
Magn Reson Med. 2022;87:1231–1249.	 ﻿	    |  1231wileyonlinelibrary.com/journal/mrm

Received: 22 March 2021  |  Revised: 12 August 2021  |  Accepted: 18 August 2021

DOI: 10.1002/mrm.29001  

R E S E A R C H  A R T I C L E

Fundamentals of turbulent flow spectrum imaging

Hannes Dillinger   |   Charles McGrath   |   Christian Guenthner   |   
Sebastian Kozerke

Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland

This is an open access article under the terms of the Creat​ive Commo​ns Attri​bution-NonCo​mmercial License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.

Correspondence
Hannes Dillinger, Institute for Biomedical 
Engineering, University and ETH 
Zurich, Gloriastrasse 35, 8092 Zurich, 
Switzerland.
Email: dillinger@biomed.ee.ethz.ch

Funding information
Funding support provided by the 
Platform for Advanced Scientific 
Computing of the Council of Federal 
Institutes of Technology (ETH Board), 
Switzerland

Purpose: To introduce a mathematical framework and in-silico validation of 
turbulent flow spectrum imaging (TFSI) of stenotic flow using phase-contrast 
MRI, evaluate systematic errors in quantitative turbulence parameter estima-
tion, and propose a novel method for probing the Lagrangian velocity spectra of 
turbulent flows.
Theory and Methods: The spectral response of velocity-encoding gradients is 
derived theoretically and linked to turbulence parameter estimation including 
the velocity autocorrelation function spectrum. Using a phase-contrast MRI sim-
ulation framework, the encoding properties of bipolar gradient waveforms with 
identical first gradient moments but different duration are investigated on turbu-
lent flow data of defined characteristics as derived from computational fluid dy-
namics. Based on theoretical insights, an approach using velocity-compensated 
gradient waveforms is proposed to specifically probe desired ranges of the veloc-
ity autocorrelation function spectrum with increased accuracy.
Results: Practical velocity-encoding gradients exhibit limited encoding power 
of typical turbulent flow spectra, resulting in up to 50% systematic underestima-
tion of intravoxel SD values. Depending on the turbulence level in fluids, the 
error due to a single encoding gradient spectral response can vary by 20%. When 
using tailored velocity-compensated gradients, improved quantification of the 
Lagrangian velocity spectrum on a voxel-by-voxel basis is achieved and used for 
quantitative correction of intravoxel SD values estimated with velocity-encoding 
gradients.
Conclusion: To address systematic underestimation of turbulence parameters 
using bipolar velocity-encoding gradients in phase-contrast MRI of stenotic flows 
with short correlation times, tailored velocity-compensated gradients are pro-
posed to improve quantitative mapping of turbulent blood flow characteristics.
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1  |   INTRODUCTION

Time-resolved 3D phase-contrast MRI (4D flow MRI) has 
received significant attention in the field.1 Applications of 
4D flow MRI include the assessment of valve diseases,2 
aortic aneurysms/dissection,3,4 stenosis of pulmonary ves-
sels,5 and many more. In aortic valve stenosis, quantifi-
cation of blood flow jet velocities and maximum pressure 
gradients play a key role in clinical diagnosis.6 Moreover, 
turbulent flow metrics including turbulent kinetic energy 
(TKE) have been regarded of potential value. Binter et al7 
have demonstrated that increased levels of TKE convey 
additional information relative to mean pressure gradi-
ents across stenoses; thus, potential utility has been indi-
cated for improved assessment of valve diseases.

Considerable research attention has been directed to 
mapping TKE using 4D flow MRI.7-9 Moreover, encoding 
of the full Reynolds stress tensor has been proposed to as-
sess turbulent shear flow and improve the estimation of 
net pressure losses.8,10

The encoding theory of random motion in turbulent 
flow using MRI is covered in seminal studies by Kuethe 
et al11,12 and Gao et al.13 A theoretical framework has been 
formulated based on the assumption of an exponentially 
decaying correlation function, which was applied to map 
turbulent intensities in a stenosis phantom.14 Based on this 
framework, Gatenby and Gore15,16 differentiated between 2 
regimes: 𝜏c ≫ 𝜏 and 𝜏c ≪ 𝜏, where the average correlation 
time �c for a fluid element to change direction is related to 
a velocity-encoding gradient (VEG) of duration 2�.

The assumption 𝜏c ≫ 𝜏 constitutes the foundation 
of the work concerned with turbulence encoding.17,18 
However, to the best of our knowledge, this assumption 
has never been verified for phase-contrast MRI. Whereas 
in vitro and in vivo measurements19-21 in stenotic aortae 
with realistic flow conditions have predicted a correlation 
time �c in the millisecond range, it at the same time inval-
idates the assumption 𝜏c ≫ 𝜏 given practical bipolar gradi-
ent waveform lobe durations �.

Of note, early work by Stepišnik22,23 introduced a 
description of motion spectra in terms of the velocity 
auto-correlation function and its Fourier transform for 
diffusion MRI. The main conclusion derived by Stepišnik 
is that the attenuation of the magnitude signal solely de-
pends on the area of the overlap of gradient and motion 
spectra. Callaghan and Stepišnik24 successfully applied a 
method using different gradient spectra for predicting the 
frequency-varying diffusion coefficient in a moving fluid. In 
turbulent flow MRI, to the best of our knowledge, no such 
considerations have been made. Newling et al25 state that 
the correlation time must be imaged on a voxel basis to ob-
tain precise estimates of the diffusivity; however, although 
they refer to Gao and Gore’s technique, they do not apply it.

The objectives of the current work are threefold: 
First, the spectral response of motion-encoding gradient 
waveforms (including velocity-encoding and velocity-
compensated waveforms) is derived and evaluated with 
respect to their theoretical encoding power of character-
istic turbulent flow spectra. It is shown that VEGs of iden-
tical first-gradient moments but different durations result 
in different degrees of underestimation of turbulence pa-
rameters. Second, a method for quantification of turbu-
lent motion spectra using velocity-compensated gradients 
(VCG) is presented and used to correct for systematic 
underestimation of turbulence parameters derived from 
velocity-encoded data. Third, a correction method for tur-
bulence parameter estimation using VEGs with different 
durations and without prior probing of the turbulent mo-
tion spectra is proposed.

2  |   THEORY

2.1  |  Encoding of incoherent motion 
using motion-encoding gradients

The k-space signal equation yielding data d(t),

is based on the Fourier relation of the spatially dependent 
complex-valued transverse magnetization 𝜌0

(
��⃗r� (t)

)
 in the 

excited volume � given phase,

and evaluated as the time integral of the gradient wave-
form ��⃗G (t) and the time-dependent position vector of 
magnetization ��⃗r� (t) starting at a reference point in 
time t0 (assumed zero for the remainder of the paper). 
Because the current paper focuses on motion-encoded 
phase, henceforth ��⃗G (t) is termed motion-encoding 
gradient (MEG). Depending on the order of moment 
compensation, a VEG with vanishing zeroth moment 
����⃗M0 (TE) = � TE

0
��⃗G (t) dt ≡ 0 or a VCG with vanishing ze-

roth and first moment ����⃗M1 (TE) = � TE
0

��⃗G (t)
(
t − t0

)
dt ≡ 0 

with respect to TE is obtained.

