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 Background: The fifth and sixth cervical vertebra (C5–C6) is the most easily injured segment encountered in clinical prac-
tice. The anterior cervical plate and cage (ACPC) fixation system is always used to reconstruct the interverte-
bral height and maintain the segmental stability. The postoperative effect, such as subsidence, neck pain, and 
non-fusion, is greatly affected by the cervical cage structure design. This study determined reasonable struc-
ture size parameters that present optimized biomechanical properties related to the postoperative subsidence 
often accompanied with ACPC.

 Material/Methods: Twenty bionic cages with different structural sizes (distance between the center of the cage and groove, groove 
depth, and groove width) were designed and analyzed based on the regression optimization design and anal-
ysis method combined with FE analysis. Because a previous study showed that greater stresses on the end-
plate are associated with higher risk of subsidence, the optimization object was selected as the stresses on 
endplate to lower it.

 Results: The postoperative stresses on the endplate of all cages with bionic structure design were proved to be low-
er than with the original one. The optimal structure size was the distance between the center of the cage and 
groove=0 mm, groove depth=3 mm, and groove width=4 mm. Regression analysis found the cage with opti-
mized bionic structural parameters resulted in a 22.58% reduction of endplate stress response compared with 
the original one.

 Conclusions: The bionic cage with optimized structural sizes can reduce the subsidence risk, suggesting that the optimiza-
tion method has great potential applications in the biomechanical engineering field.
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Background

Anterior cervical interbody fusion is widely used for decom-
pression and fusion in patients who have severe cervical spon-
dylosis myelopathy and intervertebral disc herniation [1,2] 
Postoperative complications (postoperative subsidence and 
non-fusion) have attracted increasing attention [3–5]. There 
now exist many types of cervical interbody fusion devices, 
classified as transverse cylindrical structure (BAK-C Cage and 
Inter Fix Cage) and stand/vertical annular (AcroMed I/F Cage, 
SynCage, and Wing Cage). Cadaver and in vivo experiments 
showed that the vertical ring fusions have a lower postoperative 
subsidence rate and were conducive to fusion compared with 
the horizontal cylindrical ones [6–9]. Oliver et al. showed that 
ACPC resulted in reduced rates of subsidence, increasing rates 
of fusion, and lower rates of neck pain at last follow-up [10]. 
Moreover, Fernandez-Fairen et al. reported that the cages with 
plating were still in good condition at 11-years follow-up post-
operatively [11]. Use of fusion cages and plates with screws 
can promote fusion [12]. Kettler et al. found that fusion de-
vice design greatly affects the subsidence rate [13]. The verti-
cal ring-shaped cage is now regarded as the most reasonable 
design [14]. However, further research is needed to determine 
how fusion cage design influences postoperative outcomes.

The cage design in this study was guided by the concept of bi-
onics, which is an interdisciplinary subject taking various sci-
entific ideas and engineering solutions from nature. Bionics 
is divided into several categories: structural bionics [15], me-
chanical bionics [16], control bionics [17], and information bi-
onics [18]. The human cervical intervertebral disc is an indige-
nous component that can be used as a natural bionic prototype. 
The discs contain 2 different structural elements – the annulus 
fibrous and the nucleus pulposus. From the viewpoint of mate-
rial mechanics, the annulus fibrous is flexible protein, and the 
nucleus pulposus is a gelatinous solid that is always regarded 
as an impressible material [19,20]. Cages designed using hard 
materials such as titanium/titanium alloy/PEEK provide suf-
ficient mechanical support but have less flexibility compared 
with human tissue. To mimic the real annulus fibrous and nu-
cleus pulposus, a design was developed with side slotting of 
the titanium cage, called bionic structure, so the cage can re-
main flexible during structural change/modification without 
adding any new materials.

The research techniques applied in this study including the ex-
perimental optimization design method and the finite element 
(FE) method. The experimental optimization design method, 
such as orthogonal experimental optimization (Taguchi meth-
od), can simplify and standardize the fractional factorial ex-
perimental design, which had been applied to prosthetic de-
sign optimization [21–24]. The finite element analysis method 

has been widely used to simulate the various situations of the 
optimization design of cages [23,24].

In the present study, we designed a bionic structure and then 
used the optimization design method to determine the opti-
mal structural size based on the FE model. Firstly, based on 
previous studies, we made some improvement in the struc-
tural design of cages and focused on factors that change the 
influence of the cage bionic structures on the inner stress re-
sponses of endplates. Secondly, quadratic universal rotation 
design [25], which is a regression optimization design analysis 
method, was used to optimize the cervical cage size.

Material and Methods

Model generation

This study was follow-up research of a previous study of the 
influence of shape changes of cervical cages on the biome-
chanical properties of ACPC [26]. The previous C5–C6 FE mod-
el with fixed plate and screw was used. The model’s vertebral 
parts included cortical bone, cancellous bone, endplates, and 
posterior structure. Seven ligaments were built anatomically: 
an anterior longitudinal ligament, a posterior longitudinal lig-
ament, a ligament flavum, a supraspinous ligament, an inter-
spinous ligament, a transverse ligament, and a capsular liga-
ment. The intervertebral disc contained the nucleus pulposus 
and annulus fibrosus. The model’s material properties – verte-
bra, ligaments, and annulus fibrosus – were derived from ex-
isting literature [27–29] (Table 1). The nucleus is considered 
as incompressible solid elements whose volume is one-third 
that of the disc volume [30]. The facet joints were assigned 
as a frictionless surface to surface contact property, as previ-
ously reported [27,31].

The cervical cage was modeled and implanted to mimic the 
ACPC approach. The materials for cage and fixing system 
were titanium alloy with a Young’s modulus of 100 GPa and 
Poisson’s ratio of 0.30 [32]. The bone graft material was set 
as cancellous bone with a Young’s modulus of 3.5G Pa and 
Poisson’ ratio of 0.30 [33]. The tie contact properties were as-
signed between C5-C6 FE model and designed cages. A uni-
form compressive force of 52.5 N was axially exerted on the 
vertebrae of C5, which imitated the gravity of the head, and 
a torque of 1.8 Nm was exerted to mimic the bending motion 
mode, while most of the nodes at the bottom of C6 were com-
pletely constrained (Figure 1). In the middle of the cage along 
the superior-inferior direction, there is a groove intended to 
mimic the cage’s stiffness change in the same direction, and 
the specific dimensional design is shown in Figure 2.
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Procedures of the optimization method

Building the objective function

The purpose of cervical cage optimization is to find the best 
combination of cage parameters to obtain the lowest stress on 
the endplate to reduce the subsidence rate. Because the ma-
terial property of human bones has been shown to be elasto-
plastic [34], Von Mises stress was used to analyze FE simula-
tion output aiming to reveal the stress state of the bones and 
compare the cage subsidence tendencies [35].

Determining controlling factors and levels

Three key controlling factors of the cage structural dimensions 
were considered: the distance between the center of cage and 
center of the groove (represented as s), the width of groove 
(represented as b), and the depth of the groove (represent-
ed as h) (Figure 2). Zi (i=1, 2, 3) refers to the 3 factors: s (z1), 
b (z2), and h (z3), respectively. Among them, the positive/neg-
ative of factor z1 represented that the center of a groove lo-
cated above/below the center of the cage. These factors, lev-
els, and coded formula are shown in Table 2.

The experimental points calculation was based on the for-
mula (1–3):
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notes the asterisk arm length, which represents the distance 
between asterisk points and the center point. r is the unde-
termined parameter, used to obtain the orthogonality and ro-
tational property; it can be determined using the formula (3).

From the above, we can get: mc=8, mr=6, r=16818. According 
to the parameter design table, we can get: m0=6, m0 repre-
sents the experimental points when each factor was set as 
zero levels. From the above, the experiments’ total number N 
can be determined using the equation (4):
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The significance test of the regression equation  

 (4)

The experimental scheme design is shown in Table 3, and the 
simulation models were established according to this plan.

Performing experiments based on experimental conditions

Different FE models were generated through parametrically 
setting the controllable factors. The test was conducted based 
on the 15 FE models. The maximum Von Mises stress on the 
C5 inferior and C6 superior endplates of each model was col-
lected and compared to define the optimal structural dimen-
sional parameters of cage.

Component
Element 

type
Density 

(Ton/mm3)
Young’s modulus 

(MPa)
Poissson’s 

ratio
Cross-section area 

(mm2)

Cortical bone Trilateral 1.83E-09 12000.0 0.29 –

Cancellous bone Tetrahedral 1.00E-09 450.0 0.29 –

posterior structure Tetrahedral 1.83E-09 3500.0 0.29 –

Annulus Tetrahedral 1.20E-09 3.4 0.40 –

Nucleus Tetrahedral 1.36E-09 1.0 0.49 –

Endplate Trilateral 1.83E-09 12000.0 0.29 –

Anterior Longitudinal ligament Truss 1.10E-09 30.0 0.40 6.1

Posterior longitudinal ligament Truss 1.10E-09 20.0 0.40 5.4

Ligamentum flavum Truss 1.10E-09 10.0 0.40 50.1

Supraspinous ligament Truss 1.10E-09 1.5 0.40 13.1

Interspinous ligament Truss 1.10E-09 10.0 0.40 13.1

Capsular ligament Truss 1.10E-09 10.0 0.40 46.6

Transverse ligament Truss 1.10E-09 20.0 0.40 15.0

Table 1. The material properties [23–25] set in the C5–C6 FE model.
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1.8 Nm

Extension

52.5 Nm

Gravity

Figure 1.  The C5–C6 FE model with cage 
implantation and its boundary 
and loading condition. A uniform 
compression force of 52.5 N mimicking 
the gravity of head, and a moment of 
1.8 Nm mimicking the flexion motion 
pattern was exerted on the vertebrae 
of C5, while the nodes at the bottom 
of C6 were completely constrained.

