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Abstract: Issues related to food authenticity, traceability, and fraud have increased in recent decades
as a consequence of the deliberate and intentional substitution, addition, tampering, or misrepre-
sentation of food ingredients, where false or misleading statements are made about a product for
economic gains. This study aimed to evaluate the ability of a portable NIR instrument to classify
egg samples sourced from different provenances or production systems (e.g., cage and free-range) in
Australia. Whole egg samples (n: 100) were purchased from local supermarkets where the label in
each of the packages was used as identification of the layers’ feeding system as per the Australian
legislation and standards. The spectra of the albumin and yolk were collected using a portable NIR
spectrophotometer (950–1600 nm). Principal component analysis (PCA) and linear discriminant
analysis (LDA) were used to analyze the NIR data. The results obtained in this study showed how
the combination of chemometrics and NIR spectroscopy allowed for the classification of egg albumin
and yolk samples according to the system of production (cage and free range). The proposed method
is simple, fast, environmentally friendly and avoids laborious sample pre-treatment, and is expected
to become an alternative to commonly used techniques for egg quality assessment.

Keywords: eggs; albumin; yolk; NIR; linear discriminant analysis

1. Introduction

Issues related to food authenticity, traceability, and fraud have increased in recent
decades because of the deliberate and intentional substitution, addition, tampering, or
misrepresentation of food ingredients, where false or misleading statements are made
about a product for economic gains [1,2]. Thus, the need has increased for reliable ana-
lytical methods to monitor and test both authenticity and fraud in food ingredients and
products [1–5].

The term food fraud is associated with the selling of a cheap food ingredient or product
at the price of an expensive one [2,5–7]. Food fraud has been a common challenge since
ancient times due to reasons of profitability, and to mask the unusual appearance or taste
of perishable foods [2,5–7]. In recent decades, numerous fraudulent practices have been
identified, and monitoring using modern analytical techniques and instrumentation has
been developed [2,5–7]. Yet, the growth in global food supply chains, and the incidence and
effects of food fraud, have increased in recent years in several countries [2,6,7]. Similarly,
several analytical techniques (e.g., DNA, chromatographic, and spectroscopy techniques)
have been developed and utilized as tools to detect issues associated with fraud along the
food supply and value chains [2,6–9].

Eggs are an important staple food in human diets, particularly for their high nu-
tritious value due to their protein, vitamins, omega-3 fatty acids, lutein, and selenium
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content [10]. Due to changes in consumer preferences, and the high demand for high-
quality and nutritious foods, the consumption and demand for eggs produced under more
environmentally and animal welfare-friendly conditions have increased [5,8,9,11]. The egg
is regarded as one of the least expensive sources of animal protein [12]. As a consequence,
fraud involving the false declaration of information related to egg quality has often been
reported, including substitution or mislabeling [13]. Pandemics (e.g., COVID-19), conflicts
between countries, and climate change are significant disruptions in food supply chains,
contributing to interrupting or slowing food trade, in addition to increasing food demand
and lifting prices [14]. As highlighted by different scholars, these scenarios have created
favorable conditions for food fraud, even in low-cost products, such as eggs [1,2,11]. In
this context, the determination of authenticity and provenance, and their effects on egg
consumption at the various stages of the supply chain (e.g., farm, retailers, supermarket),
by the utilization of reliable, fast, and cost-effective technology is of paramount importance
for the industry [1–3,11].

As discussed above, several analytical techniques have been tested and are available to
evaluate and monitor food authenticity, provenance, and fraud issues [2,3]. In particular, ap-
plications based on the utilization of vibrational spectroscopy (e.g., mid- and near infrared,
Raman spectroscopy) have been developed in past decades due to the many advantages of
these techniques when compared with traditional routine methods of analysis (e.g., chro-
matographic and wet chemistry such as proximate analysis) [2]. These advantages include
non-destruction of the sample, minimal or no sample preparation, and no requirement
for the use of hazardous chemicals during the analysis (green technology) [2,15–17]. In
addition, one characteristic of these techniques is the time required during the analysis of a
given sample; that is, only a few seconds or minutes are needed for data collection (e.g.,
scanning or spectra collection) [2,15–17].

Near-infrared (NIR) spectroscopy has been utilized to determine egg composition
and quality, in which freshness has been one of the parameters related to quality most
reported by different authors [5,18–31]. Diffuse reflectance Fourier transform near-infrared
(FT-NIR) spectroscopy was reported to predict the thickness of the egg white (i.e., height),
with a determination coefficient of 0.82 [29]. Egg freshness measured as HU (Haugh
units, index of freshness) were predicted by combining NIR spectroscopy, artificial neural
networks (ANNs), and genetic algorithms (GAs) (correlation coefficient of 0.88) [22]. The
utilization of visible (VIS) and NIR transmission spectroscopy was also reported to predict
egg freshness [30,31]. Yet, no studies have evaluated NIR as a tool for verification of egg
provenance or the system of production.