2.1.1  |  Temporal interpretation

If incoherent motion is present in a voxel, the Fourier phase 
� (t) results from an ensemble of magnetization, and the 
signal received can be written as the ensemble average26

(1)d (t) = ∫
�

𝜌0

(
��⃗r� (t)

)
ej𝜑(t)d��⃗r� (t) ,

(2)𝜑 (t) = 𝛾 ∫
t

t0

��⃗G
(
t�
)
⋅ ��⃗r�

(
t�
)
dt�,



      |  1233DILLINGER et al.

where index c denotes the cumulant average,27 whereas the 
volume integral is omitted for brevity. If a Gaussian distribu-
tion is assumed (see Appendix), the resulting expression for 
the signal of an ensemble of magnetization with Gaussian 
phase distribution is given as

Because �(t) in Equation (4) is real valued, it exhibits a 
damping of the magnitude, which is referred to as dephas-
ing due to intravoxel SD (IVSD18).

Performing a per partes integration,28 Equation (4) re-
sults in

where �⃗q (t) = ∫ t
0
��⃗G

(
t�
)
dt� denotes the time integral of the 

gradient waveform, and v⃗ (t) denotes the instantaneous 
velocity. Of note, the amount of spin ensemble dephas-
ing (ie, the value of �(t)) is solely dependent on the ratio 

of the correlation time scale �c (proportional to the term 
v⃗
(
t1
)
v⃗
(
t2
)
LC

, further defined in Equation (8)) and the du-
ration � of the MEG given a fixed encoding strength.

The assumption 𝜏c ≫ 𝜏 implies that the spectral en-
ergy of the random process v⃗

(
t1
)
v⃗
(
t2
)
LC

 is confined in 

a low frequency regime compared to the spectrum of the 
VEG. Therefore, the amount of dephasing given by �(t) 
in Equation (5) can be controlled by the MEG amplitude 
alone, independent of duration �, as long as 𝜏c ≫ 𝜏 holds. 
However, satisfying 𝜏c ≫ 𝜏 for a given correlation time �c 

in the millisecond regime would result in infeasible MEG 
durations. It can therefore be necessary to operate in the 
regime �c ≈ �. As can be seen in Figure 1, �c may vary spa-
tially and, for pulsatile flow, vary also temporally.

(3)E (t) = ej�(t) = exp

�
∞�
n=1

(−1)n

n ! ∫
t

0 ∫
t

0

⋯ ∫
t

0

⟨ j� �
t1
�
j�

�
t2
�
⋯j�

�
tn
�⟩c dt1dt2⋯dtn

�
,

(4)
E (t) = exp

⎡
⎢⎢⎢⎢⎢⎣

− j 𝛾 ∫
t

0

��⃗G
�
t�
�
⋅ r⃗ (t�)dt�

���������������������������
𝜑0(t)+𝜑v(t)

−
1

2
𝛾2 ∫

t

0 ∫
t

0

��⃗G
�
t1
�
⋅ r⃗

�
t1
�
r⃗
�
t2
�
LC

⋅ ��⃗G
�
t2
�
dt1dt2

���������������������������������������������������������������������������
𝛼(t)

⎤
⎥⎥⎥⎥⎥⎦

.

(5)E (t) = exp

⎡
⎢⎢⎢⎢⎢⎣

− j 𝛾 ∫
t

0

�⃗q
�
t�
�
⋅ v⃗ (t�)dt�

�������������������������
𝜑v(t)

−
1

2
𝛾2 ∫

t

0 ∫
t

0

�⃗q
�
t1
�
⋅ v⃗

�
t1
�
v⃗
�
t2
�
LC

⋅ �⃗q
�
t2
�
dt1dt2

�������������������������������������������������������������������������
𝛼(t)

⎤
⎥⎥⎥⎥⎥⎦

,

F I G U R E  1   (A) Turbulence characteristics in a jet region vary spatially and temporally and can be described by random processes with 
different properties. Underlying mean velocity magnitude data56 |u| enables differentiation between jet core and boundary zone, for example, 
which are expected to show different turbulence characteristics (compare TKE plots in Binter et al.56). (B) Depending on the region, for 
example, at the jet boundary, velocity autocorrelation functions exhibit a shorter correlation time �c1 when compared to �c2 in the jet core. 
(C) This results in different VACF spectra Dm,n (�) , m,n ∈ {x, y, z}. The eddy frequency feddy is used to describe the spectral dynamics of 
the simplified random processes. − 5∕3 line depicts the begin of the inertial range of the 2 spectra, respectively. feddy, eddy frequency; TKE, 
turbulent kinetic energy; VACF, velocity autocorrection function
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When neglecting all terms with orders higher than 1 
in the expansion of the general distribution, Equation (4) 
results. The term �v (t) is the phase component, which 
encodes bulk motion, whereas the second term � (t) en-
codes incoherent motion fluctuating around the mean. 
The tensor property of the product of the vectors �⃗q

(
𝜏1
)
, 

�⃗q
(
𝜏2
)
 and the matrix v⃗

(
𝜏1
)
v⃗
(
𝜏2
)
LC

, in theory, enables 
probing of every element of the matrix by encoding a 
linear combination of the matrix elements. Because the 
correlation matrix v⃗

(
𝜏1
)
v⃗
(
𝜏2
)
LC

 is necessarily symmet-
ric, a dataset of 6 orthogonal measurements, that is, a 
linear combination of the upper or lower triangle, pro-
vides all necessary information. ICOSA6,29 for example, 
is used to sample the surface of an icosahedron space, 
which is spanned by the main gradient directions with 
the necessary 6 measurements. Recent implementations 
have employed a multi-venc approach9 using a set of 3 dif-
ferent venc’s to account for the nonlinearity in the encod-
ing of �(t) in E(t).

2.1.2  |  Spectral interpretation

The velocity autocorrection function (VACF) of a random 
motion process is defined as

where v⃗ (t) is the instantaneous velocity. Given a stationary 
ergodic random process, temporal and spatial averaging can 
be exchanged yielding the same result, and only the time 
interval � (and not the exact origin of time of the measure-
ment) matters.26 The VACF can therefore be written as

The correlation time �c defines a time scale for the 
“memory” of the random process26,30 as

The spectrum of the VACF is given as the Fourier pair

where m, n denote different spatial directions {x, y, z} and 
Dm,n (�) is also known as the self-diffusion tensor.26 In the 
right-most term, the even property of VACF (�) is utilized. 

Equation (9) can be used to reveal the spectral relationship 
between the MEG and VACF spectrum, given as S (�, t) and 
Dm,n, respectively, as

Further details about the derivation can be found 
elsewhere.28

The MEG spectrum is given as

where q̃ (�, t) = ∫ t
0
q
(
t�
)
ej�t

�

dt� and q (t) = ∫ t
0
G
(
t�
)
dt�, 

that is, the Fourier transform of the time integral of gradient 
waveform samples (see Appendix or Ref. [31]).