Centre of the cage

Centre of the groove h

bsH/
2

H

Figure 2.  Schematic diagram of cervical cage’s 
structural dimensions. H – Distance 
from the superior and inferior edge; 
s – Distance between the center of 
cage and center of groove; h – Depth 
of the groove; b – Width of the groove.
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Table 2. Factor level coding table.

Factors
No. of experiments

x1(z1) x2(z2) x3(z3)

1 1 (0.5946) 1 (1.696) 1 (2.0946)

2 1 (0.5946) 1 (1.696) –1 (0.9054)

3 1 (0.5946) –1 (0.804) 1 (2.0946)

4 1 (0.5946) –1 (0.804) –1 (0.9054)

5 –1 (–0.5946) 1 (1.696) 1 (2.0946)

6 –1 (–0.5946) 1 (1.696) –1 (0.9054)

7 –1 (–0.5946) –1 (0.804) 1 (2.0946)

8 –1 (–0.5946) –1 (0.804) –1 (0.9054)

9 –r (–1) 0 (1.25) 0 (1.5)

10 r (1) 0 (1.25) 0 (1.5)

11 0 (0) –r (0.5) 0 (1.5)

12 0 (0) r (2) 0 (1.5)

13 0 (0) 0 (1.25) –r (0.5)

14 0 (0) 0 (1.25) r (2.5)

15 0 (0) 0 (1.25) 0 (1.5)

16 0 (0) 0 (1.25) 0 (1.5)

17 0 (0) 0 (1.25) 0 (1.5)

18 0 (0) 0 (1.25) 0 (1.5)

19 0 (0) 0 (1.25) 0 (1.5)

20 0 (0) 0 (1.25) 0 (1.5)

Table 3. Quadratic rotating experimental design scheme.
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The significance test and the lack of fit test of the regression formula still use the F test as follows: 

𝐹𝐹��� = ����/����
��/��

~𝐹𝐹�(𝑓𝑓���, 𝑓𝑓�)      (18) 

𝐹𝐹�� = ���/���
��/��

~𝐹𝐹(𝑓𝑓��, 𝑓𝑓�)       (19) 

The regression coefficient test using the t test is as follows:  

⎩
⎪⎨
⎪⎧

𝐷𝐷(𝑏𝑏�) = 𝐾𝐾𝜎𝜎�, 𝑡𝑡� = |𝑏𝑏�| �𝐾𝐾𝑆𝑆� 𝑓𝑓�⁄⁄ ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷(𝑏𝑏�) = 𝑒𝑒��𝜎𝜎�, 𝑡𝑡� = �𝑏𝑏�� �𝑒𝑒��𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

𝐷𝐷�𝑏𝑏��� = 𝑚𝑚���𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝑚𝑚���𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷�𝑏𝑏��� = 𝐹𝐹𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝐹𝐹𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

   (20) 

In this formula, the value of F can be obtained from formula (19) or referring to Table 4. If the 

regression equation matches, use 𝑆𝑆�/𝑓𝑓� for 𝑆𝑆�/𝑓𝑓� in formula (19) for the regression coeffi-

cient t test. The K, E, G can be calculated from formula (7) or directly looked up from Table 4.  

 (10)

In the significance test to the regression equation, we assume that y1, y2, …, yi, …, yN are experi-

mental data of quadratic rotation design, thus the sum of the deviation squares and degree of free-

dom is:  

S = ∑ 𝑦𝑦�� − �
�

���� (∑ 𝑦𝑦����� )�       (8) 

f = N − 1          (9) 

𝑆𝑆� = ∑ 𝑦𝑦�� − 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏��
(�)𝐵𝐵�� − ∑ 𝑏𝑏��𝐵𝐵��

�
������

�∈�∗
�
���

����   (10) 

𝑓𝑓� = 𝑁𝑁 − 2𝑝𝑝 − 𝜆𝜆∗ − 1       (11) 

𝑆𝑆��� = 𝑆𝑆 − 𝑆𝑆�         (12) 

𝑓𝑓��� = 𝑓𝑓 − 𝑓𝑓� = 2𝑝𝑝 + 𝜆𝜆∗       (13) 

𝑆𝑆� = ∑ 𝑦𝑦��
� − �

��
�∑ 𝑦𝑦��

��
���� ����

����      (14) 

𝑓𝑓� = 𝑚𝑚� − 1          (15) 

𝑆𝑆�� = 𝑆𝑆� − 𝑆𝑆�         (16) 

𝑓𝑓�� = 𝑓𝑓� − 𝑓𝑓�         (17) 

The significance test and the lack of fit test of the regression formula still use the F test as follows: 

𝐹𝐹��� = ����/����
��/��

~𝐹𝐹�(𝑓𝑓���, 𝑓𝑓�)      (18) 

𝐹𝐹�� = ���/���
��/��

~𝐹𝐹(𝑓𝑓��, 𝑓𝑓�)       (19) 

The regression coefficient test using the t test is as follows:  

⎩
⎪⎨
⎪⎧

𝐷𝐷(𝑏𝑏�) = 𝐾𝐾𝜎𝜎�, 𝑡𝑡� = |𝑏𝑏�| �𝐾𝐾𝑆𝑆� 𝑓𝑓�⁄⁄ ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷(𝑏𝑏�) = 𝑒𝑒��𝜎𝜎�, 𝑡𝑡� = �𝑏𝑏�� �𝑒𝑒��𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

𝐷𝐷�𝑏𝑏��� = 𝑚𝑚���𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝑚𝑚���𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷�𝑏𝑏��� = 𝐹𝐹𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝐹𝐹𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

   (20) 

In this formula, the value of F can be obtained from formula (19) or referring to Table 4. If the 

regression equation matches, use 𝑆𝑆�/𝑓𝑓� for 𝑆𝑆�/𝑓𝑓� in formula (19) for the regression coeffi-

cient t test. The K, E, G can be calculated from formula (7) or directly looked up from Table 4.  

 (11)

In the significance test to the regression equation, we assume that y1, y2, …, yi, …, yN are experi-

mental data of quadratic rotation design, thus the sum of the deviation squares and degree of free-

dom is:  

S = ∑ 𝑦𝑦�� − �
�

���� (∑ 𝑦𝑦����� )�       (8) 

f = N − 1          (9) 

𝑆𝑆� = ∑ 𝑦𝑦�� − 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏��
(�)𝐵𝐵�� − ∑ 𝑏𝑏��𝐵𝐵��

�
������

�∈�∗
�
���

����   (10) 

𝑓𝑓� = 𝑁𝑁 − 2𝑝𝑝 − 𝜆𝜆∗ − 1       (11) 

𝑆𝑆��� = 𝑆𝑆 − 𝑆𝑆�         (12) 

𝑓𝑓��� = 𝑓𝑓 − 𝑓𝑓� = 2𝑝𝑝 + 𝜆𝜆∗       (13) 

𝑆𝑆� = ∑ 𝑦𝑦��
� − �

��
�∑ 𝑦𝑦��

��
���� ����

����      (14) 

𝑓𝑓� = 𝑚𝑚� − 1          (15) 

𝑆𝑆�� = 𝑆𝑆� − 𝑆𝑆�         (16) 

𝑓𝑓�� = 𝑓𝑓� − 𝑓𝑓�         (17) 

The significance test and the lack of fit test of the regression formula still use the F test as follows: 

𝐹𝐹��� = ����/����
��/��

~𝐹𝐹�(𝑓𝑓���, 𝑓𝑓�)      (18) 

𝐹𝐹�� = ���/���
��/��

~𝐹𝐹(𝑓𝑓��, 𝑓𝑓�)       (19) 

The regression coefficient test using the t test is as follows:  

⎩
⎪⎨
⎪⎧

𝐷𝐷(𝑏𝑏�) = 𝐾𝐾𝜎𝜎�, 𝑡𝑡� = |𝑏𝑏�| �𝐾𝐾𝑆𝑆� 𝑓𝑓�⁄⁄ ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷(𝑏𝑏�) = 𝑒𝑒��𝜎𝜎�, 𝑡𝑡� = �𝑏𝑏�� �𝑒𝑒��𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

𝐷𝐷�𝑏𝑏��� = 𝑚𝑚���𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝑚𝑚���𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷�𝑏𝑏��� = 𝐹𝐹𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝐹𝐹𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

   (20) 

In this formula, the value of F can be obtained from formula (19) or referring to Table 4. If the 

regression equation matches, use 𝑆𝑆�/𝑓𝑓� for 𝑆𝑆�/𝑓𝑓� in formula (19) for the regression coeffi-

cient t test. The K, E, G can be calculated from formula (7) or directly looked up from Table 4.  