The objective of this study was to evaluate the ability of a portable NIR instrument to
classify egg white and yolk samples collected from eggs sourced from different provenances
or production systems (e.g., free range and cage) in Australia.

2. Materials and Methods
2.1. Samples

A total of 100 whole and unfertilized egg samples were purchased from local super-
markets where the label in each of the boxes or package was used as the identification of
the feeding system employed to feed the layer hens. The production systems used in this
study were defined as cage and free-range. The definition of these systems is regulated by
different organizations such as Eggs Standards of Australia, Australian Eggs, and Eggs
Farmers of Australia. Fresh egg samples were broken on a Petri dish, then the egg white
and yolk were scanned separately. During the process, we noticed that, in some samples,
the egg white and yolk were mixed. These samples were not included in the classification.

2.2. Near Infrared Data Collection

A portable NIR spectrophotometer (Micro-NIR 1700, Viavi, Milpitas, CA, USA) was
used to collect the spectra of egg white and yolk (yellow) samples in the wavelength range
between 950 and 1600 nm. The spectral resolution used in this study was 10 nm with no



Sensors 2022, 22, 4988 3 of 8

moving parts (Viavi Solutions, 2015, Milipitas, CA, USA). The instrument control and the
acquisition of the diffuse reflectance spectra of the samples was achieved using proprietary
software (Viavi Solutions, 2015, Milipitas, CA, USA). Prior to the scanning of the samples,
the reflectance spectra of a white ceramic disk (Spectralon®) were collected, followed by
a dark spectrum, as recommended by the instrument manufacturer. This process was
repeated every 20 samples. The samples (egg white and yolk) were scanned using a Petri
dish where the head of the sensor was moved to collect either the egg white or yolk spectra,
respectively.

2.3. Data Analysis and Classification

Prior to the data interpretation and chemometric analysis, the NIR data were trans-
formed using the Savitzky–Golay second derivative (21 smoothing points and second
polynomial order) [32,33]. Principal component analysis (PCA) and linear discriminant
analysis (LDA) were used to analyze and interpret any trends in the data set and to develop
a classification model to monitor the origin of the egg samples analyzed (The Unscrambler
X, CAMO Analytics AS, Oslo, Norway). The NIR data and the information provided in
the label of the egg carton or package were used to develop LDA classification models
using the combination of egg white and yolk NIR data, the egg white NIR data, or the yolk
NIR data. Full cross validation (leave one out) was used to develop and validate both the
PCA and LDA models [32,34]. The proportion (in percentage terms) of correct, incorrect,
and overall classification, the sensitivity, and the specificity were used to evaluate the LDA
models developed.

3. Results and Discussion

The egg white accounts for almost two-thirds of the egg liquid weight and is com-
posed of approximately 10% protein, 0.9% carbohydrates, and 0.5% ash [35,36]. The yolk
contains most of the lipids (approx. 62% triglycerides, 33% phospholipids, and less than
5% cholesterol) of the egg and has slightly less than half of the egg proteins; the egg water
content represents between 75 and 85% of the whole egg composition [35,36].

The average second derivative of the NIR spectra of the egg white and yolk samples
is shown in Figure 1. The samples analyzed showed main absorbances at the following
wavelengths: 976 nm (O-H overtones), 1162 nm (C=O), 1205 nm (C-H and C-H2), 1342 nm
(C-H2 and C-H3), and around 1405 nm (O-H overtones) [37]. Absorbance at 1162 nm may
be associated with the absorption of lipids and fatty acids containing cis double bonds
(second overtones C-H) (oleic acid), as reported by other researchers analyzing egg samples
by NIR spectroscopy [38]. The absorption band around 1342 nm may be associated with
the second aromatic C–H elongation overtone, mainly related to CH2 and CH3 from the
saturated fatty acids present in the egg yolk [10,37]. The absorbance at 1405 nm may be
associated with O-H (water), N-H (aromatic amines), and C-H combination tones [37].
The egg yolk samples showed higher absorbances than the egg white samples, having
a distinctive absorption band at 1205 nm (C-H stretching second overtone of CH2 and
CH) associated with carbohydrates and lipids, whereas the egg white samples showed a
high absorbance band around 1430 nm mainly associated with water [37]. Figure 2 shows
the average second derivative NIR spectra of egg white and yolk samples sourced from
the two production systems, namely, cage and free range. Similar wavelengths as those
described in the previous section can be observed in Figure 2. Differences were observed
between cage and free-range egg samples around 1400 nm (O-H) associated with water
content [10,37,38]. In addition to water, absorbances around 1162 nm (C=O and C-H) and
1205 nm (C-H and C-H2) associated with lipids and proteins were also observed. The
average NIR spectra of the egg white samples sourced from the cage production system
showed a characteristic band around 1205 nm mainly associated with lipids [10,37,38].
Principal component analysis (PCA) was used to visualize trends or groups in the dataset
associated with the egg components (egg white and yolk) and production systems, and to
identify unusual (outlier) samples [32,34].
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Figure 1. Average of the second derivative of egg white and yolk samples analyzed using near
infrared reflectance spectroscopy.

