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Tissue context determines the penetrance of
regulatory DNA variation
Jessica M. Halow1,2, Rachel Byron3, Megan S. Hogan 4, Raquel Ordoñez4, Mark Groudine 3,5,

M. A. Bender3,6, John A. Stamatoyannopoulos 1,2,7✉ & Matthew T. Maurano 1,4,8✉

Functional assessment of disease-associated sequence variation at non-coding regulatory

elements is complicated by their high degree of context sensitivity to both the local chro-

matin and nuclear environments. Allelic profiling of DNA accessibility across individuals has

shown that only a select minority of sequence variation affects transcription factor (TF)

occupancy, yet low sequence diversity in human populations means that no experimental

assessment is available for the majority of disease-associated variants. Here we describe

high-resolution in vivo maps of allelic DNA accessibility in liver, kidney, lung and B cells from

5 increasingly diverged strains of F1 hybrid mice. The high density of heterozygous sites in

these hybrids enables precise quantification of effect size and cell-type specificity for hun-

dreds of thousands of variants throughout the mouse genome. We show that chromatin-

altering variants delineate characteristic sensitivity profiles for hundreds of TF motifs. We

develop a compendium of TF-specific sensitivity profiles accounting for genomic context

effects. Finally, we link maps of allelic accessibility to allelic transcript levels in the same

samples. This work provides a foundation for quantitative prediction of cell-type specific

effects of non-coding variation on TF activity, which will facilitate both fine-mapping and

systems-level analyses of common disease-associated variation in human genomes.
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Systematic census of cis-regulatory elements using genome-
wide profiling of DNA accessibility to the endonuclease
deoxyribonuclease I (DNase I) has a critically informed

understanding of tissue-specific gene regulation1 and the genetics
of common human diseases and traits2. But these maps provide
only indirect evidence for the function of regulatory DNA and
cannot address the effects of sequence variation therein. Reg-
ulatory element function depends on both genomic and cellular
context, which cannot be easily recapitulated in reporter assays3.
Profiling of DNA accessibility or protein occupancy at poly-
morphic sites represents a genome-scale approach to assessing
local effects of regulatory variation in context4–8. However, this
approach is limited by low sequence diversity in an individual
human genome and the difficulty of accessing many disease-
relevant cell types. Recognition of functional human sequence
variants has thus been impeded by the lack of large-scale datasets
assaying function at their endogenous context in vivo.

The laboratory mouse Mus musculus and related species have
long been a key model for human disease and genome
function9,10. Given the near-complete conservation of transcrip-
tional regulatory machinery with humans, mouse transgenic
experiments have been foundational in the understanding of
human genetics and gene regulation11,12. The availability of mice
from divergent strains/species offers a rich trove of genetic
diversity dramatically exceeding that in human populations9, and
with potential access to a variety of tissues and cell types
including developmental timepoints13. Genomic approaches have
linked many of these DNA sequence changes to altered tran-
scription factor (TF) binding14,15, chromatin features16,17, gene
expression18–20, and protein levels21, and further dissection of
molecular traits is highly complementary to high-throughput
knockout phenotyping studies22,23.

DNase I-hypersensitive site (DHS) maps in mouse tissues show
substantial divergence in regulatory DNA compared to human
DHSs2,24, suggesting that studies of human cis-regulatory varia-
tion cannot directly incorporate analyses of orthologous mouse
loci. Past work has shown that genetic effects on chromatin fea-
tures can be modeled using TF-centric analysis4,5. The high
conservation of trans-regulatory circuitry suggests that such a TF-
centric approach might be able to leverage the power of mouse
genetics for the interpretation of human cis-regulatory variation.

Here we describe high-resolution maps of allelic DNA acces-
sibility in 4 cell and tissue types across a series of F1 hybrid mice
derived from the inbred lab-derived and wild-derived strains and
species. These maps reveal genetic effects on DNA accessibility
which are moderated by cell and tissue context. We use these
maps to derive sensitivity profiles for hundreds of TFs, facilitating
the prediction of functional noncoding polymorphism across
mammalian genomes. Finally, we use matching RNA-seq data to
assess the correlation between accessibility and expression levels.