 (12)

In the significance test to the regression equation, we assume that y1, y2, …, yi, …, yN are experi-

mental data of quadratic rotation design, thus the sum of the deviation squares and degree of free-

dom is:  

S = ∑ 𝑦𝑦�� − �
�

���� (∑ 𝑦𝑦����� )�       (8) 

f = N − 1          (9) 

𝑆𝑆� = ∑ 𝑦𝑦�� − 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏��
(�)𝐵𝐵�� − ∑ 𝑏𝑏��𝐵𝐵��

�
������

�∈�∗
�
���

����   (10) 

𝑓𝑓� = 𝑁𝑁 − 2𝑝𝑝 − 𝜆𝜆∗ − 1       (11) 

𝑆𝑆��� = 𝑆𝑆 − 𝑆𝑆�         (12) 

𝑓𝑓��� = 𝑓𝑓 − 𝑓𝑓� = 2𝑝𝑝 + 𝜆𝜆∗       (13) 

𝑆𝑆� = ∑ 𝑦𝑦��
� − �

��
�∑ 𝑦𝑦��

��
���� ����

����      (14) 

𝑓𝑓� = 𝑚𝑚� − 1          (15) 

𝑆𝑆�� = 𝑆𝑆� − 𝑆𝑆�         (16) 

𝑓𝑓�� = 𝑓𝑓� − 𝑓𝑓�         (17) 

The significance test and the lack of fit test of the regression formula still use the F test as follows: 

𝐹𝐹��� = ����/����
��/��

~𝐹𝐹�(𝑓𝑓���, 𝑓𝑓�)      (18) 

𝐹𝐹�� = ���/���
��/��

~𝐹𝐹(𝑓𝑓��, 𝑓𝑓�)       (19) 

The regression coefficient test using the t test is as follows:  

⎩
⎪⎨
⎪⎧

𝐷𝐷(𝑏𝑏�) = 𝐾𝐾𝜎𝜎�, 𝑡𝑡� = |𝑏𝑏�| �𝐾𝐾𝑆𝑆� 𝑓𝑓�⁄⁄ ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷(𝑏𝑏�) = 𝑒𝑒��𝜎𝜎�, 𝑡𝑡� = �𝑏𝑏�� �𝑒𝑒��𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

𝐷𝐷�𝑏𝑏��� = 𝑚𝑚���𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝑚𝑚���𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷�𝑏𝑏��� = 𝐹𝐹𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝐹𝐹𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

   (20) 

In this formula, the value of F can be obtained from formula (19) or referring to Table 4. If the 

regression equation matches, use 𝑆𝑆�/𝑓𝑓� for 𝑆𝑆�/𝑓𝑓� in formula (19) for the regression coeffi-

cient t test. The K, E, G can be calculated from formula (7) or directly looked up from Table 4.  

 (13)

In the significance test to the regression equation, we assume that y1, y2, …, yi, …, yN are experi-

mental data of quadratic rotation design, thus the sum of the deviation squares and degree of free-

dom is:  

S = ∑ 𝑦𝑦�� − �
�

���� (∑ 𝑦𝑦����� )�       (8) 

f = N − 1          (9) 

𝑆𝑆� = ∑ 𝑦𝑦�� − 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏��
(�)𝐵𝐵�� − ∑ 𝑏𝑏��𝐵𝐵��

�
������

�∈�∗
�
���

����   (10) 

𝑓𝑓� = 𝑁𝑁 − 2𝑝𝑝 − 𝜆𝜆∗ − 1       (11) 

𝑆𝑆��� = 𝑆𝑆 − 𝑆𝑆�         (12) 

𝑓𝑓��� = 𝑓𝑓 − 𝑓𝑓� = 2𝑝𝑝 + 𝜆𝜆∗       (13) 

𝑆𝑆� = ∑ 𝑦𝑦��
� − �

��
�∑ 𝑦𝑦��

��
���� ����

����      (14) 

𝑓𝑓� = 𝑚𝑚� − 1          (15) 

𝑆𝑆�� = 𝑆𝑆� − 𝑆𝑆�         (16) 

𝑓𝑓�� = 𝑓𝑓� − 𝑓𝑓�         (17) 

The significance test and the lack of fit test of the regression formula still use the F test as follows: 

𝐹𝐹��� = ����/����
��/��

~𝐹𝐹�(𝑓𝑓���, 𝑓𝑓�)      (18) 

𝐹𝐹�� = ���/���
��/��

~𝐹𝐹(𝑓𝑓��, 𝑓𝑓�)       (19) 

The regression coefficient test using the t test is as follows:  

⎩
⎪⎨
⎪⎧

𝐷𝐷(𝑏𝑏�) = 𝐾𝐾𝜎𝜎�, 𝑡𝑡� = |𝑏𝑏�| �𝐾𝐾𝑆𝑆� 𝑓𝑓�⁄⁄ ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷(𝑏𝑏�) = 𝑒𝑒��𝜎𝜎�, 𝑡𝑡� = �𝑏𝑏�� �𝑒𝑒��𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

𝐷𝐷�𝑏𝑏��� = 𝑚𝑚���𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝑚𝑚���𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷�𝑏𝑏��� = 𝐹𝐹𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝐹𝐹𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

   (20) 

In this formula, the value of F can be obtained from formula (19) or referring to Table 4. If the 

regression equation matches, use 𝑆𝑆�/𝑓𝑓� for 𝑆𝑆�/𝑓𝑓� in formula (19) for the regression coeffi-

cient t test. The K, E, G can be calculated from formula (7) or directly looked up from Table 4.  

 (14)

In the significance test to the regression equation, we assume that y1, y2, …, yi, …, yN are experi-

mental data of quadratic rotation design, thus the sum of the deviation squares and degree of free-

dom is:  

S = ∑ 𝑦𝑦�� − �
�

���� (∑ 𝑦𝑦����� )�       (8) 

f = N − 1          (9) 

𝑆𝑆� = ∑ 𝑦𝑦�� − 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏��
(�)𝐵𝐵�� − ∑ 𝑏𝑏��𝐵𝐵��

�
������

�∈�∗
�
���

����   (10) 

𝑓𝑓� = 𝑁𝑁 − 2𝑝𝑝 − 𝜆𝜆∗ − 1       (11) 

𝑆𝑆��� = 𝑆𝑆 − 𝑆𝑆�         (12) 

𝑓𝑓��� = 𝑓𝑓 − 𝑓𝑓� = 2𝑝𝑝 + 𝜆𝜆∗       (13) 

𝑆𝑆� = ∑ 𝑦𝑦��
� − �

��
�∑ 𝑦𝑦��

��
���� ����

����      (14) 

𝑓𝑓� = 𝑚𝑚� − 1          (15) 

𝑆𝑆�� = 𝑆𝑆� − 𝑆𝑆�         (16) 

𝑓𝑓�� = 𝑓𝑓� − 𝑓𝑓�         (17) 

The significance test and the lack of fit test of the regression formula still use the F test as follows: 

𝐹𝐹��� = ����/����
��/��

~𝐹𝐹�(𝑓𝑓���, 𝑓𝑓�)      (18) 

𝐹𝐹�� = ���/���
��/��

~𝐹𝐹(𝑓𝑓��, 𝑓𝑓�)       (19) 

The regression coefficient test using the t test is as follows:  

⎩
⎪⎨
⎪⎧

𝐷𝐷(𝑏𝑏�) = 𝐾𝐾𝜎𝜎�, 𝑡𝑡� = |𝑏𝑏�| �𝐾𝐾𝑆𝑆� 𝑓𝑓�⁄⁄ ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷(𝑏𝑏�) = 𝑒𝑒��𝜎𝜎�, 𝑡𝑡� = �𝑏𝑏�� �𝑒𝑒��𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

𝐷𝐷�𝑏𝑏��� = 𝑚𝑚���𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝑚𝑚���𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷�𝑏𝑏��� = 𝐹𝐹𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝐹𝐹𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

   (20) 

In this formula, the value of F can be obtained from formula (19) or referring to Table 4. If the 

regression equation matches, use 𝑆𝑆�/𝑓𝑓� for 𝑆𝑆�/𝑓𝑓� in formula (19) for the regression coeffi-

cient t test. The K, E, G can be calculated from formula (7) or directly looked up from Table 4.  

 (15)

In the significance test to the regression equation, we assume that y1, y2, …, yi, …, yN are experi-

mental data of quadratic rotation design, thus the sum of the deviation squares and degree of free-

dom is:  

S = ∑ 𝑦𝑦�� − �
�

���� (∑ 𝑦𝑦����� )�       (8) 

f = N − 1          (9) 

𝑆𝑆� = ∑ 𝑦𝑦�� − 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏��
(�)𝐵𝐵�� − ∑ 𝑏𝑏��𝐵𝐵��

�
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�∈�∗
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����   (10) 

𝑓𝑓� = 𝑁𝑁 − 2𝑝𝑝 − 𝜆𝜆∗ − 1       (11) 

𝑆𝑆��� = 𝑆𝑆 − 𝑆𝑆�         (12) 

𝑓𝑓��� = 𝑓𝑓 − 𝑓𝑓� = 2𝑝𝑝 + 𝜆𝜆∗       (13) 

𝑆𝑆� = ∑ 𝑦𝑦��
� − �

��
�∑ 𝑦𝑦��

��
���� ����

����      (14) 

𝑓𝑓� = 𝑚𝑚� − 1          (15) 

𝑆𝑆�� = 𝑆𝑆� − 𝑆𝑆�         (16) 

𝑓𝑓�� = 𝑓𝑓� − 𝑓𝑓�         (17) 

The significance test and the lack of fit test of the regression formula still use the F test as follows: 

𝐹𝐹��� = ����/����
��/��

~𝐹𝐹�(𝑓𝑓���, 𝑓𝑓�)      (18) 

𝐹𝐹�� = ���/���
��/��

~𝐹𝐹(𝑓𝑓��, 𝑓𝑓�)       (19) 

The regression coefficient test using the t test is as follows:  

⎩
⎪⎨
⎪⎧

𝐷𝐷(𝑏𝑏�) = 𝐾𝐾𝜎𝜎�, 𝑡𝑡� = |𝑏𝑏�| �𝐾𝐾𝑆𝑆� 𝑓𝑓�⁄⁄ ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷(𝑏𝑏�) = 𝑒𝑒��𝜎𝜎�, 𝑡𝑡� = �𝑏𝑏�� �𝑒𝑒��𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

𝐷𝐷�𝑏𝑏��� = 𝑚𝑚���𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝑚𝑚���𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷�𝑏𝑏��� = 𝐹𝐹𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝐹𝐹𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

   (20) 

In this formula, the value of F can be obtained from formula (19) or referring to Table 4. If the 

regression equation matches, use 𝑆𝑆�/𝑓𝑓� for 𝑆𝑆�/𝑓𝑓� in formula (19) for the regression coeffi-

cient t test. The K, E, G can be calculated from formula (7) or directly looked up from Table 4.  

