, we developed a fairly 
good understanding about the biochemical reactions required for 
DNA synthesis, which enabled the creation of antimetabolites and  
antifolates, many of which we still use today. Thoughtful studies 
by Sartorelli et al.4,5, Darnowski and Handschumacher6, and  
Damon and Cadman7 emphasized the importance of targeting 
the rate-limiting steps in the biochemical reactions and identify-
ing the optimal sequence of drug exposure. Mayer and Janoff8  
illustrated the potential importance of maintaining constant  
ratios of the individual drugs whenever possible in the tumor and 
elsewhere.

The development of rigorous methods to quantify drug syner-
gism has been an important area of early pharmacological and  
toxicological studies within and outside the area of cancer. One 
of the earliest published attempts to distinguish true compound  
synergy from additivity was published by Bliss9, who built his  
toxicological methodology on the pioneering mathematical 
work of J. H. Gaddum10. Since then, there have been multiple 
attempts to provide a universally accepted quantitative definition 
of drug synergy, but these have had only limited success. Chou 
highlighted the fact that as many as 13 different methods for  
determining synergism exist in the literature with considerable 
disagreement among them11. Reasons for the discrepancies stem  
from differing mechanistic assumptions, variable compound  
ratios, and the shapes of the individual drugs’ concentration 
response or dose response curves. A synergistic effect is not sim-
ply a result that is greater than the arithmetic sum of the effects 
of two drugs alone. For example, if a drug has a very steep dose  
response curve and one combines a minimally effective dose 
of compound A (a dose that caused a 1% effect or an ED

1
) with 

another minimally effective dose (ED
1
) of compound A, it is  

possible that an effect greater than an ED
2
 will be observed. This 

does not, however, indicate that compound A is acting synergis-
tically with itself. A Cartesian plot of the relative effects of the 
individual compounds can provide an isobologram, which allows 
one to distinguish between additivity or synergy12. In cancer, one 
is generally interested in selective tumor cell killing, but many 
of the cytotoxic agents have low therapeutic indices and also  
damage non-malignant cells that are not involved in tumor growth 
or dissemination. Moreover, one should be striving for a large 
change rather than small changes in tumor viability, even with 
targeted therapies, if there is any hope for a meaningful survival 
advantage13. The mass-action law-based median-effect method 
has become one method that has been prominently employed  

in cancer studies11,14,15. Unfortunately, earlier attempts to math-
ematically define synergy or antagonism, including the median-
effect method, assume idealized mass-action principles and  
employ logarithmic linearization data analyses, which can 
lead to poor model fitting16,17. Non-linear regression has been 
suggested to be a superior and more robust methodology to  
determine synergy16,17.

Empirical approaches to discovering cancer drug 
combination synergy with synthetic lethality studies
The fundamental concept of synthetic lethality generally has been 
attributed to the genetic studies conducted by Calvin Bridges 
with Drosophila melanogaster a century ago18. The actual term 
“synthetic lethality”, however, was coined 20 years later by  
Theodore Dobzhansky to describe the combination of two  
genetic events that created something new, in this case lethality, 
but only when both genes were lost19. It took almost half a  
century for cancer biologists and pharmacologists to embrace 
the idea of exploiting synthetic lethality to identify new drug 
combinations, initially using yeast and human cancer cells20,21. 
The growth of synthetic lethal screening and cancer has been 
reviewed elsewhere20–22. One popular pharmacologically oriented  
synthetic lethal cancer screening approach uses the expression of 
a gain-of-function proto-oncogene, such as an activated kinase, 
and evaluates a library of drugs seeking sensitization against a  
phenotypic endpoint, such as proliferation or death22. Alterna-
tively, RNA interference (RNAi) or, more recently, clustered  
regularly interspaced short palindromic repeats (CRISPR)- 
based methods have been used to suppress the expression of a 
druggable gene product in cancer cells that are then treated with 
compounds from chemical libraries or RNAi libraries. Another 
strategy is to expose cancer cells to two different drugs and 
search for synergistic alterations in the phenotypic endpoint.  
Historically, gain-of-function mutations were viewed as much 
more druggable than loss-of-function mutations where restora-
tion by adding a small molecule would be the goal1. Excitement 
for synthetic lethality studies was further stimulated by the con-
cept of tumor cell “addiction” to oncogenes, formulated by the late  
Bernard Weinstein23, by which he meant cell death induced by  
disabling a required oncoprotein. Although the mechanistic basis 
for the so-called “addiction” was not well formulated, it had  
functional appeal for many investigators. The rapid realization 
that there was “addiction” even to non-oncogenic proteins opened 
up an even larger array of possible targets24. The use of large- 
scale small interfering RNA and short hairpin RNA screens 
revealed not only gain-of-function mutations that could be thera-
peutically approached yet also more challenging but, perhaps 
more interesting, loss-of-function mutations or deletions that are  
possible synthetic lethality participants25,26. Some of these syn-
thetic lethality leads fell victim to the common pitfalls that often  
occur during preclinical cancer target validation, including the  
well-known off-target effects of small interfering RNA and 
short hairpin RNA13. Nonetheless, in 2014, the first drug identi-
fied by using synthetic lethality screen received FDA approval: 
the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib 
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for the treatment of germline BRCA-mutated advanced ovarian  
cancer, which has cells that are DNA damage repair-deficient27,28.  
The use of the PARP inhibitor has now been extended to main-
tenance treatment for patients with recurrent epithelial ovarian,  
fallopian tube, or primary peritoneal cancer who are having  
partial or complete responses to platinum-based chemotherapy. 
Thus, systematic mapping of disease drivers by using a synthetic  
lethal approach can provide future therapeutic strategies by both 
identifying potential targets and highlighting key pathways that  
can be drugged.