Results
Allelic analysis of DNA accessibility. We analyzed hybrid, fully
heterozygous F1 mice resulting from a cross of the reference
C57BL/6J with five diverged strains or species: 129S1/SvImJ,
C3H/HeJ, CAST/EiJ, PWK/PhJ, and SPRET/EiJ. We mapped
DHSs in four diverse cell and tissue types, including whole kid-
ney, liver, lung, and B cells purified from femoral bone marrow
(Fig. 1a, b). We selected the highest-quality samples for deep
paired-end Illumina sequencing-based on fragment length dis-
tribution (Fig. 1c, Supplementary Fig. 1) and high signal-to-noise
demonstrated by a mean Signal Portion of Tags (SPOT) score of
60% (Supplementary Table 1). A total of 67 samples were
sequenced to an average of 203M reads each, including at least 2
replicates per condition (median= 3 replicates) (Supplementary

Table 1). We developed a stringent mapping procedure requiring
high mappability to both the reference and a customized strain-
specific genome incorporating known single nucleotide variants
(SNVs) and indels22 (Methods). Replicate samples exhibited a
median correlation in DNaseI cleavage density at DHSs of 0.93
(Supplementary Fig. 2).

We identified an average of 196,276 DHS hotspots (FDR 5%)
in each condition using the program hotspot21, and generated
master lists of DHSs for each strain/cell type combination
(Supplementary Table 2). Hierarchical clustering showed that
samples clustered by cell or tissue type, rather than by strain
(Fig. 1d), suggesting that additional strains provide access to
genetic diversity while demonstrating consistent cell-type-specific
regulatory landscapes.

To identify sites of allelic imbalance indicative of genetic
differences affecting DNA accessibility, we developed a custom
pipeline to filter and count reads mapping to each allele at known
point variants in DHSs (see “Methods” section). The majority of
SNVs were testable in only a single strain or cell/tissue type,
suggesting that additional profiling is likely to yield further
insights (Fig. 1e, f). We used a beta-binomial test to determine a
statistically significant imbalance. We applied multiple testing
corrections and set a significance threshold of 10% false discovery
rate (FDR) and additionally required a strong magnitude of
imbalance (>70% of reads mapping to one allele). Plotting the
distribution of allelic ratios confirmed that our mapping strategy
was not biased towards the reference allele (Supplementary
Fig. 3). By pooling reads from multiple samples, we assessed
imbalance on aggregate, per-cell type, per-strain, and per-sample
bases (Fig. 1g). We identified a total of 13,835 strongly
imbalanced SNVs out of 357,303 SNVs tested when aggregating
across all samples (Supplementary Data 1). The high density of
variation meant that nearly all DHSs in a given cell or tissue type
harbored at least one SNV, and we were able to test for imbalance
at an SNV in a median of 27% DHSs per cell or tissue type
(Fig. 1h). The more highly diverged strains contributed
substantially more variants tested with only a modest reduction
in mappability rate (Fig. 1h). Full coverage of DHSs was limited
primarily by sequencing depth, suggesting that additional
sequencing would yield additional power. The imbalance was
less frequent at highly accessible DHSs (Supplementary Fig. 4,
Supplementary Fig. 5), consistent with our previous observations
of buffering of point variants at strong sites4,5.

In the F1 offspring of an inbred cross, each variant on a given
chromosome is in perfect linkage. Thus we considered the power
of our approach to detect focal alteration of individual DHSs
rather than coordinately altered chromatin accessibility. By
examining the co-occurrence of imbalance of nearby variants,
we found that allelic ratios of nearby sites were strongly correlated
only at distances less than 250 bp, well below the median width of
a DHS hotspot (Fig. 1i). This suggests that our approach offers
high resolution to identify sequence variation leading to local
effects on chromatin state.

Cellular context-sensitivity. We assessed the cell-type accessi-
bility patterns in 39 diverse cell and tissue types by the ENCODE
project, all mapped in reference C57BL/6 mice24, and excluding
liver, lung, kidney, or B cells. We categorized SNVs based on
whether accessibility was higher at the reference (C56BL/6J) or
the non-reference allele (Fig. 2a). Both sets of imbalanced SNVs
showed increased cell-type selectivity with respect to SNVs not
affecting accessibility. But nearly half of the non-reference higher
sites had evidence for a DHS in another cell or tissue type in
C56BL/6J mice, a 3-fold enrichment compared to a background
set of mappable SNVs in inaccessible DNA and thus not tested
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for imbalance (see “Methods” section). This suggests that point
changes affecting accessibility at sites with preexisting activity act
more frequently by broadening DNA accessibility to other cell
and tissue types, rather than de novo evolution of novel reg-
ulatory DNA. Only a minority of non-reference higher sites
overlapped a DHS in a cognate cell or tissue type, suggesting the
majority were qualitative creation rather than quantitatively
increased accessibility (Fig. 2b). This cell-type-specific expansion

of accessibility drew broadly from other cell lineages with an only
moderate preference for related cell types (Fig. 2b).

