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patient with rapid extramedullary relapse
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Abstract

Background: Catastrophic chromosomal event known as chromothripsis was proven to be a significant hallmark of
poor prognosis in several cancer diseases. While this phenomenon is very rare in among multiple myeloma (MM)
patients, its presence in karyotype is associated with very poor prognosis.

Case presentation: In our case, we report a 62 year female patient with rapid progression of multiple myeloma
(MM) into extramedullary disease and short overall survival (OS = 23 months). I-FISH investigation revealed presence
of gain 1q21 and hyperdiploidy (+ 5,+ 9,+ 15) in 82% and 86%, respectively, while IgH rearrangements, del(17)(p13)
and del(13)(q14) were evaluated as negative.
Whole-genome profiling using array-CGH showed complex genomic changes including hyperdiploidy (+ 3,+ 5,+ 9,+ 11,
+ 15,+ 19), monosomy X, structural gains (1q21-1q23.1, 1q32-1q44, 16p13.13-16p11.2) and losses (1q23.1-1q32.1; 8p23.
3-8p11.21) of genetic material and chromothripsis in chromosome 18 with 6 breakpoint areas. Next-generation
sequencing showed a total of 338 variants with 1.8% (6/338) of pathological mutations in NRAS (c.181C > A; p.Gln61Lys)
or variants of unknown significance in TP53, CUX1 and POU4F1.

Conclusions: Our findings suggest that presence of chromothripsis should be considered as another important
genetic hallmark of poor prognosis in MM patients and utilization of genome-wide screening techniques such as array-
CGH and NGS improves the clinical diagnostics of the disease.
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Background
Multiple myeloma (MM) is characterized by malignant
proliferation of clonal plasma cells (PCs) and accumula-
tion of those cells in the bone marrow, formation of
osteolytic lesions and presence of monoclonal immuno-
globulin in serum and/or urine [1]. It is well established
that development of MM is characterized by clinical and
biological heterogeneity driven by proliferation of best
adapted clone(s) of PCs, based on Darwin’s theory of evo-
lution of species [2]. There are well-known correlations
between prognosis and several chromosomal aberrations
detected by interphase fluorescence in situ hybridization
(I-FISH). Deletion of TP53 in 17p13 loci, translocation
t(4;14)(p16;q32) and gain(1)(q21) detected by I-FISH are

considered as well established hallmarks of adverse prog-
nosis for MM, both newly diagnosed and relapsed [3, 4].
However, implementation of genome-wide screening tech-
niques, such as array-CGH or recently next generation
sequencing (NGS), into clinical practice allows precise
description of genetic heterogeneity of cancer diseases,
including MM [5, 6]. In our previous study, we showed
that array-CGH in combination with cell sorting is able to
detect copy number alterations (CNAs) in 100% of MM
and 65% of MGUS patients and could be used for moni-
toring of development of CNAs in clonal populations in
MM patients [7, 8]. Other studies also showed that
utilization of genome-wide screening techniques allows
detection of specific types of genetic lesions with prognos-
tic impact, such as homozygous deletions, loss of hetero-
zygosity (LOH) or chromothripsis in MM [9–12].
The concept of genome chaos was has been recently

established a results of extreme stress conditions to cells.
Exposure to stress factors leads to complex genomic re-
organization, which could ultimately give rise of stable
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genome, however with massive subtypes of chromosome
rearrangements known as chromoanasynthesis, chro-
moanagenesis, chromoplexy or chromothripsis [13, 14].
Chromothripsis (CTH) has been established as a cata-
strophic event causing complex chromosomal rearrange-
ments involving the shattering of a single chromosome, a
small group of chromosomes, or a single chromosome arm
[15]. The fragments, or a subset of the fragments, are then
stitched together by non-homologous end joining, but in
wrong order, place or orientation or also could be missing
(copy number loss) or there could be extra copies (copy
number gains of DNA) [16]. Due to nature of this
phenomenon, it is not surprising that several recent
studies showed that incidence of CTH is associated
with extremely poor prognosis in cancer diseases as
well as severe phenotype effects in congenital diseases
[17–19]. In MM diagnosis, CTH is considered to be a
rare chromosomal aberration with incidence of 1%;
however, it is associated with a very short overall sur-
vival of newly diagnosed patients [20].
In this report, we would like to describe the case of a

female MM patient with CTH affecting chromosome 18,
hyperdiploid karyotype and pathological mutation in
oncogene NRAS and impact on development of the dis-
ease. To our knowledge, this is the first published case
with CTH 18 and complex genomic screening.