 (16)

In the significance test to the regression equation, we assume that y1, y2, …, yi, …, yN are experi-

mental data of quadratic rotation design, thus the sum of the deviation squares and degree of free-

dom is:  

S = ∑ 𝑦𝑦�� − �
�

���� (∑ 𝑦𝑦����� )�       (8) 

f = N − 1          (9) 

𝑆𝑆� = ∑ 𝑦𝑦�� − 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏��
(�)𝐵𝐵�� − ∑ 𝑏𝑏��𝐵𝐵��

�
������

�∈�∗
�
���

����   (10) 

𝑓𝑓� = 𝑁𝑁 − 2𝑝𝑝 − 𝜆𝜆∗ − 1       (11) 

𝑆𝑆��� = 𝑆𝑆 − 𝑆𝑆�         (12) 

𝑓𝑓��� = 𝑓𝑓 − 𝑓𝑓� = 2𝑝𝑝 + 𝜆𝜆∗       (13) 

𝑆𝑆� = ∑ 𝑦𝑦��
� − �

��
�∑ 𝑦𝑦��

��
���� ����

����      (14) 

𝑓𝑓� = 𝑚𝑚� − 1          (15) 

𝑆𝑆�� = 𝑆𝑆� − 𝑆𝑆�         (16) 

𝑓𝑓�� = 𝑓𝑓� − 𝑓𝑓�         (17) 

The significance test and the lack of fit test of the regression formula still use the F test as follows: 

𝐹𝐹��� = ����/����
��/��

~𝐹𝐹�(𝑓𝑓���, 𝑓𝑓�)      (18) 

𝐹𝐹�� = ���/���
��/��

~𝐹𝐹(𝑓𝑓��, 𝑓𝑓�)       (19) 

The regression coefficient test using the t test is as follows:  

⎩
⎪⎨
⎪⎧

𝐷𝐷(𝑏𝑏�) = 𝐾𝐾𝜎𝜎�, 𝑡𝑡� = |𝑏𝑏�| �𝐾𝐾𝑆𝑆� 𝑓𝑓�⁄⁄ ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷(𝑏𝑏�) = 𝑒𝑒��𝜎𝜎�, 𝑡𝑡� = �𝑏𝑏�� �𝑒𝑒��𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

𝐷𝐷�𝑏𝑏��� = 𝑚𝑚���𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝑚𝑚���𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷�𝑏𝑏��� = 𝐹𝐹𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝐹𝐹𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

   (20) 

In this formula, the value of F can be obtained from formula (19) or referring to Table 4. If the 

regression equation matches, use 𝑆𝑆�/𝑓𝑓� for 𝑆𝑆�/𝑓𝑓� in formula (19) for the regression coeffi-

cient t test. The K, E, G can be calculated from formula (7) or directly looked up from Table 4.  

 (17)

The significance test and the lack of fit test of the regression 
formula still use the F test as follows:

In the significance test to the regression equation, we assume that y1, y2, …, yi, …, yN are experi-

mental data of quadratic rotation design, thus the sum of the deviation squares and degree of free-

dom is:  

S = ∑ 𝑦𝑦�� − �
�

���� (∑ 𝑦𝑦����� )�       (8) 

f = N − 1          (9) 

𝑆𝑆� = ∑ 𝑦𝑦�� − 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏��
(�)𝐵𝐵�� − ∑ 𝑏𝑏��𝐵𝐵��

�
������

�∈�∗
�
���

����   (10) 

𝑓𝑓� = 𝑁𝑁 − 2𝑝𝑝 − 𝜆𝜆∗ − 1       (11) 

𝑆𝑆��� = 𝑆𝑆 − 𝑆𝑆�         (12) 

𝑓𝑓��� = 𝑓𝑓 − 𝑓𝑓� = 2𝑝𝑝 + 𝜆𝜆∗       (13) 

𝑆𝑆� = ∑ 𝑦𝑦��
� − �

��
�∑ 𝑦𝑦��

��
���� ����

����      (14) 

𝑓𝑓� = 𝑚𝑚� − 1          (15) 

𝑆𝑆�� = 𝑆𝑆� − 𝑆𝑆�         (16) 

𝑓𝑓�� = 𝑓𝑓� − 𝑓𝑓�         (17) 

The significance test and the lack of fit test of the regression formula still use the F test as follows: 

𝐹𝐹��� = ����/����
��/��

~𝐹𝐹�(𝑓𝑓���, 𝑓𝑓�)      (18) 

𝐹𝐹�� = ���/���
��/��

~𝐹𝐹(𝑓𝑓��, 𝑓𝑓�)       (19) 

The regression coefficient test using the t test is as follows:  

⎩
⎪⎨
⎪⎧

𝐷𝐷(𝑏𝑏�) = 𝐾𝐾𝜎𝜎�, 𝑡𝑡� = |𝑏𝑏�| �𝐾𝐾𝑆𝑆� 𝑓𝑓�⁄⁄ ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷(𝑏𝑏�) = 𝑒𝑒��𝜎𝜎�, 𝑡𝑡� = �𝑏𝑏�� �𝑒𝑒��𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

𝐷𝐷�𝑏𝑏��� = 𝑚𝑚���𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝑚𝑚���𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷�𝑏𝑏��� = 𝐹𝐹𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝐹𝐹𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

   (20) 

In this formula, the value of F can be obtained from formula (19) or referring to Table 4. If the 

regression equation matches, use 𝑆𝑆�/𝑓𝑓� for 𝑆𝑆�/𝑓𝑓� in formula (19) for the regression coeffi-

cient t test. The K, E, G can be calculated from formula (7) or directly looked up from Table 4.  

 (18)

In the significance test to the regression equation, we assume that y1, y2, …, yi, …, yN are experi-

mental data of quadratic rotation design, thus the sum of the deviation squares and degree of free-

dom is:  

S = ∑ 𝑦𝑦�� − �
�

���� (∑ 𝑦𝑦����� )�       (8) 

f = N − 1          (9) 

𝑆𝑆� = ∑ 𝑦𝑦�� − 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏��
(�)𝐵𝐵�� − ∑ 𝑏𝑏��𝐵𝐵��

�
������

�∈�∗
�
���

����   (10) 

𝑓𝑓� = 𝑁𝑁 − 2𝑝𝑝 − 𝜆𝜆∗ − 1       (11) 

𝑆𝑆��� = 𝑆𝑆 − 𝑆𝑆�         (12) 

𝑓𝑓��� = 𝑓𝑓 − 𝑓𝑓� = 2𝑝𝑝 + 𝜆𝜆∗       (13) 

𝑆𝑆� = ∑ 𝑦𝑦��
� − �

��
�∑ 𝑦𝑦��

��
���� ����

����      (14) 

𝑓𝑓� = 𝑚𝑚� − 1          (15) 

𝑆𝑆�� = 𝑆𝑆� − 𝑆𝑆�         (16) 

𝑓𝑓�� = 𝑓𝑓� − 𝑓𝑓�         (17) 

The significance test and the lack of fit test of the regression formula still use the F test as follows: 

𝐹𝐹��� = ����/����
��/��

~𝐹𝐹�(𝑓𝑓���, 𝑓𝑓�)      (18) 

𝐹𝐹�� = ���/���
��/��

~𝐹𝐹(𝑓𝑓��, 𝑓𝑓�)       (19) 

The regression coefficient test using the t test is as follows:  

⎩
⎪⎨
⎪⎧

𝐷𝐷(𝑏𝑏�) = 𝐾𝐾𝜎𝜎�, 𝑡𝑡� = |𝑏𝑏�| �𝐾𝐾𝑆𝑆� 𝑓𝑓�⁄⁄ ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷(𝑏𝑏�) = 𝑒𝑒��𝜎𝜎�, 𝑡𝑡� = �𝑏𝑏�� �𝑒𝑒��𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

𝐷𝐷�𝑏𝑏��� = 𝑚𝑚���𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝑚𝑚���𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷�𝑏𝑏��� = 𝐹𝐹𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝐹𝐹𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

   (20) 

In this formula, the value of F can be obtained from formula (19) or referring to Table 4. If the 

regression equation matches, use 𝑆𝑆�/𝑓𝑓� for 𝑆𝑆�/𝑓𝑓� in formula (19) for the regression coeffi-

cient t test. The K, E, G can be calculated from formula (7) or directly looked up from Table 4.  