We then examined the cell-type selectivity of imbalance itself.
We were able to test for imbalance per cell type (combining data
from different strains) at an average of 196,276 SNVs per cell type
(Table 1). We identified clear examples of strong imbalance
across multiple strains specific to a particular cell type (Fig. 3a, b).
In both examples, cell-type-specific imbalance in one DHS was
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Fig. 1 Allelic analysis of DNA accessibility in hybrid mice from diverged strains. a Overall schematic of experiment b. DNase-seq profiles at the Pparg
locus in liver, kidney, lung tissue, and B cells from F1 crosses of C57Bl/6J dams with 129/SvImJ and CAST/EiJ sires. c Fragment length distribution of
samples showing high-quality libraries comprising non-nucleosomal fragments. d Hierarchical clustering of DHSs from high-depth samples. e–f Counts of
SNVs shared across strains (e) and cell types (f). g Counts of imbalanced SNVs (FDR 10%). Counts are reported in aggregate across all data sets (left), by
cell type (middle), and by parental strain (right). h Summary of the master list of DHSs overlapping SNVs from all strains. Counts include all DHSs (dark
gray), DHSs with SNVs (light gray), DHSs passing mappability filters (orange), DHSs with sufficient coverage to test for imbalance across all data sets
(green) and in individual cell types or strains (blue). Counts include only autosomal DHSs. i Pearson correlation of allelic ratios at adjacent SNVs broken
down by distance to next SNV. The dashed line represents the median width of DHS hotspots overlapping SNVs in this study.
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associated with a coordinate change in accessibility at a nearby
DHS (Fig. 3a, b), though we note that it is not possible to infer the
direction of causality. Overall, however, we identified a higher
degree of sharing of imbalance between samples of the same cell
type than from the same strain or unrelated samples (Fig. 3c).
Pairwise comparison of different cell types showed an average of
63% sharing of imbalanced sites (1− π0), suggesting a high
prevalence of genetic effects demonstrating cell-type context
sensitivity (Fig. 3d).

TF-centric analysis of variation. We then asked to what extent
variation affecting DNA accessibility in cis was linked to direct
perturbation of TF recognition sequences. We scanned the mouse
reference and strain-specific genomes using motif models for
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Fig. 2 Predetermination of sites of strain-specific DNA accessibility. a Cumulative density distribution of cell-type activity of DHSs measured across 39
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Table 1 SNVs tested for imbalance per cell type/strain.

Strain/
cell type

Liver Kidney Lung B cell All cells/
tissues

B6x129 28,527 11,353 11,262 11,423 52,400
B6xC3H 22,526 12,423 3932 4481 37,915
B6xCAST 78,740 37,576 92,128 45,777 215,629
B6xPWK 37,819 34,325 23,285 5,880 103,441
B6xSPRET 45,858 11,100 16,995 29,439 113,398
All hybrids 187,307 110,643 151,818 94,469 357,303
Imbalanced 4490 4147 5037 4230 13,835

Shown are counts for variants tested for imbalance in per-sample, per-cell type, and per-strain
analyses. Bottom row shows imbalanced variants for the per-cell type analysis.
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2203 TFs4. We found that while only a small fraction of imbal-
anced variation overlapped a recognition sequence for any indi-
vidual TF, 61% of variation overlapped stringent motif matches
(FIMO P < 10−5) when considering all TFs with known motifs
(Fig. 4a). Imbalanced SNVs were found more frequently at sites of
DNase I footprints, contingent on the presence of a recognizable
TF recognition sequence (Fig. 4b). We found that aggregate
imbalance was concentrated over the core positions of the motif
for many key TFs (Fig. 4c). Sensitivity profiles for human TFs
generated using previously published allelic accessibility data4

largely resembled those generated from mouse data, although
some factors such as HNF1A showed significant enrichment only
in the mouse data (Fig. 4d).

We next performed an analysis of cell-type-specific imbalance
calls at TF recognition sequences. We found higher rates of cell-
type-specific imbalance at sites of DNase I footprints in matching
cell and tissue types, relative to unmatched cell and tissue types
(Fig. 5a). We found that distinct TF families presented varying
cell-type-specific patterns of enrichment of imbalanced SNVs
over their motifs (Fig. 5b). For example, JDP2 (AP-1) only
showed enrichment in the lung (Fig. 5c), and ETS factors showed
the highest enrichment in B cells (Fig. 5d). In both cases, no
enrichment is evident when data are aggregated across multiple
cell and tissue types. Other factors showed patterns of enrichment
across a subset of cell types: HNF factors showed peak
enrichment in liver and kidney (Fig. 5e), while CEBP showed
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enrichment in lung and liver (Fig. 5f). These results suggest that
cell-type-specific identification of imbalanced variants can yield a
more accurate assessment of variants affecting TF occupancy than
aggregate analyses across multiple cell types.