Case presentation
Female patient without significant comorbidities was diag-
nosed in 01/2012 at the age of 62 years with symptomatic
IgG MM, Durie-Salmon stage III. A, ISS stage 2. At the
time of diagnosis, CRAB criteria (hypercalcemia - renal
failure – anemia – bone lesions) were met by anemia and
bone disease presented by pathological compression of C3
and L5 vertebrates as detected by MRI.
Treatment of the patient was initiated with 7 cycles of

CVD (cyclophosphamid-velcade-dexamethasone). After
induction, patient achieved partial remission (PR), and
she subsequently underwent in 11/2012 autologous periph-
eral blood stem cell transplant (PBSCT) with melphalan
(200 mg/m2) conditioning. After PBSCT treatment
response did not improved and remained PR. Progression
of disease occurred after 9 months with incidence of sev-
eral extramedullary lesions in thoracic vertebrates
Th5–7 (08/2013). The patient was then treated by
RAD regimen (revlimid-adryamicin-dexamethasone)
with supporting radiotherapy. After third cycle, no
treatment response was achieved and patient’s condi-
tion was rapidly worsening. According to extremely
aggressive clinical progression, recurrent severe infec-
tion complication and overall rapid worsening of the
patient’s condition, we decided to withdraw onco-
logical treatment and switch to symptomatic-palliative
approach. Patient subsequently died due to

progression of the disease in 11/2013. Overall survival
of the patient was 23 months.
MACS (magnetic-activated cell sorting) technique was

used at the time of diagnosis for obtaining enriched
CD138+ PCs population for further genetic analyses. In
our case, the population purity reached 91%. Detailed
cell-sorting protocol was previously by us described else-
where [21]. Expanded FISH panel for MM patients was
used for detection of chromosomal abnormalities with
known prognostic impact [22]. We found hyperdiploidy
(+ 5,+ 9,+ 15) in 82% (82/100) and gain 1q21 (CKS1B loci)
in 86% (86/100) of scored cells, while IgH rearrangement,
del(17)(p13) and del(13)(q14) were evaluated as negative.
Retrospective genome-wide screening showed overall

28 copy number aberrations (CNAs) with the use of
microarray-based comparative genomic hybridization
(array-CGH). Those aberrations include aneuploidies of
odd-numbered chromosomes (+ 3,+ 5,+ 9, + 11, + 15,+ 19)
and monosomy X. Structural CNAs were observed as
deletions in 1q, 8p and 16p, while areas of gain of genetic
material were found in 1q and 16q. Complex chromo-
somal changes were detected in chromosome 18 and posi-
tively identified as chromothripsis (Fig. 1). We observed 6
breakpoint areas, which were accompanied with 12 areas
of heterozygous deletions (median of size 2.1 Mbp) and 4
areas of gain of genetic material (median of size 3.3 Mbp).
Interestingly, we observed an area of 2.5 Mbp affected
with amplification (5–6 copies) in 18q21 (Fig. 2). More-
over, in 16p13.13-16p11.2, we found another area of
amplification approximately 22.5 Mb of size, harbor-
ing 259 genes spawning from SOCS1 to SLC6A10P.
Detailed overview on CNAs is shown in Additional
file 1: Table S1.
Mutation screening of 62 leukemia-related genes

included in LMA-GeneSGKit® (Sistema Genómicos,
Spain) showed total of 338 variants. Graphical overview
of variant types is shown in Fig. 3. We identified 1.8%
(6/338) potentially pathological variants or variants with
unknown significance. The most importation mutation
was found in NRAS as missense variant in exon 3
(c.181C >A; p.Gln61Lys). Variants with unknown signifi-
cance were further observed in RAF1, TP53, CUX1
and POU4F1. Detailed information about all variants
is available in Additional file 2: Table S2.

Discussion and conclusions
Identification of chromosomal aberrations in malignant
PCs is one of the basic steps in MM staging, which has
important impact on disease prognosis of MM disease
[23]. FISH investigation with the help of immunostaining
(cIg-FISH) or I-FISH performed on enriched CD138+ PCs
population is still considered as golden standard for cyto-
genetic testing in MM patients. Metaphase cytogenetics is
not suitable technique due to low mitotic activity of
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PCs, giving results in < 30% cases, while I-FISH in
combination with cell sorting reaches 90% of positive
investigations [24, 25].
Incidence of IgH translocations, loss of TP53, gain of

genetic material in 1q21 area detected by FISH are consid-
ered to be negative prognostic factors for both newly diag-
nosed and relapsed patients [26–28]. While these markers
are well established and FISH is considered as gold