The future of cancer drug combination studies
In my opinion, the genetic and epigenetic heterogeneity and  
complexity within and between tumors are likely to dictate the  
continued exploitation of empirical approaches to discovering  
cancer drug combinations. Nonetheless, a recent publica-
tion provides an interesting window into how the future of drug  
combination studies might evolve29. The rapidly expanding 
genome editing tools, such as CRISPR-Cas930–32, provide powerful  
platforms, which can even be used in preclinical animal models. 
Manguso et al.29 used a pooled in vivo CRISPR-Cas9 strategy 
with transplantable B16 melanoma tumors injected into mice 
and then treated the mice with a monoclonal antibody against the  
PD-1 checkpoint and identified previously unknown genes that 
sensitized the tumors to the PD-1 immunotherapy in vivo. In  
particular, the authors found that suppression of the protein  
tyrosine phosphatase Ptpn2 increased the efficacy of anti-PD-1 
therapy by enhancing interferon-gamma-mediated effects 
on antigen presentation and growth suppression. Although  
protein tyrosine phosphatases have historically been labeled  
“undruggable” at least with small molecules1, there have been 
several recent examples of successful drugging of this protein  
class33–36. This should encourage others to follow.

I expect that in vivo genomic editing screens will have a major 
role in defining the future of anticancer drug combinations. 
Some of the issues that exist with the current genomic editing  
methodology, however, are the permanence of the DNA changes; 
the quantal nature of the silencing; off-target endonuclease 
activity associated with the use of Cas9; and the possibility for  
transcriptional, translational, or post-translational compensation  
during the gene deletion steps. More transient editing methods  
that target RNA might help resolve concerns about the quantal 
and permanent nature of expression. Human tumors often have 
cells with amplified gene-encoding regions containing oncogenes 
or heterozygous loss of genes encoding tumor suppressors, which 
are challenging to emulate using current genomic editing tech-
nology. The timing or scheduling of the individual drug combi-
nations could also have important consequences with respect to 
tumor response, and more reversible, concentration-controllable,  
methods could allow one to determine the optimal drug sequence 

and doses. Of course, the consequences of removing a protein 
are not always reproduced by the simple binding of a small  
molecule to the protein unless one is using methods, such as  
proteolysis targeting chimeras37, to deplete intracellular proteins. 
Another matter that is not easily addressed with any of the  
existing genomic editing methods is how to design combinations 
with multiple drugs.

Genetic studies have demonstrated that some synthetic lethal 
interactions are contextually dependent and cell type-specific22. 
For synthetic lethal interactions to be successfully transferred 
from laboratory models to humans, the contextual param-
eters will need to be carefully outlined in both fundamental and  
clinical studies. In the absence of well-defined and measur-
able conditions, a more general pan-synthetic lethal interaction 
might be more desirable than one that targets the so-called 
private interactions22. However, it should be noted that 
recent studies suggest that drug additivity or synergy may 
not be universally necessary for a positive benefit with drug  
combinations38.

Even with these limitations, there is considerable enthusiasm  
for the use of synthetic lethal strategies to accelerate the iden-
tification of anticancer drug combinations. Moreover, there 
appears to be no reason to believe that the synthetic lethality 
approach would not be generally useful for designing treat-
ments for other non-malignant diseases. Nevertheless, a critical 
question remains as to whether synthetic lethal strategies, 
regardless of how they are designed, will actually accelerate  
the drugging of challenging targets or expose new clinically  
productive anticancer drug combinations. As we have learned 
repeatedly, cancer is a complex collection of diseases and appealing 
methodologies often do not live up to our expectations.
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CRISPR, clustered regularly interspaced short palindromic  
repeats; FDA, US Food and Drug Administration; PARP,  
poly(ADP-ribose) polymerase; RNAi, RNA interference.
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