To facilitate recognition of sequence variation affecting DNA
accessibility in the mouse and human genomes, we incorporated
the mouse data into our Contextual Analysis of Transcription
Factor Occupancy (CATO2) scoring approach4. CATO2 trains a
logistic regression model for each TF motif on a variety of
genomic annotations and TF-centric parameters. By standardiz-
ing genomic annotations between humans and mice, we directly
incorporated both data sets (Fig. 6a). Combining the mouse and
human data yielded a dramatic increase in TF families with
sufficient variation (Supplementary Table 3). In addition to the
inherent cell-type selectivity of DHS tracks, we incorporated per-
cell type imbalance data in two ways (see “Methods” section): (i)
TF models were trained on the subset of mouse cell types
demonstrating enrichment of imbalanced SNVs over the
recognition sequence (Fig. 6b); and (ii) a sparse generalized
linear model was trained to establish cell-type specific weights for
the contribution of each TF model to the overall score (Fig. 6c).

Assessing performance on a pair of DNase-seq datasets generated
in B6xCAST mouse embryonic stem cells (mESCs) (Supplemen-
tary Table 4) showed that CATO2 retained performance even on
a completely independent validation set (Supplementary Fig. 6).
Furthermore, assessment of predictive performance for CTCF
directly against matching ChIP-seq data showed that
CATO2 scores were also predictive for allelic TF occupancy
(Supplementary Fig. 6). In addition, cell-type-specific models
showed increased predictive performance using precision-recall
analysis (Fig. 6d, Supplementary Fig. 7). These results suggest that
CATO2 provides a strong foundation for the assessment of
functional non-coding variation.

Allelic effects on transcript levels. The activity of distal reg-
ulatory elements is compartmentalized and shows highly specific
interactions with certain genes25. To examine the effect of altered
accessibility on steady-state transcript levels, we performed RNA-
seq in a subset of matching samples (Supplementary Table 5). We
analyzed allelic expression measured by RNA-seq using a similar
pipeline to that used for the DNase-seq data (Methods). We then
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compared allelic accessibility at DHSs to allelic transcript levels
linked to transcription start sites (TSS) within 500 kb (Fig. 7). We
detected correlation significantly above that observed in per-
muted data extending distances as far as 100 kb surrounding the
TSS. Maximal correlation (R between 0.1 and 0.2) occurred
within 10 kb of the TSS and was slightly higher downstream than
upstream. Our work suggests that long-range regulatory inter-
actions between distal accessible sites and genes are common
genome-wide and are amenable to analyses using the resources
and approach we have described herein.

Discussion
Our work shows that most cis-linked differences in DNA acces-
sibility among diverged mouse genomes can be attributed to the
direct perturbation of TF recognition sites. Past reports have
differed on the degree of allelic occupancy that can be linked to
point changes in TF recognition sequences, ranging from 9% for
NF-kB14 to 85% for CTCF5. Yet, studies of a single TF are con-
founded by the possibility that changes in its recognition

sequence may perturb the binding of other factors, either at the
same site or a nearby one. By analyzing a broad set of TFs with
known sequence specificities, we identify that fully 61% of
imbalanced sites can be linked to changes in TF recognition
sequences (Fig. 4a). We expect that the range of enrichment of
imbalanced SNVs in TF motifs observed in Fig. 4b reflects both
the role of cooperative binding and the accuracy of binding site
recognition for individual TFs. Given the challenge of obtaining
TF-specific occupancy data for all factors expressed in a given cell
type, we expect that improved recognition of in vivo occupied TF
binding sites from DNase I footprinting data26,27 will be the most
fruitful way to obtain further improvements in prediction
performance.

Given that only a select minority of SNVs affect TF binding in a
given cell type, additional large-scale analyses are needed to func-
tionally assess noncoding variation in context. Our work shows that
highly diverged mouse subspecies (including CAST/EiJ, PWK/PhJ,
SPRET/EiJ) provide an efficient system for assessing regulatory
variation that overcomes the low density of polymorphism in
human populations. Compared to past work in human4, the present
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work required only 14% of the samples and half the sequencing
depth, yet it yielded two orders of magnitude more SNVs tested for
cell-type-specific imbalance (avg.= 136,059 SNVs per cell type).
This power enables cell-type specific analyses that uncover context-
sensitive variation otherwise masked by aggregation of data across
multiple cells or tissue types. The use of mice also enables ready
access to a variety of cell and tissue types difficult to access in
humans21,28. The high rate of imbalance in cell-type-specific DHSs
underscores the importance of robust sequencing depth across a full
spectrum of cell types and suggests that efficient generation of
additional profiling data in other cell and tissue types from these
strains will efficiently increase the power of TF-centric models to
recognize functional variation.