From Equation (10), several conclusions can be drawn:

1.	 The signal attenuation caused by �(t) is determined 
by the area under the curve that is given by the 
product of the VACF spectrum Dm,n (�) and the MEG 
spectrum, that is, the sensor spectrum S(�, t).

2.	 If the MEG waveform would be an ideal bipolar Dirac 
function (��⃗G (0) = c⃗, ��⃗G (𝜏) = − c⃗, ��⃗G (t) = �⃗0 ∀ t � {0, 𝜏} , 
c⃗ ∈ ℝ

3 ie, a VEG waveform), the gradient spectrum 
S (�, t) = const ∀�, which hence permits probing the 
entire VACF spectrum. This can be interpreted as the 
short gradient pulse approximation32 in analogy to lit-
erature on measuring the diffusion coefficient.33

3.	 If the correlation time is significantly shorter than the 
time for motion encoding, 𝜏c ≪ 𝜏, Equation (10) can be 
approximated23 as

which results in the equation derived by Torrey34 once 
the Parceval identity31 is applied

with Dm,n (0) being the self-diffusion coefficient for the 
directional indices m, n, which is not dependent on � be-
cause Dm,n (�) ≈ Dm,n (0) ∀� is assumed.

4.	 TKE is given as k = ∫∞
0
Em,m (�) d�, where Em,m(�) 

denotes the energy spectrum,35 which can be interpreted 
as the VACF spectrum Dm,m (�) (further details in the 
Appendix). Subsequently, only probing of the entire 

(6)VACF (t, 𝜏) = v⃗ (t) v⃗ (t+𝜏) = ∫
∞

t

v⃗
(
t�
)
⋅ v⃗

(
t� + 𝜏

)
dt�,

(7)VACF (𝜏) = v⃗ (0) v⃗ (𝜏).

(8)𝜏c =
∫∞
0
v⃗ (0) v⃗ (t�)dt�

v⃗ (0)2
.

(9)

Dm,n (�) =
1

2 ∫
∞

−∞

vm (0) vn (t
�)ej�t

�

dt� = ∫
∞

0

vm (0) vn (t
�)ej�t

�

dt�,

(10)� (t) =
1

2�
�2 ∫

∞

−∞

Dm,n (�) S(�, t)d�.

(11)S (�, t) = |q̃ (�, t)|2 ,

(12)� (t) =
1

2�
�2Dm,n (0) ∫

∞

−∞

S (�, t) d�,

(13)
𝛼 (t) = 𝛾2Dm,n (0) ∫

t

0

||||∫
u

0

��⃗G
(
t�
)
��⃗G

(
t�
)
dt�

||||
2

�����������������������������
q(u)

du
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VACF spectrum in the limit of short gradient pulses 
results in quantitatively correct estimates of TKE.

5.	 Different frequency ranges of the VACF spectrum can 
be probed, if the gradient spectral response is tailored 
accordingly, potentially allowing reconstruction of the 
entire VACF spectrum from multiple measurements.

2.1.3  |  Relation to turbulence theory

Reynolds decomposition of turbulent velocity fields re-
sults in separate mean and fluctuating velocity field com-
ponents.35 The fluctuating component can be described by 
a random process36 with correlation time �c. If v⃗ (t) is as-
sumed to be the velocity of a fluid particle in the flow field, 
it is found by inserting VEG waveforms into Equation (5) 
that �(t) encodes the VACF.37

The Reynolds stress tensor (RST) is defined by the co-
variance of velocity components,

where �2mn = ⟨umun ⟩ , m,n ∈ {x, y, z}.35 The definition of 
the covariance of the velocity

directly connects the RST to the location correlation (de-
noted in Equation (4) and defined in the Appendix) when 
using VEGs.

2.2  |  Spectra of VEG and VCG

The gradient spectra S(�, t) for VEGs with identical first 
gradient moment M1 = �∕

(
�venc

)
 for venc = 450 cm∕s 

(used in recent works9) but different frequencies are 
shown in Figure 2A. The VEG waveforms respect the gra-
dient limit specifications given in the Methods section.

The gradient spectrum of a VEG with duration 2� and 
fVEG = 1∕ (2�) is characterized by a sinc function with the 
first zero crossing at f0 = 2fVEG∕N (Figure 2B), where N is 
the number of repetitions. In general, the zero-frequency 
lobe is always dominant.

In Figure 2C, VCG gradient waveforms for a different 
number of repetitions but constant frequency fVCG are 

(14)RST =

⎡⎢⎢⎢⎣

�2xx �2xy �2xz
�2yx �2yy �2yz
�2zx �2zy �2zz

⎤⎥⎥⎥⎦
,

(15)⟨umun ⟩ = umun − um un,

F I G U R E  2   Gradient waveforms and 
spectra for (A, B) VEG (venc = 450 cm∕s, 	
fVEG = {500, 1000, 1200}Hz), and (C, D) 
VCG ( fVCG = 1000Hz, NfVCG

= {2, 5, 10}). 
The spectra plots are calculated according 
to Equation (11) and are normalized 
by their value at f = 0 and f = fVCG for 
VEGs and VCGs, respectively. (A) The 
gradients have same first moment M1 (ie, 
same venc) but different durations, which 
(B) determine the spectral coverage. 
Inset: secondary peaks in the spectrum 
with amplitude reduced by a factor of 
approx. 500 compared to zero frequency 
amplitude can be neglected. (C) VCG 
amplitudes are defined by their maximum 
first moment during encoding time 
max
t
M1(t), t =

[
0, tdur

]
 (see Supporting 

Information Figure S4). VCGs exhibit 
a (D) narrow peak in the spectrum that 
renders them suitable for point-wise 
probing. VCG, velocity-compensated 
gradient; VEG, velocity-encoding gradient
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shown. Their amplitude is scaled according to their max-
imum first moment over time. The VCG spectra S (�, t) 
(Figure 2D) exhibit a lobe at the gradient frequency; 
however, they do not show a zero-frequency lobe. Their 
spectra are well suited for point-wise probing the VACF 
spectrum due to their narrow frequency band in the gra-
dient spectrum.

2.3  |  Encoding power of gradients

Given Equation (10), knowledge about both the VACF 
spectrum Dm,n (�) and MEG spectrum S (�, t) is neces-
sary to estimate the encoding strength �(t). VACF spec-
tra of stenotic flows have been investigated in numerous 
works.19,21,38-46 Assuming a simplified 1D model VACF 
spectrum E

(
�, l, cl

)35 given by

where � is the wave number, l a reference length, and 
fl
(
�, cl

)
 is a nondimensional function which defines the 

shape of the inertial range and tends to unity for small �l, 
a VACF spectrum based on cl = f 2

eddy
l can be defined. The 

cutoff frequency feddy defines the onset of the −5/3 inertial 
range35 and ranges from several 10 Hz42 up to 1000 Hz,47 
depending on the Reynolds number Re and viscosity �. For 
example, increasing the viscosity from �water = 0.71mm2∕s
to �blood = 2.6mm2∕s at 36°C48 and keeping other parame-
ters constant increases the eddy frequency almost 

fourfold. Exemplary plots of VACF and VEG spectra are 
depicted in Figure 3A.