 (19)

The regression coefficient test using the t test is as follows:

In the significance test to the regression equation, we assume that y1, y2, …, yi, …, yN are experi-

mental data of quadratic rotation design, thus the sum of the deviation squares and degree of free-

dom is:  

S = ∑ 𝑦𝑦�� − �
�

���� (∑ 𝑦𝑦����� )�       (8) 

f = N − 1          (9) 

𝑆𝑆� = ∑ 𝑦𝑦�� − 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏��
(�)𝐵𝐵�� − ∑ 𝑏𝑏��𝐵𝐵��

�
������

�∈�∗
�
���

����   (10) 

𝑓𝑓� = 𝑁𝑁 − 2𝑝𝑝 − 𝜆𝜆∗ − 1       (11) 

𝑆𝑆��� = 𝑆𝑆 − 𝑆𝑆�         (12) 

𝑓𝑓��� = 𝑓𝑓 − 𝑓𝑓� = 2𝑝𝑝 + 𝜆𝜆∗       (13) 

𝑆𝑆� = ∑ 𝑦𝑦��
� − �

��
�∑ 𝑦𝑦��

��
���� ����

����      (14) 

𝑓𝑓� = 𝑚𝑚� − 1          (15) 

𝑆𝑆�� = 𝑆𝑆� − 𝑆𝑆�         (16) 

𝑓𝑓�� = 𝑓𝑓� − 𝑓𝑓�         (17) 

The significance test and the lack of fit test of the regression formula still use the F test as follows: 

𝐹𝐹��� = ����/����
��/��

~𝐹𝐹�(𝑓𝑓���, 𝑓𝑓�)      (18) 

𝐹𝐹�� = ���/���
��/��

~𝐹𝐹(𝑓𝑓��, 𝑓𝑓�)       (19) 

The regression coefficient test using the t test is as follows:  

⎩
⎪⎨
⎪⎧

𝐷𝐷(𝑏𝑏�) = 𝐾𝐾𝜎𝜎�, 𝑡𝑡� = |𝑏𝑏�| �𝐾𝐾𝑆𝑆� 𝑓𝑓�⁄⁄ ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷(𝑏𝑏�) = 𝑒𝑒��𝜎𝜎�, 𝑡𝑡� = �𝑏𝑏�� �𝑒𝑒��𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

𝐷𝐷�𝑏𝑏��� = 𝑚𝑚���𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝑚𝑚���𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)
𝐷𝐷�𝑏𝑏��� = 𝐹𝐹𝜎𝜎�, 𝑡𝑡�� = �𝑏𝑏��� �𝐹𝐹𝑆𝑆� 𝑓𝑓�⁄� ~𝑡𝑡�(𝑓𝑓�)

   (20) 

In this formula, the value of F can be obtained from formula (19) or referring to Table 4. If the 

regression equation matches, use 𝑆𝑆�/𝑓𝑓� for 𝑆𝑆�/𝑓𝑓� in formula (19) for the regression coeffi-

cient t test. The K, E, G can be calculated from formula (7) or directly looked up from Table 4.  

 

(20)

In this formula, the value of F can be obtained from formula 
(19) or referring to Table 4. If the regression equation match-
es, use SR/fR for Se/fe in formula (19) for the regression coeffi-
cient t test. The K, E, G can be calculated from formula (7) or 
directly looked up from Table 4.

The significance of each item of the regression equations on 
the test index were tested by the t test:The significance of each item of the regression equations on the test index were tested by the t test: 

𝑡𝑡(𝑓𝑓�) = �𝑏𝑏�� �𝐷𝐷�𝑏𝑏��� ~𝑡𝑡�(𝑓𝑓�)       (21) 

If t(𝑓𝑓�) > 𝑡𝑡�(𝑓𝑓�), the regression item tested can be considered as significant at the level α, and vice 

versa: 

�𝐷𝐷(𝑏𝑏�) = 𝐾𝐾𝜎𝜎� = 0.1663𝜎𝜎�
𝑡𝑡� = |𝑏𝑏�|/√0.1663𝜎𝜎�

       (22) 

� 𝐷𝐷�𝑏𝑏�� = 𝑒𝑒��𝜎𝜎�
𝑡𝑡� = �𝑏𝑏��/√𝑒𝑒��𝜎𝜎�

, j=1,2,3       (23) 

� 𝐷𝐷�𝑏𝑏��� = 𝑚𝑚���𝜎𝜎�
𝑡𝑡�� = �𝑏𝑏���/�𝑚𝑚���𝜎𝜎�

, h<j; h, j∈3      (24) 

� 𝐷𝐷�𝑏𝑏��� = 𝐹𝐹𝜎𝜎�
𝑡𝑡�� = �𝑏𝑏���/√𝐹𝐹𝜎𝜎�

, jj=1, 2, 3       (25) 

Results: 

The optimization design simulation results 

The values of all the results according to the quadratic rotation design layout were obtained. For-

tunately, stress responses distributing at the endplates of bionic structural cages’ simulation results 

were all lower than before (Figure 3). 

Regression coefficient analysis  

According to formulas (6) and (7), we calculated the regression coefficients. The value of F, K, 

E, G were obtained using Table 4. We calculated the regression coefficient such as 𝑏𝑏�, 𝑏𝑏�� as 

follows: 

𝑏𝑏� = 0.1663∑ 𝑦𝑦� − 0.0568∑ ∑ 𝑥𝑥��� 𝑦𝑦� = 2.39222��
���
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���
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���          

𝑏𝑏�� = −0.0568∑ 𝑦𝑦� + �
�

��
��� 𝑟𝑟�� ∑ 𝑥𝑥��� 𝑦𝑦� + 0.0069∑ ∑ 𝑥𝑥��� 𝑦𝑦���
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�
���

��
���          

Then, we can get:  

𝑏𝑏�� = −2.0139 + 0.0625𝐵𝐵�� = −0.4795, 

 (21)

If t(fe) >ta(fe), the regression item tested can be considered as 
significant at the level a, and vice versa:

The significance of each item of the regression equations on the test index were tested by the t test: 

𝑡𝑡(𝑓𝑓�) = �𝑏𝑏�� �𝐷𝐷�𝑏𝑏��� ~𝑡𝑡�(𝑓𝑓�)       (21) 

If t(𝑓𝑓�) > 𝑡𝑡�(𝑓𝑓�), the regression item tested can be considered as significant at the level α, and vice 

versa: 

�𝐷𝐷(𝑏𝑏�) = 𝐾𝐾𝜎𝜎� = 0.1663𝜎𝜎�
𝑡𝑡� = |𝑏𝑏�|/√0.1663𝜎𝜎�

       (22) 

� 𝐷𝐷�𝑏𝑏�� = 𝑒𝑒��𝜎𝜎�
𝑡𝑡� = �𝑏𝑏��/√𝑒𝑒��𝜎𝜎�

, j=1,2,3       (23) 

� 𝐷𝐷�𝑏𝑏��� = 𝑚𝑚���𝜎𝜎�
𝑡𝑡�� = �𝑏𝑏���/�𝑚𝑚���𝜎𝜎�

, h<j; h, j∈3      (24) 

� 𝐷𝐷�𝑏𝑏��� = 𝐹𝐹𝜎𝜎�
𝑡𝑡�� = �𝑏𝑏���/√𝐹𝐹𝜎𝜎�

, jj=1, 2, 3       (25) 

Results: 

The optimization design simulation results 

The values of all the results according to the quadratic rotation design layout were obtained. For-
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distributing at the endplates of bionic structural cages’ simu-
lation results were all lower than before (Figure 3).
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Then, we can get:  

𝑏𝑏�� = −2.0139 + 0.0625𝐵𝐵�� = −0.4795, 

𝑏𝑏�� = −2.0139 + 0.0625𝐵𝐵�� = −0.0534, 

𝑏𝑏�� = −2.0139 + 0.0625𝐵𝐵�� = −0.0603. 

The calculation results of the above regression coefficients are listed in Table 5.  

Among these coefficients, the values of 𝑥𝑥�𝑥𝑥� and 𝑥𝑥�𝑥𝑥� are close to zero and can be neglected. 

Then, the regression equation can be simplified as follows:  

𝑦𝑦� = 2.3922 + 0.0313𝑥𝑥� − 0.0237𝑥𝑥� − 0.0522𝑥𝑥� + 0.0144𝑥𝑥�𝑥𝑥� − 0.4795𝑥𝑥�� − 0.0534𝑥𝑥��

− 0.0603𝑥𝑥�� 

The significance test of the regression equation  

Before the significance analysis, various squares sum of deviations and degree of freedom are cal-

culated as follows according to formula (8)-(17): 

S = ∑ 𝑦𝑦�� − �
�� (∑ 𝑦𝑦�)��

���
� = 112.8877 − 112.8173 = 0.0704��

��� ,        

f = N − 1 = 19,                                                

𝑆𝑆� = ∑ 𝑦𝑦�� − 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏��𝐵𝐵�� − ∑ 𝑏𝑏��𝐵𝐵�� = 0.0054�
�������

���
��
��� ,  

𝑆𝑆��� = 𝑆𝑆 − 𝑆𝑆� = 0.0065,                                         

𝑓𝑓��� = 9,                                                      

𝑓𝑓� = 𝑓𝑓 − 𝑓𝑓��� = 10,                                             

𝑆𝑆� = ∑ (𝑦𝑦�� − 𝑦𝑦����)� = 0.0037�
���� ,                                  

𝑓𝑓� = 6 − 1 = 5,                                                

𝑆𝑆�� = 𝑆𝑆� − 𝑆𝑆� = 0.0016,                                         

𝑓𝑓�� = 𝑓𝑓� − 𝑓𝑓� = 5.                                               

The significance test of the regression formula used the F test, carried out according to formula (18) 

and (19) as follows: 
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The significance test of the regression formula used the F test, carried out according to formula (18) 

and (19) as follows: 

The loss of quasi inspection:  

The significance test of the regression formula used the F 
test, carried out according to formula (18) and (19) as follows:

The loss of quasi inspection:

𝐹𝐹�� = 𝑆𝑆��/𝑓𝑓��
𝑆𝑆�/𝑓𝑓�

= 0.0016/5
0.0037/5 = 0.4324 < 𝐹𝐹�.��(5,5) = 1.89 

Thus, the regression equation did not lose quasi:  

𝐹𝐹��� = 𝑆𝑆���/𝑓𝑓���
𝑆𝑆�/𝑓𝑓�

= 0.0065/9
0.0054/10 = 1.3374 < 𝐹𝐹�.��(9,10) = 1.56 

However, the regression equation is not significant.  