Cross-species TF-centric analysis of genomic variation over-
comes the low sequence conservation of the cis-regulatory
landscape24 by obviating the need for direct analysis of human
regulatory variants at the mouse locus and enables scalable pre-
diction of previously unseen variation. While CATO2 presently
requires cell-type specific variation data to train TF weights,
inference of TF weights from other more readily available
information, such as measurements of TF expression and activity,
may also be possible. Such an approach could enable the classi-
fication of functional regulatory variants in cell and tissue states
without directly measured genetic data. Supporting this possibi-
lity, nearly half of strain-specific imbalance represented an
expansion of accessibility at known DHSs to a new cell or tissue
type. We speculate that functional regulatory variation might
most easily arise from the creation of TF recognition sequences
that expand the selectivity of an existing DHS by acting coop-
eratively with existing TF recognition sequences. It would also be
straightforward to incorporate trans-regulatory differences
between strains or species into future models to enable an analysis
of trans-regulatory effects on gene expression29–31.

The global correlation observed between allelic accessibility
and allelic transcript levels were statistically significant but
modest. Much as the majority of point variants are buffered in
terms of their effect on local chromatin features5, enhancer net-
works controlling gene expression likely demonstrate a high
degree of redundancy and selectivity25,32,33. The correlation we
observe could serve as a benchmark for the development of
genome-wide methods to predict likely target genes of distal
regulatory elements and complements systematic locus-scale
investigation of regulatory architecture using genome
engineering33,34. Thus it is likely that further exploitation of
mouse genetics will provide the substrate for more granular
models of enhancer-promoter interaction.

Methods
Mouse husbandry. The mice used in this study were F1 hybrids of C57Bl/6J
reference females with wild-derived strains 129/SvImJ (B6x129), C3H/HeJ
(B6xC3H), CAST/EiJ, (B6xCAST), PWK/PhJ (B6xPWK), and SPRET/EiJ
(B6xSPRET). 129/SvImJ and C3H/HeJ hybrid females were acquired from the
Jackson Laboratory (8 weeks old, housed 4/cage). CAST/EiJ, PWK/PhJ, SPRET/EiJ
inbred males were acquired from the Jackson Laboratory and were bred to C57Bl/
6J female mice at FHCRC. Mice were maintained on a 12-h light, 12-h dark
schedule with lights turned on at 7 a.m. The housing room was maintained at
20–24 °C with 30–70% relative humidity. Mice have housed in individually ven-
tilated cages (Allentown) with 75 square inches of floor space and 60 air changes/
hour. Biofresh cage bedding was (Absortion Corp) at 1/8 inch depth and auto-
claved on site. Water and Purina 5053 (irradiated) were available ad libitum.
Nestlet material (Envigo’s diamond twist 7979C, also irradiated) was present in
each cage for enrichment. Autoclavable certified igloos (Bio-serv) were provided in
some cages. Mice were housed in a barrier facility that is AAALAC accredited.
Mice were sacrificed at 8 weeks of age by CO2 asphyxiation. All work was approved
by the Institutional Animal Care and Use Committee (IACUC) of the Fred
Hutchinson Cancer Research Center (FHCRC).

Nuclei isolation from mouse tissues. Solid mouse tissues were typically obtained
from 4 mice sacrificed together with their tissues pooled. The whole liver (all lobes),
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both kidneys, and all lobes of the lungs were rapidly dissected. Tissues were minced
in 2 mm square pieces and resuspended in 5 mL of homogenization buffer (20mM
tricine, 25 mM D-sucrose, 15 mM NaCl, 60mM KCl, 2 mM MgCl2, 0.5 mM sper-
midine, pH 7.8) per tissue. Nuclei were released using 5–10 strokes in a Dounce
homogenizer with a loose-fitting type-A pestle and the resulting homogenate was
filtered through a 120 μm filter. Samples were returned to the Dounce for
5–10 strokes with a tight-fitting type-B pestle, and filtered using a 40 µm mesh filter.
5 mL of homogenate was mixed with 3 mL of 50% Optiprep solution and layered
onto a 4 mL 25% −1 mL 35% two-step Optiprep gradient and centrifuged for 20
min at 6100×g in a swinging bucket rotor. The nuclei pellet was washed once in 10
mL of buffer A (15mM Tris-HCl, 15mM NaCl, 60mM KCl, 1 mM EDTA, 0.5mM
EGTA, 0.5mM spermidine) and resuspended at a concentration of 2 × 106 per mL.