Depending on the specific shape of the VACF spec-
trum, the coverage of the VEG spectrum might be insuf-
ficient. Using a normalized form of Equation (10) and 
D (�) = E

(
�, l, cl

)
 yields the relative encoding power �̃(t) 

of a VEG spectrum S (�, t),

depending on the eddy frequency, which is shown in 
Figure  4A, where integration was performed in the fre-
quency range as given in Figure 3. The relative encoding 
power for a fixed VEG frequency of fVEG = 900Hz but vary-
ing feddy regimes is depicted in Figure 4B.

2.4  |  Current approach of intravoxel 
SD estimation

The IVSD � is encoded based on the signal model presented 
by Dyverfeldt et al,17 which relates the magnitude signal of 
2 differently encoded segments |S (kv1

) | and |S (kv2
) | using  	

the encoding velocity moments kv1 and kv2 according to

The model relies on the assumption 𝜏c ≫ 𝜏, which was 
estimated around �c ≥ 10ms18 based on MRI data.49 In 

(16)fl
(
�, l, cl

)
=

(
�l

�l+cl

) 5

3

,

E
(
�, l, cl

)
=�−5∕3fl

(
�, l, cl

)
,

(17)�̃ (t) =
∫∞
−∞

D (�) S (�, t) d�

∫∞
−∞

D (�) d�
,

(18)� =

√√√√√2 ln
(|S(kv2)|

|S(kv1)|
)

k2
v1
− k2

v2

.

F I G U R E  3   (A) Comparison of normalized VACF spectra D (ω) for feddy ∈ {100, 2000}Hz and VEG spectra for gradient frequencies 
fVEG ∈ {100, 2000}Hz using logarithmic scaling. For low-frequency VACF spectra, the high-frequency VEG provide sufficient spectral 
coverage, whereas the low frequency VEG coverage may be insufficient. − 5∕3 lines depict the slope of the VACF spectra in the inertial 
range. (B) Using VCG of frequency fVCG,n, n ∈ ℕ, it is possible to reconstruct an estimate D̃ (ω) of the true VACF spectrum D(ω) per voxel. 
This information can be used for correction of limited spectral coverage of VEG. feddy, eddy frequency; fVEG, VEG frequency
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vitro measurement using laser Doppler anemometry of 
realistic flow conditions and viscosity, predict, however, 
�c ≈ 1ms.21 This may invalidate the assumption 𝜏c ≫ 𝜏 
as the spectral coverage of the gradients is not taken into 
account.

3  |   METHODS

3.1  |  Large eddy simulation

Computational fluid dynamics (CFD) simulations using 
a large eddy simulation approach in OpenFOAM v1912 
were performed on a “stenotic” tube (75% area reduction, 
cosine shape50). A parabolic inlet profile resulting in

based on the free flow diameter D, the mean flow velocity 
u at the inlet, and the dynamic viscosity of whole blood at 
36°C (� = 2.6mm2∕s), was used. Details about the mesh 
and validation of the CFD solver can be found in Supporting 
Information Figures S1 and S2, respectively.

For nonstationary input data, as Petersson et al noted,51 
agreement between a large eddy simulation and simulated 
MRI data is poor if the time-averaged flow quantities are 
used. Instead of randomly choosing timeframes from the 
instantaneous solution,51 the CFD data was extracted con-
tinuously in time, beginning at an arbitrary reference time 
point, and then fed into the MRI simulation. This process 

emulates the start of an MRI acquisition at some point in 
time and running the MRI simulation for the duration of 
the MEG. Therefore, time-resolved CFD data were exported 
for slices in the x,z-plane with Δt = 100μs and linearly in-
terpolated onto the MRI simulation time grid. Supporting 
Information Video S1 shows the CFD slices over time.

3.2  |  MRI simulation VEG

Our recently presented MRI simulation particle tracing 
approach52 was extended to include random motion based 
on a discrete random walk model.53 The fluctuating veloc-
ities v′x , v

′
z were kept constant for a spatially varying time 

constant defined by the Lagrangian integral time

where k, �, and � denote the TKE; the standard dissipation 
rate; and the specific dissipation rate of TKE of the large  	
eddy simulation turbulence model, respectively. The 
eddy lifetime �eddy = 2TL relates to the eddy frequency 
as feddy = 1∕�eddy. As shown in Figure 5, the eddy fre-
quency of the dataset used as input data was in the range 
feddy = [1000, 5000]Hz. A similar approach has also been 
used in other works concerned with turbulent MRI simu-
lations.54 The current simulation does not assume isotropy 
and employs Cholesky decomposition to draw samples from 
correlated distributions given by the covariance matrix Σ ac-
cording to

(19)Re =
uD

�
= 4000, (20)TL ≈ 0.30

k

�
= 0.30

1

�
,

F I G U R E  4   (A) Relative encoding power �̃ (t) given by Equation (17) (color and isolines) depending on the fVEG (abscissa) and the feddy 
(ordinate) for venc = 450 cm∕s for given maximum slew rate and gradient amplitude (respective values stated above the plot). (B) Assuming 
gradient limits of slew rate 195 T/m/s and maximum gradient amplitude 0.03 T/m (currently available on clinical MRI systems) and VACF 
spectra comprising feddy ∈ [100, 500], for example, the magnitude damping exp(�̃ (t) ) of the VEG at maximum frequency 900 Hz varies within 
up to ±10% depending on feddy (plot is normalized by value �̃ (t) at first frequency). This results in spatially varying damping and is dependent 
on the voxel position for inhomogeneous turbulent flows. It cannot be corrected for (all gradients already have same venc). The uncertainty 
due to a range of feddy in a noise-less signal is shown by red/green areas and indicated by percentage values. �̃ (t), relative encoding power
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where Σ is derived from RST values �2mn, m,n ∈ {x, z} taken 
from CFD data.

The computational framework,52 written in MatLab 
R2017b (MathWorks, Natick, MA), was modified to 
utilize GPU functions, and the forward Euler method 
(fixed step length of Δt = 1μs) was used to increase 
speed and extensibility. A total of ntot = 106 tracer par-
ticles were seeded in the simulated FOV. The par-
ticles’ position increment per time step is given by 
Δi (t +Δt) =

(
vi (t) + v�

i
(t)

)
Δt, i ∈ {x, z} . The CFD 

input time frames were linearly interpolated in time be-
tween simulation time steps t  and t +Δt. Supporting 
Information Video S2 exemplary shows the particle mo-
tion over simulation time.