Among them, 𝜎𝜎� = 𝑆𝑆�/𝑓𝑓�=0.0054/10=0.00054. 

The t test results are listed in Table 5. The items of 𝑏𝑏�, 𝑏𝑏�, 𝑏𝑏�, 𝑏𝑏�� have significant effects on dif-

ferent degrees. To obtain the lower stress response of the endplate, the factors which have a sig-

nificant effect were put into the equation, so the regression equation can be described as follows: 

𝑦𝑦� = 2.3922 + 0.0313𝑥𝑥� − 0.0237𝑥𝑥� − 0.0522𝑥𝑥� 

According to the relationship formula between 𝑧𝑧�, 𝑧𝑧�, 𝑧𝑧� and 𝑥𝑥�, 𝑥𝑥�, 𝑥𝑥�, the 𝑥𝑥�, 𝑥𝑥�, 𝑥𝑥� are all re-
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groove should meet the condition as equation as follows, 2.5 − (|𝑠𝑠| + �
�) ≥ 0.5,  namely 

|𝑠𝑠| + �
� ≤ 2. 

The depth of the groove is relative to the radius of the cage itself and the radius of center opening. 

The radius of the cage was 6.5 mm, the radius of the center opening was 2.5 mm. Thus, after 

processing groove structure, the thickness of cage (ℎ�) radially should not less than 1 mm to ensure 

the cage’s minimum size. Specifically, ℎ� = 6.5 − 2.5 − ℎ ≥ 1, thus the groove should meet 

0 ≤ h ≤ 3. 

From the discussion above, the groove size optimum problem can be represented using the fol-

lowing equations:  
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The t test results are listed in Table 5. The items of b1, b2, b3 , 
b3

2 have significant effects on different degrees. To obtain the 

p pc=Öp mc=2p_1 mr=2p m0 N l4 K -E F G

2 1.414 4 4 5 13 0.813 0.2000 0.1000 0.1438 0.0188

3 1.732 8 6 6 20 0.857 0.1663 0.0568 0.0684 0.0069

4 2.000 16 8 7 31 0.861 0.1428 0.0357 0.0350 0.0037

Table 4. The quadratic regression general rotation design parameter [21].
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Figure 3.  The comparison between Von Mises stresses of the 
original structural cage (the black dotted line) and 
bionic structural ones using quadratic rotation design 
(the blue polyline).

𝑏𝑏�� = −2.0139 + 0.0625𝐵𝐵�� = −0.0534, 

𝑏𝑏�� = −2.0139 + 0.0625𝐵𝐵�� = −0.0603. 

The calculation results of the above regression coefficients are listed in Table 5.  

Among these coefficients, the values of 𝑥𝑥�𝑥𝑥� and 𝑥𝑥�𝑥𝑥� are close to zero and can be neglected. 

Then, the regression equation can be simplified as follows:  

𝑦𝑦� = 2.3922 + 0.0313𝑥𝑥� − 0.0237𝑥𝑥� − 0.0522𝑥𝑥� + 0.0144𝑥𝑥�𝑥𝑥� − 0.4795𝑥𝑥�� − 0.0534𝑥𝑥��

− 0.0603𝑥𝑥�� 

The significance test of the regression equation  

Before the significance analysis, various squares sum of deviations and degree of freedom are cal-

culated as follows according to formula (8)-(17): 

S = ∑ 𝑦𝑦�� − �
�� (∑ 𝑦𝑦�)��

���
� = 112.8877 − 112.8173 = 0.0704��

��� ,        

f = N − 1 = 19,                                                

𝑆𝑆� = ∑ 𝑦𝑦�� − 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏�𝐵𝐵� − ∑ 𝑏𝑏��𝐵𝐵�� − ∑ 𝑏𝑏��𝐵𝐵�� = 0.0054�
�������

���
��
��� ,  

𝑆𝑆��� = 𝑆𝑆 − 𝑆𝑆� = 0.0065,                                         

𝑓𝑓��� = 9,                                                      

𝑓𝑓� = 𝑓𝑓 − 𝑓𝑓��� = 10,                                             

𝑆𝑆� = ∑ (𝑦𝑦�� − 𝑦𝑦����)� = 0.0037�
���� ,                                  

𝑓𝑓� = 6 − 1 = 5,                                                

𝑆𝑆�� = 𝑆𝑆� − 𝑆𝑆� = 0.0016,                                         

𝑓𝑓�� = 𝑓𝑓� − 𝑓𝑓� = 5.                                               

The significance test of the regression formula used the F test, carried out according to formula (18) 

and (19) as follows: 

The loss of quasi inspection:  
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No. x0 x1(z1) x2(z2) x3(z3) x1x2 x1x3 x2x3 x1
2 x2

2 x3
2 yi

1 1
1 

(0.595)
1 

(1.696)
1 

(2.0946)
1 1 1 1 1 1 2.332

2 1
1 

(0.5946)
1 

(1.696)
–1 

(0.9054)
1 –1 –1 1 1 1 2.437

3 1
1 

(0.5946)
–1 

(0.804)
1 

(2.0946)
–1 1 –1 1 1 1 2.396

4 1
1 

(0.5946)
–1 

(0.804)
–1 

(0.9054)
–1 –1 1 1 1 1 2.448

5 1
–1 

(–0.5946)
1 

(1.696)
1 

(2.0946)
–1 –1 1 1 1 1 2.208

6 1
–1 

(–0.5946)
1 

(1.696)
–1 

(0.9054)
–1 1 –1 1 1 1 2.369

7 1
–1 

(–0.5946)
–1 

(0.804)
1 

(2.0946)
1 –1 –1 1 1 1 2.307

8 1
–1 

(–0.5946)
–1 

(0.804)
–1 

(0.9054)
1 1 1 1 1 1 2.418

9 1
–1.6818 

(–1)
0 

(1.25)
0 

(1.5)
0 0 0 2.8284 0 0 2.346

10 1
r 

(1)
0 

(1.25)
0 

(1.5)
0 0 0 0 0 0 2.415

11 1
0 

(0)
–1.6818 

(0.5)
0 

(1.5)
0 0 0 0 2.8284 0 2.408

12 1
0 

(0)
1.6818 

(2)
0 

(1.5)
0 0 0 0 2.8284 0 2.348

13 1
0 

(0)
0 

(1.25)
–1.6818 

(0.5)
0 0 0 0 0 2.8284 2.443

14 1
0 

(0)
0 

(1.25)
1.6818 
(2.5)

0 0 0 0 0 2.8284 2.274

15 1
0 

(0)
0 

(1.25)
0 

(1.5)
0 0 0 0 0 0 2.396

16 1
0 

(0)
0 

(1.25)
0 

(1.5)
0 0 0 0 0 0 2.414

17 1
0 

(0)
0 

(1.25)
0 

(1.5)
0 0 0 0 0 0 2.359

18 1
0 

(0)
0 

(1.25)
0 

(1.5)
0 0 0 0 0 0 2.377

19 1
0 

(0)
0 

(1.25)
0 

(1.5)
0 0 0 0 0 0 2.432

20 1
0 

(0)
0 

(1.25)
0 

(1.5)
0 0 0 0 0 0 2.374

Dj 20 13.6569 13.6569 13.6569 8 8 8 15.9998 23.9997 23.9997 225.7753

Bj 47.501 0.4270442 –0.3239 –0.7132 0.073 0.115 –0.103 25.5504 32.3669 32.2566

bj 2.3922 0.0313 –0.0237 –0.0522 0.0091 0.0144 –0.00129 –0.4795 –0.0534 –0.0603

bj Bj 113.6319 0.0134 0.0077 0.0372 0.0007 0.0017 0.0013 –12.2506 –1.7297 –1.9461

tj 252.4379 2.2200 1.6815 3.7036 0 0.0001 0.0001 0.0029 0.0003 0.0004

aj 0.001 0.1 0.2 0.02 – – – – – –

Table 5. The calculation results of regression coefficients.
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lower stress response of the endplate, the factors which have 
a significant effect were put into the equation, so the regres-
sion equation can be described as follows:

𝐹𝐹�� = 𝑆𝑆��/𝑓𝑓��
𝑆𝑆�/𝑓𝑓�

= 0.0016/5
0.0037/5 = 0.4324 < 𝐹𝐹�.��(5,5) = 1.89 

Thus, the regression equation did not lose quasi:  

𝐹𝐹��� = 𝑆𝑆���/𝑓𝑓���
𝑆𝑆�/𝑓𝑓�

= 0.0065/9
0.0054/10 = 1.3374 < 𝐹𝐹�.��(9,10) = 1.56 

However, the regression equation is not significant.  