Marrow was obtained from femurs of 8-week-old female mice. B cells were
isolated using an AutoMACS (Miltenyi Biotech) to deplete CD43 and Mac-1/
CD11b markers. Cells were washed once with Dulbecco’s PBS (without MgCl2 or
CaCl2). Nuclei were extracted by resuspending cells in buffer A supplemented with
0.015% detergent (IGEPAL-CA630) (Sigma) and incubating for 5–10 min on ice.
Following incubation, the nuclei were collected by centrifugation (600×g) and
resuspended in buffer A at a concentration of 2 × 106 nuclei per mL.

DNase I digestion of mouse nuclei. Fresh nuclei were incubated for 3 min at 37 °
C with limiting concentrations of the DNA endonuclease deoxyribonuclease I
(DNase I) (Sigma) in buffer A supplemented with Ca2+. The digestion was stopped
with 5× stop buffer (125 mM Tris-HCl, 250 mM NaCl, 0.25% SDS, 250 mM EDTA,
1 mM spermidine, 0.3 spermine, pH 8.0) and the samples were treated with pro-
teinase K and RNase A. The small ‘double-hit’ fragments (<250 bp) were recovered
by sucrose ultracentrifugation, end-repaired, and ligated with adapters compatible
with the Illumina sequencing platform. Libraries were amplified using minimal
PCR cycles based on a trial qPCR amplification (8–16 cycles) (Supplementary
Table 6). A detailed protocol describing the genome-wide mapping of DNase I
hypersensitivity can found in35.

mESC profiling. B6xCAST mESCs were cultured on plates coated with 0.1%
gelatin (EMD Millipore ES-006-B) in 80/20 medium comprising 80% 2i medium
and 20% mESC medium. 2i medium contained a 1:1 mixture of Advanced DMEM/

F12 (ThermoFisher 12634010) and Neurobasal-A (ThermoFisher 10888022) sup-
plemented with 1% N2 Supplement (ThermoFisher 17502048), 2% B27 Supple-
ment (ThermoFisher 17504044), 1% Glutamax (ThermoFisher 35050061), 1% Pen-
Strep (ThermoFisher 15140122), 0.1 mM 2-Mercaptoethanol (Sigma M3148), 1250
U/ml LIF (ESGRO ESG1107l), 3 µM CHIR99021 (R&D Systems 4423) and 1 µM
PD0325901 (Sigma PZ0162). mESC medium contained Knockout DMEM (Ther-
moFisher 10829018) supplemented with 15% Fetal Bovine Serum (FBS, Bench-
Mark 100–106), 0.1 mM 2-Mercaptoethanol, 1% Glutamax, 1% MEM Non-
Essential Amino Acids (ThermoFisher 11140050), 1% Nucleosides (EMD Millipore
ES-008-D), 1% Pen-Strep and 1250 U/ml LIF. HEK-293T cells were cultured in
DMEM supplemented with 10% FBS, 1 mM sodium pyruvate (ThermoFisher
11360070), 1% Glutamax, and 1% Pen-strep. All cells were grown at 37 °C in a
humidified atmosphere of 5% CO2 and passaged on average twice per week. For
ChIP-seq, mESCs were crosslinked for 10 min in 1% formaldehyde and quenched
in 125 mM glycine. Four hundred microgram of chromatin was sheared by Covaris
LE220 Ultrasonicator (Covaris). Eighty microliter of CTCF antibody (Cell Sig-
naling 2899S) was conjugated to M-280 Dynabeads (Invitrogen 11204D) for 6 h at
4 °C, followed by overnight immunoprecipitation. After reversing crosslinks,
immunoprecipitated DNA was treated with Proteinase K and RNase A and purified
using the DNA Clean and Concentrate-5 Kit (Zymo Research).

Short-read sequencing and processing. DNase-seq and ChIP-seq libraries were
sequenced on an Illumina HiSeq 2500 by the High-Throughput Genomics Center
(University of Washington) or a NextSeq 500 (NYU Institute for Systems Genetics)
in paired-end 36 bp mode.

Short reads were first trimmed to remove low-quality sequence or adapter
contamination using trimmomatic v0.3336 with parameters ‘TOPHRED33
ILLUMINACLIP: TruSeq3-PE-2.fa:2:5:5:1:true MAXINFO:27:0.95
TRAILING:20 MINLEN:27’.