Simulation runs with different gradient frequencies 
fVEG (ie, several S(kv2), same venc) were compared to a 
nonencoded reference data (S(kv1), that is, without ap-
plying a VEG and hence venc =∞). The segments venc ≠ 0 
and venc =∞ (reference) were not assumed to be sep-
arated in time, that is, using the same CFD input data 
time frames. This mimics a beat-interleaving strategy of 
motion-encoding segments as in cardiac-gated scans. The 
encoding was simulated only in z-direction because the 
extension to other directions is readily made and provides 
no new insights. Equation (18) was used for calculation of 
�zz. Ground truth was assumed to be the first CFD input 
data time frame at t = 0 down-sampled to the MRI image 
size.

To keep the simulation tractable on a normal worksta-
tion, the simulation time was limited to the velocity-
encoding phase tdur, where tdur =

1

min(fVEG)
= 2ms because 

fVEG = {500, 1000, 1200}Hz. Of note, this mimics 

instantaneous readout at time tdur, which enables the cur-
rent work to focus on the effects of motion encoding rather 
than readout artefacts due to motion.52 No noise or coil 
sensitivities were simulated. In addition, particles were 
seeded on a 2D plane, and through-plane velocities were 
neglected to reduce computational load. The simulation 
was repeated 10 times, and resulting images were 
averaged.

3.3  |  Gradient waveform spectra

The VEG spectrum S (�, t) (Equation (11)) was evaluated 
after the gradient was played out, that is, at t = tdur. The 
VEG waveforms used in the simulation are depicted in 
Figure 2A. The gradient waveforms were centered around 
tdur∕2. The VEG spectra depicted in Figure 2B were nor-
malized to their maximum value, which is proportional to 
their first gradient moment.26

3.4  |  Intravoxel mean velocity variations

The estimation of Intravoxel mean velocity variations as 
given by Dyverfeldt18 reads

where �turb and �IVSD denote the IVSD due to turbulence 
and the measured IVSD, respectively. Estimation of the 
term inside the brackets is based on a linear velocity gra-
dient across a voxel.18 This estimation is valid as long as 
magnetization does not move across several voxels during 
motion encoding. Because the current paper is concerned 
with high-flow regimes, it is estimated that, for severe steno-
sis (vmax ≥ 4m∕s6) and typical motion-encoding durations 

(21)

� x,z ∼� (0, 1) ,

LLT =Σ, Σ=

[
�2xx �2xz
�2zx �2zz

]
, Σ is spd,

[
v�x
v�z

]
=L

[
� x
� z

]
,

(22)�turb =

√
�2
IVSD

−
2

k2v
ln

(|SMVV (0) |
|SMVV(kv)|

)
,

F I G U R E  5   Probe positions P1 to P5 used for the Lagrangian VACF and VACF spectrum calculation. Underlay image encodes the feddy 
(colorbar) of the first CFD input data frame. Probe 1 and 5 are in high eddy frequency regions (jet border), whereas probe 2 and 3 are in low 
eddy frequency regions (jet core). Probe 4 is set in an intermediate feddy region (transitional region where the jet breaks down). Markers not 
to scale with the probe radius r. CFD, computional flow; Pi, Probe i
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(0.5-1 ms), magnetization moves by more than 1 voxel (typi-
cal resolution 2.5 mm) in the jet region.

The IVSD due to mean velocity only is given as

and can be assessed by performing the simulation without 
fluctuating velocities. Because massless tracer particles are 
used, any spatial gradient in the mean velocity field will 
contribute to �2

MVV
 (see Appendix; particle motion equa-

tion). For correction, �2
MVV

 is subtracted from �2
IVSD

 to ob-
tain results devoid of IVSD due to mean velocity. Resulting 
IVSD from mean velocity �MVV is presented in Supporting 
Information Figure S3.

3.5  |  VACF and VACF spectrum D(�)

The Lagrangian velocity autocorrelation function VACF 
is given by calculating the autocorrelation of velocity sam-
ples of probe velocities. The particles were selected at t = 0 
at given locations shown in Figure 5 within a radius of 
r = 1mm,

where rs, ts denote the probe position and probed time, re-
spectively, and p ∈ {particle indices within r}. Taking the 
mean VACFm,m

�
ts
�
=

1

�p�
∑�p�

p�=1
VACFm,m,p�

�
ts
�
, multiply-

ing it with a Tuckey window of the same length and apply-
ing the discrete Fourier transform results in the velocity 
autocorrelation spectrum (VACF spectrum) Dm,m(�).

3.6  |  MRI simulation VCG

For probing the VACF spectrum, the MRI simulation was 
conducted assuming a high-performance gradient sys-
tem (maximum gradient amplitude 80 mT/m, maximum 
slew rate 210 T/m/s); gradient frequencies were set to 
fVCG = [100, 200,⋯, 5000]Hz, resulting in 50 probing fre-
quencies; and waveforms were repeated for

to achieve approximately the same spectral 
band  width. Given a fixed-time encoding window 
tdur =min

(
NfVCG

)
∕min

(
fVCG

)
= 20ms  and  NfVCG  repetitions 

for  ​VCG of frequency fVCG, the spectral  ​width of the 

response lobe  becomes independent of fVCG, allowing 
the entire spectrum to be probed by changing the 
gradient frequency. VCG waveforms were cal-
culated such that their maximum first moment 
M1,max =max

t

(
M1 (t)

)
= ∫ t0+t

t0
G (t)

(
t − t0

)
dt corresponded 

to venc = �∕(�M1, max) = 450 cm∕s (see Supporting Information 	
Figure S4), where again t0 = 0 was assumed.

Resulting gradient spectra and waveforms are depicted 
in Figure 9C,D, respectively. Due to integer rounding in 
Equation (25), the relationship between first moment and 
peak values in the spectra holds only approximatively. The 
resulting images were calculated according to Equation 
(18), where �zz denotes the encoding of the intravoxel SD 
along the direction z.

For probing the VACF spectrum, mean velocities 
were set to zero to avoid changes in turbulence pa-
rameters due to mean particle motion and to enable 
comparison to ground truth. Because particles are ex-
pected to stay within a region with spatially homoge-
neous parameters, Lagrangian (moving particles) and 
Eulerian (voxel) spectra yield the same result. To en-
sure spatial and temporal homogeneity, feddy = 1kHz 
and �zz = 0.3m∕s were fixed for all CFD input data time 
frames for all voxels.

3.7  |  Spectral correction method

By employing knowledge about the spectrum D (�)

and the gradient spectrum S(�, t), the limited spectral-
encoding ability of the VEG gradients was corrected on 
a voxel basis. For given flow, this results in a quantitative 
correct estimate of SDs �mn, m,n ∈ {x, y, z}.

The per-voxel estimate of VACF spectra D̃ (�) was 
calculated from simulations with VCGs by linearly in-
terpolating between probed frequencies (Figure 3B). The 
relative encoding power �̃ (t) per voxel was given by the 
full version of Equation (17) and used for correction by 
employing

given an uncorrected measurement of �fVEG resulting in 
the corrected estimate �corrected of IVSD for a given VEG 
frequency fVEG using Equation (18).