Among them, 𝜎𝜎� = 𝑆𝑆�/𝑓𝑓�=0.0054/10=0.00054. 

The t test results are listed in Table 5. The items of 𝑏𝑏�, 𝑏𝑏�, 𝑏𝑏�, 𝑏𝑏�� have significant effects on dif-

ferent degrees. To obtain the lower stress response of the endplate, the factors which have a sig-

nificant effect were put into the equation, so the regression equation can be described as follows: 

𝑦𝑦� = 2.3922 + 0.0313𝑥𝑥� − 0.0237𝑥𝑥� − 0.0522𝑥𝑥� 

According to the relationship formula between 𝑧𝑧�, 𝑧𝑧�, 𝑧𝑧� and 𝑥𝑥�, 𝑥𝑥�, 𝑥𝑥�, the 𝑥𝑥�, 𝑥𝑥�, 𝑥𝑥� are all re-

placed using 𝑧𝑧�, 𝑧𝑧�, 𝑧𝑧�, the equation could be changed as: 

𝑦𝑦� = 2.5902 + 0.0526𝑧𝑧� − 0.0531𝑧𝑧� − 0.0877𝑧𝑧� 

To ensure the formation of the groove structure, the width of the groove and the location of the 

groove should meet the condition as equation as follows, 2.5 − (|𝑠𝑠| + �
�) ≥ 0.5,  namely 

|𝑠𝑠| + �
� ≤ 2. 

The depth of the groove is relative to the radius of the cage itself and the radius of center opening. 

The radius of the cage was 6.5 mm, the radius of the center opening was 2.5 mm. Thus, after 

processing groove structure, the thickness of cage (ℎ�) radially should not less than 1 mm to ensure 

the cage’s minimum size. Specifically, ℎ� = 6.5 − 2.5 − ℎ ≥ 1, thus the groove should meet 

0 ≤ h ≤ 3. 

From the discussion above, the groove size optimum problem can be represented using the fol-

lowing equations:  

According to the relationship formula between z1, z2, z3 and 
x1, x2, x3, the x1, x2, x3 are all replaced using z1, z2, z3, the equa-
tion could be changed as:

To ensure the formation of the groove structure, the width 
of the groove and the location of the groove should meet the 
condition as equation as follows, namely
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However, the regression equation is not significant.  

Among them, 𝜎𝜎� = 𝑆𝑆�/𝑓𝑓�=0.0054/10=0.00054. 
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ferent degrees. To obtain the lower stress response of the endplate, the factors which have a sig-

nificant effect were put into the equation, so the regression equation can be described as follows: 
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�) ≥ 0.5,  namely 

|𝑠𝑠| + �
� ≤ 2. 

The depth of the groove is relative to the radius of the cage itself and the radius of center opening. 
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processing groove structure, the thickness of cage (ℎ�) radially should not less than 1 mm to ensure 

the cage’s minimum size. Specifically, ℎ� = 6.5 − 2.5 − ℎ ≥ 1, thus the groove should meet 

0 ≤ h ≤ 3. 

From the discussion above, the groove size optimum problem can be represented using the fol-

lowing equations:  
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The radius of the cage was 6.5 mm, the radius of the center opening was 2.5 mm. Thus, after 

processing groove structure, the thickness of cage (ℎ�) radially should not less than 1 mm to ensure 

the cage’s minimum size. Specifically, ℎ� = 6.5 − 2.5 − ℎ ≥ 1, thus the groove should meet 

0 ≤ h ≤ 3. 

From the discussion above, the groove size optimum problem can be represented using the fol-

lowing equations:  

.

The depth of the groove is relative to the radius of the cage 
itself and the radius of center opening. The radius of the cage 
was 6.5 mm, the radius of the center opening was 2.5 mm. 
Thus, after processing groove structure, the thickness of cage 
(h’) radially should not less than 1 mm to ensure the cage’s 
minimum size. Specifically, h’=6.5–2.5–h ³1, thus the groove 
should meet 0£ h £3.

From the discussion above, the groove size optimum problem 
can be represented using the following equations:

⎩
⎪
⎨
⎪
⎧𝜎𝜎 = 2.5902 + 0.0526𝑠𝑠 − 0.0531𝑏𝑏 − 0.0877ℎ

|𝑠𝑠| + 𝑏𝑏
2 ≤ 2

𝑏𝑏 ≥ 0
|𝑠𝑠| ≥ 0

0 ≤ h ≤ 3

 

From the regression equation, the stress response of endplate is positively correlated to the s, the 

larger of value of s, the larger of stress response of endplate; the stress response of endplate is 

negatively correlated to the value of b and h, the larger of the value of b or h, the smaller of stress 

response of endplate. According to the equation (28), the optimum structural size parameters for 

minimum stress response of endplate were s = 0 mm, b = 4 mm, h = 3 mm, respectively, and 

the minimum stress response of endplate was 2.1147 MPa. In order to validate the regression re-

sults, the cage designed using the size of the optimum parameter was simulated under the same 

boundary and loading condition with the others, and the endplate’s stress response obtained from 

the simulation was 1.90527 Mpa, which was lower than the value calculated by the regression 

equation. Moreover, the stress response of endplate has decreased by 22.58% compared with the 

original one. The stress distribution on endplates, cages, bone grafts, and cancellous and cortical 

bone of C5 and C6 for the original cage and optimum structural cage were contrasted (Figure 4 

and Figure 5).  

 

Discussion: 

In this study, a cage with bionic structure was designed and optimized. As a result, the front view 

of the bionic structural cage is I-shaped. Because a previous study demonstrated that the contact 

area between cages and the endplates influenced the stress of endplates [24], in the present study, 

the same surface area of all cages with bionic structure was set to weaken the influence of cage 

surface area. Optimization was carried out based on the experimental optimum design idea [25]. 

Testing with only 20 runs using the regression analysis method reduces the test number and im-

proves the efficiency of exploring optimization parameters.  

From the regression equation, the stress response of end-
plate is positively correlated to the s, the larger of value of s, 
the larger of stress response of endplate; the stress response 
of endplate is negatively correlated to the value of b and h, 
the larger of the value of b or h, the smaller of stress response 
of endplate. According to the equation (28), the optimum struc-
tural size parameters for minimum stress response of end-
plate were s=0 mm, b=4 mm, h=3 mm, respectively, and the 
minimum stress response of endplate was 2.1147 MPa. In or-
der to validate the regression results, the cage designed us-
ing the size of the optimum parameter was simulated under 
the same boundary and loading condition with the others, 
and the endplate’s stress response obtained from the simu-
lation was 1.90527 Mpa, which was lower than the value cal-
culated by the regression equation. Moreover, the stress re-
sponse of endplate has decreased by 22.58% compared with 
the original one. The stress distribution on endplates, cages, 
bone grafts, and cancellous and cortical bone of C5 and C6 
for the original cage and optimum structural cage were con-
trasted (Figures 4, 5).

Discussion

In this study, a cage with bionic structure was designed and 
optimized. As a result, the front view of the bionic structural 
cage is I-shaped. Because a previous study demonstrated that 
the contact area between cages and the endplates influenced 
the stress of endplates [24], in the present study, the same sur-
face area of all cages with bionic structure was set to weak-
en the influence of cage surface area. Optimization was car-
ried out based on the experimental optimum design idea [25]. 
Testing with only 20 runs using the regression analysis meth-
od reduces the test number and improves the efficiency of ex-
ploring optimization parameters.

In addition, the relationship between the 3 structural size pa-
rameters of the cervical cage and the end plate stress was 
proved using regression analysis theory. The results showed 
that a cage with a lower distance between the center of the 
cage and groove and higher depth and width of the groove 
produced a lower stress response on the endplate. According 
to the simulation results, the regression formula showed that 
all the structural factors demonstrated in this work took part 
in influencing the stress responses of endplates. Furthermore, 
the results show that the optimization target changes linear-
ly with the change of factors. The distance between the cen-
ter of the cage and groove has a positive effect on the stress 
response of the endplate; nevertheless, both the depth and 
width of the groove have negative effects.

To understand the influence mechanism of the structural de-
sign compared to the original one, the stress distribution was 
compared in Figures 4 and 5. As shown in Figure 4, the stress-
es distributed on the endplates was smaller and more uniform, 
which directly resist the occurrence of subsidence. Figure 5 
showed that the new optimized structural cage changed the 
stress distribution state on the adjacent tissues. The stress was 
distributed mainly on the edge of the superior-inferior surfac-
es of vertebra of the original cage design, but it was mainly 
distributed on the center of the vertebra of the optimized de-
sign. This was conductive to the promotion of the cage’s sub-
sidence-resistance. In short, when using 3 variables that vary 
within a certain range for experimental design, a regression 
analysis method can be effectively used to explore the rela-
tionship between these structural parameters and the target 
stress response. In addition, the experimental optimization de-
sign method can improve the consistency of experimental de-
sign and analysis and can reduce the experimental time and 
cost. Because there are many products or processes in the 
field of biomechanics that require optimal implementation, 
regression analysis methods could make a huge contribution.