To reduce potential reference mapping bias, custom strain-specific genomes
were created using vcf2diploid v0.26a37 to incorporate known22 point variants and
insertions or deletions (REL-1505-SNPs_Indels / version 5). Chain files were
created for use with the UCSC liftOver tool to enable the genomic coordinate
conversion between the reference and strain-specific genomes. Genomes included
unscaffolded contigs and alternate sequences but not the Y chromosome.

Reads were mapped using Burrows-Wheeler Aligner (BWA) v0.7.13 to both the
mouse reference assembly (GRCm38/mm10) and the appropriate strain-specific
genome with the command ‘bwa aln -n 0.04 -l 32 -t 2 -Y'38. Alignments
were post-processed with a custom Python script using pysam [https://github.com/
pysam-developers/pysam] to retain only properly-paired or single-end reads
mapping uniquely to the autosomes and chrX with a mapping quality of at least 20.
Paired-end reads were required to have an inferred template length of less than
500 bp. Duplicate reads were flagged on a per-library basis using SAMBLASTER
v0.1.2239. Mapped tags were converted to BED format using awk and bedops
v2.4.3540. DNase I hypersensitive sites were identified using hotspot2 v2.1.141.
Reference mm10 coordinates were used for all analyses except for read counting
(which additionally relied on the strain-specific mappings).

Assessment of allelic imbalance. Reads overlapping all known point variants
were assessed for allelic imbalance at all SNVs overlapping a DNase hotspot (5%
FDR) called on the aggregate of all DNase data for a given strain and cell or tissue
type. Reads were extracted from DNase-seq alignments using a custom script
countReads.py written using Python and pysam. The liftOver tool was used with
the chain file generated by vcf2diploid to map variant coordinates from mm10 to
each strain-specific genome. Reads were required to map uniquely to both mm10
and the strain-specific reference with the same mapping quality and template
length. We excluded 3 bp at the 5′ end of the read to exclude any possibility of
sequence-specific DNase I cut rate42. Only reads with a base quality >20 at the
variant position were counted. Read pairs overlapping a variant were counted once.
2 additional mismatches were permitted besides the known variant. Duplicate
reads passing all filters with the same 5′ position on the reference were excluded
(independent of the SAM duplicate flag). Variants lying within 72 bp of a known
insertion or deletion or with ≤60% of total overlapping reads passing filters were
excluded from further analysis.

To minimize possible mapping bias, we generated a mappability track by
mapping simulated 36-bp paired-end reads with up to 125 bp-fragment length
overlapping known SNPs and including no sequencing errors. Simulated reads
were mapped back to both the reference and strain-specific genomes and filtered
using the approach described above. SNVs having ≤95% of simulated reads
mappable were filtered out.

A background set of SNVs not tested for imbalance was identified as all mappable
SNVs not overlapping a DHS in the master list or any individual condition.

Allele counts from all samples were aggregated into a single matrix and
analyzed separately for per-sample, per-strain, and per-cell type imbalance. Only
SNVs with at least 30 reads in one condition were retained. To account for variable
sequencing depth and enrichment, we fit a beta-binomial distribution for each
condition using sites with >100 reads and computed P values against an expected
50% of reads mapping to each allele. We accounted for multiple testing using a
false discovery rate (FDR) cutoff of 10% using the R package q-value v2.14.143.
Aggregate imbalance analyses used sums of per-cell type counts.
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Fig. 7 Imbalanced accessibility and transcript levels. Pearson correlation
in allelic ratios between SNVs in DHSs and transcript levels are broken
down by distance to the transcription start site (TSS). All pairs of DHSs and
TSSs within 500 kb are considered. Dark gray shading at the bottom
indicates a 95% confidence band from 1000 permutations of DHS allelic
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Transcription factor motif analysis. We scanned the reference and all strain-
specific genomes using FIMO v4.10.244 with TF motifs and TF clusters as in4.
Strain-specific motif matches were converted to mm10 coordinates using liftOver,
and a non-redundant list of motif matches per strain was created from the union of
both sets.

We analyzed the intersection of SNVs tested for imbalance with these motifs.
We considered motifs with a median of ≥40 SNPs per position in the motif and ≥3
positions with ≥7 significant SNPs; positions with <7 SNPs were considered
missing data. For SNPs overlapping multiple matches to the same motif, we chose
the best motif instance per SNP on the basis of the FIMO P value.

Genomic annotation. SNVs were annotated accordingly:

● Cell-type activity spectrum MCV (multi-cell verified) was computed from a
set of 45 representative samples from Mouse ENCODE selected through
hierarchical clustering analysis. A master list45 was generated from these
samples and MCV was scaled from 0 to 1 by dividing by 45.