Without additional VCG measurements, the VEG spec-
trum S(�, t) could be estimated from gradient waveforms 
exclusively. Assuming D (�) ≈ const. ∀ω, Equation (17) re-
sulted in an estimate for the encoding power for a given VEG

(23)�2MVV =
2

k2v
ln

(|SMVV (0) |
|SMVV(kv)|

)
,

(24)

VACFm,m,p
�
ts
�
= ⟨um,p

�
rs, ts

�
um,p

�
rs, ts

�⟩ , m ∈ {x, z} ,

(25)NfVCG
= 2

⌊
fVCG

max
(
fVCG

)
⌋

(26)�corrected = �fVEG ∕ �̃fVEG ,

(27)�̃fVEG (t) = ∫
∞

−∞

S (�, t) d�,
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which was used to correct for experiments employing VEGs. 
Phase-contrast sequences with high and low venc values to 
account for nonlinearities in Equation (18) may result in 
different VEG frequencies and, if uncorrected for, inconsis-
tencies in �mn estimation across venc values.55 The spectra 
S(�, t) of VEGs fVEG = {500, 1000, 1200}Hz were calcu-
lated according to Equation (11), and the encoding power 
across venc values was normalized using

4  |   RESULTS

4.1  |  VACF spectrum

The VACFs in x and z direction and their spectra at differ-
ent probe positions are depicted in Figure 6. Depending 
on the specific probe position rs as a function of time and 
corresponding feddy(rs, t), the VACF spectrum follows the 
shape of exemplary model spectra defined in Equation 
(16) with the roll-off frequency related to the eddy fre-
quency. The spectrum is inherently multiplied by a sinc 
function due to the discrete random walk model used; 
the local minima are given by the update rate feddy the 

magnetization experiences during simulation time. Due 
to the high flow velocity in z direction (Figure 6C,D), 
it can be seen that probe 1 has a low correlation during 
t = [0, 0.1]ms because the probed particles start in a high 
feddy region and are transported to a lower feddy region. 
This results in reduced correlation due to spatial inhomo-
geneity of velocity and turbulence parameters, and subse-
quently a higher frequency coverage in the spectrum.

4.2  |  Mean velocity and turbulence 
parameter estimation

In the plots shown in Figure 7, results of estimated 
mean velocities are similar for different VEG frequen-
cies. Spatial misregistration due to finite VEG duration 
is found when compared to ground truth. The spatial 
misregistration corresponds to the distance Δz = Vz� 
that a particle would move during time tdur∕2, because 
VEGs are centered at tdur∕2. The misregistration is given 
by Δz = 2mm in a region where the mean velocity is 
approximately 2 m/s and tdur = 2ms. For the IVSD re-
sults depicted in Figure 8, �zz is seen to be reduced by 
50% when compared to ground truth when using a VEG 
of 500 Hz. On the other hand, increasing the VEG fre-
quency decreases the difference between �zz and ground 

(28)�̃�
fVEG

=
�̃fVEG

�̃max(fVEG)
.

F I G U R E  6   Lagrangian VACF in (A) x direction (index xx) and (B) z direction (index zz) for different probe positions P1 to P5. (B), 
(D): VACF spectra in x and z direction. Different probe positions relate to regions of different eddy frequencies and therefore different 
autocorrelation functions and spectra. Particles in regions of high feddy show fast decaying VACFs (eg, probe 1, 2). Transport to a different 
region due to mean flow results in a kink in the VACF (eg, VACF in z direction probe 1). Highest frequency of start of the inertial range in 
(D) (stream-wise) is found at 2 kHz for probe 1
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F I G U R E  7   (A) Comparison of velocity simulation output for fVEG = {500, 1000, 1200}Hz to ground truth yields that the mean velocity is 
found to be imaged correctly and results in comparable images for different fVEG. (B) The mean velocity distribution does not depend on fVEG
. (C) The mean velocity profile shows only spatial misregistration artefacts compared to ground truth, which relates to vz,max tdur∕2 because 
instantaneous imaging is assumed at the end of the VEG (inset)

F I G U R E  8   Comparison of SD σzz for fVEG = {500, 1000, 1200}Hz in z direction with GT shows that σzz is systematically underestimated 
and its estimated values differ for different fVEG. (A) Increasing fVEG results in an improved estimation of σzz compared to ground truth. (B) 
The σzz distribution is shifted toward lower values as fVEG decreases. This results in increased underestimation of SD values for decreased 
fVEG. σzz profiles are depicted along FOVx (C) and FOVz (D). Level of underestimation compared to GT is increased in regions of high eddy 
frequency (compare Figure 5). Due to mean velocities, misregistration artefacts are found in (D) (compare also Figure 7). GT, ground truth
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truth. Using histogram analysis in Figure 8B, a differ-
ence of mean value of 29% between 500 and 1200 Hz 
gradient is found, whereas mean velocity distributions 
show no difference. Of note, the model by Dyverfeldt18 
would predict the same values of �zz for all tested VEG 
frequencies because of the same venc used.

4.3  |  Mean flow influence on 
turbulence estimation

Conducting the simulation without random motion com-

ponents 

[
x′

z′

]
 in Equation (21) results in an estimate of �zz 

due to mean velocity only. Resulting �zz plots and their 
respective histograms can be found in Supporting 
Information Figure S3. Given massless tracer particles 
were assumed, the imaged �zz due to mean velocity only 
corresponds to the mean velocity gradient in VEG direc-
tion and is not dependent on the VEG frequency. Tracer 
particle dynamics are further discussed in the Appendix.

4.4  |  Corrected turbulence estimation

In Figure 9A, good agreement is found between normal-
ized VACF spectra given by Lagrangian probes and the 
VACF spectrum estimated from VCG probing measure-
ments, therefore confirming the feasibility of probing the 
VACF spectra. Using the correction method employing 
knowledge about both the VEG spectra and the probed 
VACF spectra using VCG measurements, Figure 9B shows 
that the estimation error reduces from −49% to −10% for 
fVEG = 500Hz and from −21% to −5% for fVEG = 1200Hz. 	
Figure 9C and D show spectra and waveforms of VCGs 
with varying frequencies used in the probing measure-
ment. Due to their narrow bandwidth of approx. 100 Hz, 
point-wise probing of the VACF spectrum is possible.

In Figure 10, estimates of IVSD are presented that have 
been corrected without additional probing but by employ-
ing Equation (28). The IVSD estimates are coherent across 
different values of venc but underestimate ground truth. 
This is confirmed in the histogram analysis in Figure 10B 
and profiles in Figure 10C and D.

F I G U R E  9   (A) Estimated VACF spectrum D̃m,n(ω) (black continuous line) compared to VACF spectra Dm,n(ω) (black dotted line) using 
spatially invariant input data and zero mean velocity to enable direct comparison. Each point of the continuous curve relates to a simulation 
run with the respective VCG. Good agreement between the Lagrangian VACF spectrum and the estimated spectrum is found. (B) Applying 
the correction method employing both D̃m,n(ω) (estimated from VCG measurements) and S(ω) (calculated from VEG parameters), the 
underestimation is reduced from 49% to 10% for 500 Hz VEG. (C) Normalized spectra of VCGs used for probing the VACF spectrum. Due to 
integer rounding in Equation (25), different numbers of repetitions may result in differences in spectral bandwidth. Spectra are normalized 
in the plot by the initial probing gradient where, due to slew rate limitations, maximum spectra values increase for higher frequencies. (D) 
VCG waveforms used for probing. The plot depicts details of the full waveforms for t = [0, tdur]
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5  |   DISCUSSION

Based on the framework presented, VEG and their spec-
tral response in relation to probing turbulent flow have 
been investigated.