standard of genetic evaluations in MM, the advent of
genome-wide screening techniques brought crucial novel
information about biology of malignant PCs and genetic
basis of the disease, ranging from evaluation of novel
CNAs with prognostic impact to discovery of clonal
heterogeneity as the principle of development of the dis-
ease, sequencing the whole genome of malignant PCs and
findings of mutations in critical genes such as BRAF,
which could be used for personalized treatment protocols
[29, 30]. The utilization in genome-wide profiling in MM
patients with the use of array-CGH technique showed that
similarly to other hematological malignancies, malignant
PCs can harbor a complex chromosomal aberration
known as chromothripsis with incidence of 2% [31]. While
the incidence of chromothripsis seems to be rare event
in blood cancer diseases, it is only a portion of all types of
genomic chaos, which is considered to be one the
major contributors to cancer development and progres-
sion [32, 33]. The study of French Myeloma Group also
showed that incidence of this catastrophic event
detected by microarray techniques in genome of PCs is
associated with very poor prognosis and aggressive
course of the disease [20]. All these clinical features
were present in our patient in a similar manner. This
MM case represents a single occurrence of CTH (1.2%;
1/91) in our previously published array-CGH dataset
[34]. Overall survival of this patient reached only
23 months, which is in good concordance with data
from the French study (OS range from 6 to 32 months,
relapse during 10 months from diagnosis). The inci-
dence of chromothripsis affecting chromosome 18 was
accompanied with presence of hyperdiploid karyotype,
as it is not uncommon in cancer cells [35]. In addition,
amplification in 18q affected several genes with known
impact in hematological malignancies, such as MALT1
(18q21.32), BCL2 (18q21.33), and KDSR (18q21.33).

Fig. 1 Overall graphical summary of CNAs in patients with hyperdiploid MM and CTH affected chromosome 18

Fig. 2 Detailed visualization of chromothripsis affecting of chromosome
18. Array-CGH detected 6 breakpoints, 12 areas of loss and 4 areas of
gain of genetic material
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While using FISH investigation, when only gain 1q21
was detected as high-impact negative prognostic marker,
retrospective utilization of array-CGH showed overall 28
CNAs with areas of amplification of DNA carrying loci
of candidate oncogenes in 16p (IL4R, IL21R) and
18q21.32 (PMAIP1). Similar data were previously pub-
lished with the use of microarray techniques in MM by
other groups [36, 37]. Furthermore, losses in 1q and 8p
were previously detected by genome-wide profiling in
MM patients, however impact of those CNAs on prog-
nosis remains unclear as they were part of complex gen-
omic changes [38, 39].
Benchtop NGS approach together with custom panel of

hematonocology-related genes showed possibly harmful
variants in 1.8% (6/338). While pathological mutations in
NRAS and TP53 were previously described [40, 41], 3’UTR
SNP variant:7,668,862 G >A in TP53 was observed in a
single patient with Li-Fraumeni syndrome, exon 7 indel
CTGTT>C chr3:12,583,765 in RAF1 was found in patient
with Noonan syndrome according to Pubmed ICLS (Illu-
mina-Clinical-Services-Laboratory) online public database
(https://www.ncbi.nlm.nih.gov/clinvar/submitters/504895).
The rest of the variants are annotated in public databases
with unknown function, thus their impact is yet to be de-
termined. Of those, intergenic missense variant in CUX1
(rs118010189) and G- > C chr13:78,602,199 mutation in
POU4F1 promoter flanking region were predicted as
intolerant due to possible amino acid substitutions to and
with effect of phenotype according to SIFT database [42].
According to aggressive phenotype of this aberration,

we suggest to treat MM patients with CTH with the aim
to reach the best available treatment response [31]. Trip-
let induction CVD followed by hi-dose chemotherapy
and autoPBSCT was best available choice covered by
rules of Czech health system at the time of diagnosis.
Furthermore, there were no clear data about better
efficiency of tandem transplant instead of single trans-
plant 2012. Lenalidomide maintenance was not cov-
ered by health insurance at the time of diagnosis. We
suggest, that patients with high risk cytogenetic aber-
rations, like CTH, could profit from lenalidomide
maintenance therapy.

Taken together, we can conclude that rapid development
and aggressive progression of the disease in our patient was
underlined by presence of complex chromosomal aberra-
tions including chromothripsis 18 and amplification in 16p
together with causal mutations in several genes associated
with hematologic malignancies. While most of found gen-
etic changes have strong association with the development,
course and prognosis of the disease, none of them except
gain 1q21 are detectable by conventional FISH probe panel
used in routine diagnosis. Based on the above-mentioned
facts, implementation of genome-wide screening tech-
niques, such as array-CGH, could improve the means of
genetic diagnostics in MM and should be a part of genetic
investigation in routine diagnostics in patients with MM.

Additional files

Additional file 1: Table S1. Aberration list for CNAs detected by
array-CGH in MM patient with chromothripsis 18. Output from Agilent
Genomic Workbench 7.0.4.0. (XLSX 13 kb)

Additional file 2: Table S2. Annotation table of 338 called SNP variants
from 62 leukemia-associated genes detected NGS Leukemia panel from
Sistema Genómicos. (XLSX 91 kb)
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