Figure 2. Average of the second derivative of egg white and yolk samples sourced from two produc-
tion systems (cage and free range) and analyzed using near infrared reflectance spectroscopy.

Figures 3 and 4 show the PCA score plot and loadings of the egg samples (egg white
and yolk) analyzed using NIR spectroscopy. Principal components 1 and 3 are plotted in
Figure 3. It was observed that the first three principal components explained 98% of the
total variability in the NIR spectra of the egg samples evaluated. Plotting PC1 (72%) vs.
PC3 (3%) showed a separation between the egg white and yolk samples. The egg white
samples tend to scatter along PC1, whereas the egg yolk samples clustered together. Some
of the samples analyzed were also overlapped, indicating the presence of outlier samples
due to the mixing of the egg yolk with the egg white during the scanning. The highest
loadings (see Figure 3) in PC1 were observed around 1400 nm, and were mainly driven
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by the absorption of O-H associated with water [36]. The first PC (72%) contributes to
explaining the separation between the egg white samples. This can be attributed to small
differences in water associated with egg freshness, as observed in Figure 2 and reported by
other authors [24–30,39]. Similar trends have been also reported by other authors using
bench NIR instruments [24–30,40,41]. Differences in PC1 can be also associated with the
loss of moisture through the pores of the shell, and the structural change in proteins during
storage [10]. The third PC (PC3, 3%) contributed to explaining the differences between egg
white and yolk samples. The highest loadings in PC3 were observed at 1162 and 1205 nm
(C-H and C-H3 bonds, respectively), 1347, 1422 (O-H bonds), and 1502 nm [37]. Overall,
the loadings indicated that absorption bands associated with protein, water, fatty acids,
and aromatic-like compounds were important and used by the model to classify the egg
samples according to the production system.
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The discrimination results using the NIR data of all egg white and yolk combined, egg
white, or yolk samples according to the feed system, combined with LDA, are reported in
Table 1 (confusion matrix). The percentages of correct classifications obtained to differenti-
ate free range from cage egg samples were 76, 86, and 86% using all samples (combining
egg white and yolk), egg white, and yolk samples, respectively. The best classification
results were achieved for free range egg samples, where 86, 92, and 89% of the samples
were correctly classified using all, or egg white, or yolk, respectively. The differences in the
classification rates obtained in this study were mainly related to composition, associated
with both water and lipid content, as shown in the NIR spectra of the samples (see Figures 1
and 2). As observed in Figure 2, egg samples sourced from cage production systems have
more water than those from free range systems. Similar results for the classification of
whole “natural” and commercial eggs [40], and the discrimination between free-range
and cage yolk samples using a combination of VIS and NIR spectroscopy techniques and
chemometrics, were reported by other authors [5,11]. These researchers evaluated egg yolk-
filtrated samples from different origins using a combination of UV-VIS-NIR spectroscopy,
indicating that the NIR spectra of the samples were able to classify egg samples according
to organic, free range, barn, and cage systems [5,11].

Table 1. Linear discriminant analysis results for the classification of the origin of eggs using all sam-
ples (combining egg white and yolk), egg white, or yolk, analyzed using near infrared spectroscopy.

Data Set Origin %CC %IC %OVCC Sn Sp

ALL (egg white and yolk combined) Free range 86.8% 13.2% 76% 61% 50%
Cage 49% 51%

Egg white Free range 92.8% 7.2% 86% 85.3% 68%
Cage 67% 33%

Egg yolk Free range 89% (80/90) 11% (10/90) 86% 85.8% 70.1%
Cage 74% (17/23) 26% (6/23)

%CC: percentage of correct classification; %IC: percentage of incorrect classification; %OVCC: percentage of
overall correct classification; Sn: sensitivity; Sp: specificity.

4. Conclusions

The results obtained in this study show that the combination of chemometrics and
NIR spectroscopy allowed for the classification of egg white and yolk samples according
to the system of production (cage and free range). The proposed method is simple, fast,
environmentally friendly, and avoids laborious sample pre-treatment, and is expected
to become an alternative technique for egg quality assessment. Although the results of
the present study are promising, further research is still needed to validate the existing
classification models using an independent set of samples, and to evaluate the inclusion
of other parameters associated with quality, such as chemical composition (e.g., protein
and fat content) or shelf life, which may influence the classification results reported in
this study.
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