Assuming velocity autocorrelation function spectra of 
turbulent flow,35 and VEG gradients with a venc of 450 cm/s 
and 1 ms duration, current models for turbulence quanti-
fication18 are shown to systematically underestimate tur-
bulence parameters given a typical image resolution of 2.5 
mm. In addition, depending on position in the turbulent 
region, the degree of underestimation varies with the VEG 
frequency. Higher VEG frequencies are shown to reduce the 
underestimation. At the maximum frequency given by the 
maximum slew rate and gradient strength available on clin-
ical MRI systems, significant underestimation of turbulence 
parameters remained. Increasing the voxel size, however, is 
expected to counteract this effect and may even result in 
overestimation of turbulence parameters.56 Estimation of 
the mean velocity was not affected, aside from misregistra-
tion errors due to finite time duration of the VEG.

Current turbulence quantification models18 assume 
that the Lagrangian correlation time scale is much longer 
than the time duration of the VEG. In the current paper, 
based on CFD simulations assuming realistic flow regimes 
and viscosity, the first zero crossing of the VACF was 

found before 1 ms, which relates to correlation time scales 
shorter than typical VEG durations. In vitro experiments 
using a blood fluid analog report the first zero crossing 
around 3 ms,21 depending on the temporal phase of the 
pulsatile flow and the position upstream of their artificial 
aortic valve. Other in vitro57 and in vivo43 works report sig-
nificant energy density above 500 Hz in their spectra.

On current MRI systems, the venc value is set by the 
user, whereas gradient timings are optimized depending 
on other sequence parameters. Because the spectral re-
sponse depends on the VEG duration, such an approach 
does not provide full control for quantifying turbulence 
parameters. For VEG of 900 Hz (tdur ≈ 1ms), it was found 
that the turbulence parameter estimation uncertainty for 
a range of VACF spectra can exceed ±10% in addition to 
the systematic, quantitative underestimation of turbu-
lence parameters.

It is important to note that, depending on the duration 
of the VEG, estimation of turbulence parameter results in 
different values. This effect is not dependent on venc and 
cannot be completely corrected for without information of 
both the VEG spectrum and the velocity autocorrelation 
function (VACF) spectrum.

To address systematic underestimation of turbu-
lence parameters using VEGs, a method using velocity-
compensated waveforms has been presented. VCGs exhibit 

F I G U R E  1 0   (A) Estimated SD σzz for VEG frequencies fVEG = {500, 1000, 1200}Hz with applied VEG spectrum correction according to 
Equation (28) without prior probing of the VACF spectrum by VCG measurements. (B) The σzz distribution is consistent within different 
fVEG. Compared to ground truth, the distribution is underestimated because max

(
fVEG

)
< ∞. σzz profiles along FOVx (C) and FOVz (D) show 

coherent estimates of the SD across different fVEG after applying the correction method
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a narrow peak in the gradient spectrum and hence are suit-
able for encoding and reconstructing the VACF spectrum 
with improved accuracy. Comparison to spectra of simu-
lated probes yielded very good agreement. Because VACF 
spectra vary spatially in turbulent flows,39 the presented 
method holds potential to correct for systematic errors in 
turbulence quantification on a voxel basis.

To ensure applicability of the correction method in 
practice without the need for additional measurements, 
the possibility of correction using only VEG spectra with-
out probing the VACF spectrum was investigated. It was 
found that the RST estimates could be corrected to be co-
herent throughout different VEG frequencies.

5.1  |  Limitations

The current work is limited in terms of its restriction to 
nonpulsatile flow boundary conditions in the CFD simu-
lation. However, because the MRI simulation concerned 
with VEGs focuses on the velocity-encoding time span 
(tdur ≤ 2ms), realistic aortic inlet conditions would only 
result in negligible changes of flow rate during tdur.

58 Of 
note, the VEG MRI simulation itself employs time-varying 
input data from CFD. The 2D MRI simulation with input 
data from 3D CFD does not consider through-plane veloc-
ities. Nevertheless, because the evaluation only included 
in-plane parameters, no effects on the results are to be ex-
pected. No noise or coil sensitivities were simulated. Due 
to limited slew rates, depending on their frequency, VEGs 
or VCGs may have small gradient amplitudes that hamper 
the applicability in a real experiment due to the presence 
of noise. In vitro experiments and optimized waveforms59 
will be subject to future research. Whereas the VCG 
waveforms used in this work respected gradient slew 
rate/amplitude limits of available MRI gradient systems, 
they employed increased encoding times (tdur = 20ms). 
Accordingly, TEs are long, leading to reduced SNR due to 
T2* decay. Practical investigation of SNR-related limita-
tions of turbulent flow encoding using VCGs are planned 
for our future research.

The reference segment venc =∞ and encoded segments 
venc ≠ 0 have not been separated in time during the simu-
lation process. Because readout effects were the focus of 
another work52 and have not been considered, no signal 
attenuation and phase accumulation result for venc =∞, 
rendering the reference segment start time independent. If 
readout effects were to be considered, particle tracing must 
be performed for venc =∞ and venc ≠ 0 segments separately, 
and input data time frames must be separated based on the 
assumed interleaving strategy of the MRI sequence.

Assumptions about the VACF spectra are based on 
CFD results using realistic flow parameters; however, the 

VACF spectrum may differ from the simulated spectra 
in reality. The probing of VACF spectra in vitro will be a 
subject of future research. Previous works54 employed a 
similar particle tracing approach but did not provide any 
information about VACF spectra. The current work is em-
ploying a discrete random walk model; however, alterna-
tives such as continuous random walk models could be 
used.60 In addition, altering the viscosity of the working 
fluid changes the VACF spectrum, which hampers com-
parability of different works. In this work, the viscosity of 
whole blood and a realistic Reynolds number were used, 
intended to mimic in vivo flow parameters.

Relying on a particle-tracing approach, particles’ dy-
namics influence the simulation results. Rather than im-
posing specific particle parameters (eg, particle drag force 
outlined in Equation (46)), massless particles were used. 
These particles do not suppress any dynamics that might 
be important for tracing, however; they are susceptible 
to gradients of the mean velocity field. To overcome this 
limitation, mean velocity variation correction was applied 
(Supporting Information Figure S3).