● Footprints on the mouse and human samples were called using FTD27.
● RefSeq Genes and CpG Islands were downloaded from the UCSC Genome

Browser.

Human SNPs were annotated as in ref. 4. Quantitative mouse annotations were
scaled by the ratio of the mean annotation value at SNPs in mouse vs. human.
Parameters were standardized to have a mean of 0 and a standard deviation of 1.

CATO2 scores. We generated CATO2 models on the combined human and
mouse data as in ref. 4 with several modifications. First, we trained a logistic model
for the genomic annotations at each SNV using the glm() function in R v3.5.2:

significant ~ MCV^2 + intron + intergenic + log(Dist. to
TSS)^2 + DHS strength^2 + log(Width of DHS) + Footprint
presence + #nearby binding sites^2 + PhastCons

Then, we trained a second glm() logistic model for each TF, which incorporated
the global per-SNV score as a parameter. Imbalance was analyzed per-cell type for
the mouse data and cell types demonstrating log enrichment >1 of imbalanced
SNVs over the recognition sequence.

significant ~ global.fit + log(score)^2 + logodds
difference + x2 + … + xn

Finally, we combined scores from individual TF models at each SNV using the
R package GLMnet v2.0-1646 to train a sparse generalized linear model (GLM)
using the lasso penalty and 50-fold cross-validation with performance measured by
AUC. To score human point variants, annotation values were computed and
standardized as before and CATO2 scores were computed using the R function
predict(type= “response”).

Generation and analysis of RNA-seq data. Total RNA was isolated using the
mirVana miRNA Isolation Kit with phenol (AM1560). Spike-in controls were
mixed in (Ambion-ERCC Mix, Cat no. 4456740) and Illumina sequencing libraries
were made using the RNA TruSeq Stranded total RNA (Illumina). Libraries were
sequenced on an Illumina HiSeq 2500 or NextSeq by the High-Throughput
Genomics Center (University of Washington) in paired-end 36 bp or 76 bp modes.
Previously published data for kidney, liver, and lung B6xCAST19 were downloaded
from the NCBI SRA repository (Supplementary Table 5).

Reads were mapped to the mm10 reference and strain-specific genomes in
parallel using STAR v2.5.2a47. Counts from all non-exonic SNVs overlapping a
given Gencode M10 basic level 1 and 2 protein-coding transcripts were aggregated.
SNVs were analyzed using the same allele counting pipeline as for DNase-seq data.
We assessed allelic imbalance using a beta-binomial model fit at SNVs with >100
reads. We accounted for multiple testing using a false discovery rate (FDR) cutoff
of 10% using the R package qvalue43 and additionally required >60% of reads to
map to one allele. Counts were aggregated for all samples per cell type and per-
DHS hotspot. A minimum of 50 total reads per transcript was required. RNA-seq
imbalance data were then overlapped with per-sample DHS imbalance data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding author upon
reasonable request. All sequencing data generated for this study have been deposited in
the NCBI GEO repository under accession GSE156692. RNA-seq data for B6xCAST
tissues were downloaded from SRA study SRP020526. DNase-seq data were downloaded
from the Mouse ENCODE project under accessions ENCLB033TJA, ENCLB055DAX,
ENCLB087FMN, ENCLB123ELX, ENCLB132WYL, ENCLB144OVE, ENCLB144XPP,
ENCLB255IYN, ENCLB268SEP, ENCLB271XFH, ENCLB309AYR, ENCLB310LJW,
ENCLB329BXZ, ENCLB330JBO, ENCLB338AZH, ENCLB369NIA, ENCLB388UBV,
ENCLB414QZO, ENCLB439JPP, ENCLB475GJF, ENCLB475XWE, ENCLB491WIB,
ENCLB509ASX, ENCLB519UHH, ENCLB523BNO, ENCLB527TCS, ENCLB551IVD,
ENCLB558NIW, ENCLB568ONV, ENCLB584XBJ, ENCLB588UWH, ENCLB667FFY,

ENCLB693PQW, ENCLB697VFP, ENCLB699GWH, ENCLB709OVK, ENCLB788JUN,
ENCLB792YOE, ENCLB792ZMJ, ENCLB854PNT, ENCLB893AUS, ENCLB921AZQ,
ENCLB933JCH, ENCLB939IXH, and ENCLB995XTX. The source data are provided
with this paper.

Code availability
The processing pipelines for DNase-seq and RNA-seq data are available on Github
[https://github.com/mauranolab/hybridmouse]. All code for analyses herein is available
upon request.
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