This study has some limitations. The model established in this 
study sets the material properties of vertebrae, bone grafts, 
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Figure 4.  The stress distribution on endplates, cages, and bone grafts for original cage and optimum structural one.

and cages to be isotropic linear. Furthermore, the screws were 
set as solid cylinders in combination with vertebrae and plates, 
and the screw threads were not modeled in the analysis [36]. 
Theoretically, by keeping the test conditions of all the surgi-
cal models consistent, the results obtained from the FE anal-
ysis can be taken as an effective method to demonstrate the 
biomechanical properties related to the bionic structure de-
sign of the cervical anterior surgical cage.

Conclusions

In the study, the influence of bionic structural design of cervi-
cal intervertebral cage on the postoperative effects was inves-
tigated. The simulation results showed that cages with bionic 
structure design could effectively decrease the stress response 

of endplate, which improved the subsistence property. By using 
secondary rotation regression optimization design and analy-
sis method, the regression equations were developed between 
stress responses of endplate and the structural sized parame-
ters. Furthermore, the equation could significantly predict the 
value of the optimum object (the stress response of endplate) 
through significance analysis of the equation. The simulation 
model established using the cage with optimization parame-
ters calculated the stress response of endplate matched well 
with the prediction of the regression equation. Our results sug-
gest that the optimization method has great potential appli-
cation in the biomechanical engineering field.
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Figure 5.  The stress distribution on cancellous and cortical bone of C5 and C6 for the original cage and optimum structural one.

e924236-11
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Wang J. et al.: 
Structure design and optimization of the C5–C6 cervical intervertebral…
© Med Sci Monit, 2020; 26: e924236

CLINICAL RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



References:

 1. Liu C, Liu KX, Chu L et al: Posterior percutaneous endoscopic cervical dis-
cectomy through lamina-hole approach for cervical intervertebral disc her-
niation. Int J Neurosci, 2019; 129: 627–34

 2. Balasa A, Bielecki M, Prokopienko M, Kunert P: Lateral approach for recur-
rent unilateral cervical radiculopathy after anterior discectomy with fusion. 
Report of two cases. Videosurgery Miniinv, 2019; 14: 348–52

 3. Eco LC, Brayton A, Whitehead WE, Jea A: Reconstruction of the anterior 
craniocervical junction using an expandable cage after resection of a C1 
chordoma in a 5-year-old child: Case report. J Neurosurg-Pediatr, 2019; 24: 
62–65

 4. Alvi MA, Kurian SJ, Wahood W et al: Assessing the difference in clinical and 
radiologic outcomes between expandable cage and nonexpandable cage 
among patients undergoing minimally invasive transforaminal interbody 
fusion: A systematic review and meta-analysis. World Neurosurg, 2019; 
127: 596–606.e1

 5. Goz V, Buser Z, D’Oro A et al: Complications and risk factors using structur-
al allograft versus synthetic cage: Analysis 17783 anterior cervical discec-
tomy and fusions using a national registry. Global Spine J, 2019; 9: 388–92

 6. Wilke H J, Kettler A, Goetz C, Claes L: Subsidence resulting from simulated 
postoperative neck movements: An in vitro investigation with a new cervi-
cal fusion cage. Spine, 2000; 25(21): 2762–70

 7. Kandziora F, Pflugmacher R, Schäfer J et al: Biomechanical comparison of 
cervical spine interbody fusion cages. Spine, 2001; 26(17): 1850–57

 8. Kandziora F, Schollmeier G, Scholz M et al: Influence of cage design on in-
terbody fusion in a sheep cervical spine model. J Neurosurg, 2002; 96(3): 
321–32

 9. Kandziora F, Pflugmacher R, Scholz M et al: Bioabsorbable interbody cag-
es in a sheep cervical spine fusion model. Spine, 2004; 29(17): 1845–55

 10. Oliver JD, Goncalves S, Kerezoudis P et al: Comparison of outcomes for an-
terior cervical discectomy and fusion with and without anterior plate fixa-
tion: A systematic review and meta-analysis. Spine, 2018; 43(7): E413–22

 11. Fernandez-Fairen M, Alvarado E, Torres A: Eleven-year follow-up of two co-
horts of patients comparing stand-alone porous tantalum cage versus autol-
ogous bone graft and plating in anterior cervical fusions. World Neurosurg, 
2019; 122: E156–67

 12. Noordhoek I, Koning MT, Vleggeert-Lankamp CLA: Evaluation of bony fu-
sion after anterior cervical discectomy: A systematic literature review. Eur 
Spine J, 2019; 28(2): 386–99

 13. Kettler A, Wilke HJ, Claes L: Effects of neck movements on stability and sub-
sidence in cervical interbody fusion: An in vitro study. J Neurosurg, 2001; 
94(1 Suppl.): 97–107

 14. Lu T, Liang H, Liu C et al: Effects of titanium mesh cage end structures on 
the compressive load at the endplate interface: A cadaveric biomechani-
cal study. Med Sci Monit, 2017; 23: 2863–70

 15. Mao CY, Ma YH, Wu SY et al: Wear resistance and wet skid resistance of com-
posite bionic tire tread compounds with pit structure. Mater Res Express, 
2019; 6: 085331

 16. Li KY, Yang XY, Xue C et al: Biomimetic human lung-on-a-chip for modeling 
disease investigation. Biomicrofluidics, 2019; 13(3): 031501

 17. Wang M, Dong HF, Li X et al: Control and optimization of a bionic robotic 
fish through a combination of CPG model and PSO. Neurocomputing, 2019; 
337: 144–52

 18. Wang J, Du ZZ, He ZT, Wang JJ: Exploring vibration transmission rule of an 
artificial spider web for potential application in invulnerability of wireless 
sensor network. Appl Bionics Biomech. 2019; 2019: 5125034

 19. Mohanty S, Dahia CL: Defects in intervertebral disc and spine during devel-
opment, degeneration, and pain: New research directions for disc regener-
ation and therapy. Wires Dev Biol, 2019; 8(4): e343

 20. Zhao RZ, Liu WQ, Xia TT, Yang L: Disordered mechanical stress and tissue 
engineering therapies in intervertebral disc degeneration. Polymers, 2019; 
11(7): 1151

 21. Kuo RF, Fang KM, Wong TY, Hu CY: Quantification of dental prostheses on 
cone-beam CT images by the Taguchi method. J Appl Clin Med Phys, 2016; 
17: 207–20

 22. Usma-Alvarez CC, Fuss FK, Subic A: User-centered design customization 
of rugby wheelchairs based on the Taguchi method. J Mech Design, 2014; 
136(4): 041001

 23. Fan CY, Chao CK, Hsu CC, Chao KH: The optimum cage position and orien-
tation on the ALIF with facet screw fixation: A finite element analysis and 
the Taguchi method. J Mech, 2011; 27(3): 309–20

 24. Yang K, Teo EC, Fuss FK: Application of Taguchi method in optimization of 
cervical ring cage. J Biomech, 2007; 40: 3251–56

 25. Ren LQ: [Regression design and optimization.] 1th ed. Beijing (NY): Science 
Press; 2009 [in Chinese]

 26. Wang J, Qian Z, Ren L: Biomechanical comparison of optimal shapes for 
the cervical intervertebral fusion cage for C5–C6 cervical fusion using the 
Anterior Cervical Plate and Cage (ACPC) fixation system: A finite element 
analysis. Med Sci Monit, 2019; 25: 8379–88

 27. Zhang QH, Teo EC, Ng HW, Lee VS: Finite element analysis of moment-rota-
tion relationships for human cervical spine. J Biomech, 2006; 39: 189–93

 28. Ha SK: Finite element modeling of multi-level cervical spinal segments (C3–
C6) and biomechanical analysis of an elastomer-type prosthetic disc. Med 
Eng Phys, 2006; 28: 534–41

 29. Ng HW, Teo EC: Nonlinear finite-element analysis of the lower cervical spine 
(C4–C6) under axial loading. J Spinal Disord, 2001; 14: 201–10

 30. Kallemeyn N, Gandhi A, Kode S et al: Validation of a C2–C7 cervical spine fi-
nite element model using specimen-specific flexibility data. Med Eng Phys, 
2010; 32: 482–89

 31. Panzer MB, Cronin DS: C4–C5 segment finite element model development, 
validation, and load-sharing investigation. J Biomech, 2009; 42: 480–90

 32. Teo EC, Yang K, Fuss FK et al: Effects of cervical cages on load distribution 
of cancellous core-a finite element analysis. J Spinal Disord Tech, 2004; 
17(3): 226–31

 33. Natarajan RN, Chen BH, An HS, Andersson GBJ: Anterior cervical fusion: 
A finite element model study on motion segment stability including the ef-
fect of osteoporosis. Spine, 2000; 25(8): 955–61

 34. Reilly DT, Burstein AH, Frankel VH: The elastic modulus for bone. J Biomech, 
1974; 7: 271–75

 35. Yang K, Teo EC, Fuss FK: Application of Taguchi method in optimization of 
cervical ring cage. J Biomech, 2007; 40: 3251–56

 36. Meng L, Zhang Y, Lu Y: Three-dimensional finite element analysis of miniex-
ternal fixation and Kirschner wire internal fixation in Bennett fracture treat-
ment. Orthop Traumatol Surg Res, 2013; 99(1): 21–29

e924236-12
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Wang J. et al.: 
Structure design and optimization of the C5–C6 cervical intervertebral…

© Med Sci Monit, 2020; 26: e924236
CLINICAL RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)