6  |   CONCLUSION

Theoretical considerations and computer simulations as 
presented in this work suggest that bipolar VEGs in phase-
contrast MRI of stenotic flows with short correlation times 
result in systematic and significant underestimation of tur-
bulence parameters. To address this shortcoming, tailored 
VCGs are proposed to offer an approach to improved quan-
titative mapping of turbulent blood flow characteristics.
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FIGURE S1 Depiction of the computational mesh used in 
the Large Eddy Simulation
FIGURE S2 Comparison of velocity profiles of own sim-
ulation relative to published DNS results2 for Re = 1000 . 
The velocity profiles are given along the normalized ra-
dius r∕R for normalized velocity u∕U for four positions 
Z= z∕D={0, 1, 7, −2}. Velocity profiles of the two ap-
proaches agree
FIGURE S3 Imaged standard deviation �zz and its distri-
bution due to mean velocity only. As the simulation em-
ploys massless tracer particles, the images �zz correspond 
to spatial mean velocity gradients (highlighted by black 
arrows in Velocity Gradient and Standard Deviation im-
ages). Of note, �zz due to mean velocity gradients does not 
depend on the VEG frequency fVEG as opposed to �zz due to 
random motion as demonstrated in the main manuscript
FIGURE S4 Definition of VCG waveforms is based on their 
maximum first moment over encoding time 
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= 2

VIDEO S1 Depiction of the input data for the MRI simulation 
as output by the Large Eddy Simulation. The data includes 
mean velocity components in x,y,z direction, mean velocity 
magnitude, Cholesky factorized IVSD and eddy frequency
VIDEO S2 Example of the MRI simulation running over 
time (moving green bar marks current simulation time). 
The particles move during the simulation time span ac-
cording to their mean and fluctuating velocity. Compared 
to the main manuscript, the number of particles have 
been reduced for visualization purposes
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APPENDIX 

Derivation of the ensemble mean phase
If a Gaussian distribution with first and second order 
moments different from zero (n = {1, 2}) is assumed, 
Equation (3) can be simplified to

Assuming a stationary ensemble, the integral and en-
semble average of term 1 in Equation (A1) is given as

Term 2 in Equation (A1) can be written as27

where the first term on the RHS is given as

and the second term, again, assuming a stationary ensemble 
with ⟨ j� �

t1
�⟩ = ⟨ j� �

t2
�⟩, results in

The location correlation23 in Equation (A3) is denoted 
by index LC and corresponds to the definition of the stand-
ard deviation (�2 = ⟨w2 ⟩ − ⟨w⟩2 or �2 = �

(
w2

)
− � (w)2). 

Combination of Equations (A4) and (A5) results in an ex-
pression for the signal of an ensemble of magnetization 
with Gaussian distribution according to

Autocorrelation function of turbulent flow
As defined in the main manuscript, the autocorrelation of 
a random process u is given by

where the angle brackets denote the mean (in ergodic pro-
cesses either ensemble or temporal). In the case of a sta-
tionary random process only the time difference � = t2 − t1 
matters resulting in

Following Kundu et al,36 the normalized autocorrela-
tion function is defined as

If the autocorrelation function decays to zero for infi-
nite times, it is possible to define the convergent integral

If the random variable of interest is the vector-valued 
velocity, the two-point velocity autocorrelation function 
(VACF) can be defined as

where u′m,n denote the velocity fluctuations for spatial indi-
ces m, n. The two-point cross correlation of the velocity fluc-
tuation forms a Fourier transform pair with the Lagrangian 
energy spectrum E(�)

The kinetic energy of turbulent fluctuations per unit 
mass35 is defined as
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which has the unit 
[
k
]
= 1m2∕s2. The turbulent kinetic en-

ergy as used in 4D Flow MRI literature is defined as

where � is the density and [TKE] = 1 J

m3
.

It is found by setting � = 0 and m = n

such that TKE per unit mass corresponds to the area under 
the Lagrangian energy spectrum curve. This emphasizes the 
importance of probing the VACF spectrum to its full extent 
in order to quantitatively estimate TKE in 4D Flow MRI.

Derivation of spectrum
Starting with the expression for �(t) given in Equation (5) 
(repeated here for convenience)

the factors can be permuted using the rule 
b⊗ (Ta) = (b⊗ a)TT, where the symmetry of 	
the velocity autocorrelation function matrix 
v⃗
(
𝜏1
)
v⃗
(
𝜏2
)
LC

=
(
v⃗
(
𝜏1
)
v⃗
(
𝜏2
)
LC

)T
 is leveraged by in-

serting of Equation (9) into Equation (A18);

Assuming gradient signals of limited energy and being 
deterministic, the Wiener-Khintchine theorem can be ap-
plied yielding

where the complex conjugate can be neglected since the in-
tegrated gradient waveforms are real-valued. Therefore, it is 
found that the autocorrelation function Rq(�) of the gradi-
ent is given by the absolute Fourier coefficients q (�, t) being 
squared resulting in the expression for �(t) as in Equation 
(10) with

Self-similar flows, Reynolds 
number, viscosity
When comparing different flow scenarios, the dimension-
less Reynolds number

is used, where u, d and v are the mean inlet velocity, the un-
occluded diameter and the dynamic viscosity, respectively. 
For self-similar flows, if the Reynolds number is kept the 
same, the resulting solution will be the same for appropri-
ately scaled (= normalized) variables.35 Of note, this enables 
one to compare experiments with eg, different viscosities if 
the Reynolds number is equal by using appropriately scaled 
velocity variables. Important to note, however, is that non-
normalized variables such as TKE and eddy frequency are 
not comparable without prior scaling. Therefore, simula-
tions conducted with same Re but smaller viscosity will ex-
hibit smaller TKE than those with higher values of viscosity.

The dimensionless Strouhal number

is used as normalized “frequency” axis in CFD spectra 
plots (eg, Refs. [39] and [46]), where f , d and u are the non-
normalized frequency, minimum diameter (stenotic throat) 
and mean velocity at the stenosis throat (eg, 4× mean inlet 
velocity for 75% reduction in area).

However, when changing viscosity but Re number and 
Str axis remain unchanged, one finds the non-normalized 
frequency axis f  to be scaled by viscosity. Of note, this 
changes feddy at which eg, the inertial range starts. The 
transition frequency feddy is of great importance for encod-
ing theory discussed in the main manuscript.

Particle equations of motion
The equations of motion for an inert particle model are 
given by61

where the first RHS term denotes the drag force per unit par-
ticle mass and

where u, up, �, �, �p, dp, Rep and CD is fluid phase veloc-
ity, particle’s velocity, molecular viscosity of the fluid, 
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fluid density, particle density, particle diameter, parti-
cle Reynolds number and drag coefficient, respectively. 
Previous works have shown that these parameters have 
an influence on particle dynamics.61 As FD essentially de-
scribes how fast the particle would adjust its velocity to 
the fluid velocity, the particle’s trajectory is affected by the 
set parameters, especially for particle tracing in turbulent 
flow. In the current manuscript, massless tracer particles 

have been used. On one hand, this does not use any as-
sumptions on particle parameters, on the other hand, due 
to instantaneous velocity changes due to u − up, in the 
MRI simulation, spatial gradients in the mean velocity 
field will result in increased levels of imaged turbulence. 
This is discussed in the main manuscript in the mean ve-
locity variation (MVV) section and accounted for in the 
Results section.


