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Purpose: To	 introduce	 a	 mathematical	 framework	 and	 in-	silico	 validation	 of	
turbulent	 flow	 spectrum	 imaging	 (TFSI)	 of	 stenotic	 flow	 using	 phase-	contrast	
MRI,	 evaluate	 systematic	 errors	 in	 quantitative	 turbulence	 parameter	 estima-
tion,	and	propose	a	novel	method	for	probing	the	Lagrangian	velocity	spectra	of	
turbulent	flows.
Theory and Methods: The	spectral	response	of	velocity-	encoding	gradients	is	
derived	theoretically	and	linked	to	turbulence	parameter	estimation	including	
the	velocity	autocorrelation	function	spectrum.	Using	a	phase-	contrast	MRI	sim-
ulation	framework,	the	encoding	properties	of	bipolar	gradient	waveforms	with	
identical	first	gradient	moments	but	different	duration	are	investigated	on	turbu-
lent	flow	data	of	defined	characteristics	as	derived	from	computational	fluid	dy-
namics.	Based	on	theoretical	insights,	an	approach	using	velocity-	compensated	
gradient	waveforms	is	proposed	to	specifically	probe	desired	ranges	of	the	veloc-
ity	autocorrelation	function	spectrum	with	increased	accuracy.
Results: Practical	velocity-	encoding	gradients	exhibit	 limited	encoding	power	
of	typical	turbulent	flow	spectra,	resulting	in	up	to	50%	systematic	underestima-
tion	 of	 intravoxel	 SD	 values.	 Depending	 on	 the	 turbulence	 level	 in	 fluids,	 the	
error	due	to	a	single	encoding	gradient	spectral	response	can	vary	by	20%.	When	
using	 tailored	 velocity-	compensated	 gradients,	 improved	 quantification	 of	 the	
Lagrangian	velocity	spectrum	on	a	voxel-	by-	voxel	basis	is	achieved	and	used	for	
quantitative	correction	of	intravoxel	SD	values	estimated	with	velocity-	encoding	
gradients.
Conclusion: To	address	systematic	underestimation	of	turbulence	parameters	
using	bipolar	velocity-	encoding	gradients	in	phase-	contrast	MRI	of	stenotic	flows	
with	 short	 correlation	 times,	 tailored	 velocity-	compensated	 gradients	 are	 pro-
posed	to	improve	quantitative	mapping	of	turbulent	blood	flow	characteristics.
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1 |  INTRODUCTION

Time-	resolved	3D	phase-	contrast	MRI	(4D	flow	MRI)	has	
received	significant	attention	in	the	field.1	Applications	of	
4D	 flow	 MRI	 include	 the	 assessment	 of	 valve	 diseases,2	
aortic	aneurysms/dissection,3,4	stenosis	of	pulmonary	ves-
sels,5	 and	 many	 more.	 In	 aortic	 valve	 stenosis,	 quantifi-
cation	of	blood	flow	jet	velocities	and	maximum	pressure	
gradients	play	a	key	role	in	clinical	diagnosis.6	Moreover,	
turbulent	flow	metrics	including	turbulent	kinetic	energy	
(TKE)	have	been	regarded	of	potential	value.	Binter	et	al7	
have	 demonstrated	 that	 increased	 levels	 of	 TKE	 convey	
additional	 information	 relative	 to	 mean	 pressure	 gradi-
ents	across	stenoses;	thus,	potential	utility	has	been	indi-
cated	for	improved	assessment	of	valve	diseases.

Considerable	 research	 attention	 has	 been	 directed	 to	
mapping	TKE	using	4D	flow	MRI.7-	9	Moreover,	encoding	
of	the	full	Reynolds	stress	tensor	has	been	proposed	to	as-
sess	 turbulent	shear	 flow	and	 improve	 the	estimation	of	
net	pressure	losses.8,10

The	 encoding	 theory	 of	 random	 motion	 in	 turbulent	
flow	 using	 MRI	 is	 covered	 in	 seminal	 studies	 by	 Kuethe	
et	al11,12	and	Gao	et	al.13	A	theoretical	framework	has	been	
formulated	based	on	 the	assumption	of	an	exponentially	
decaying	correlation	function,	which	was	applied	to	map	
turbulent	intensities	in	a	stenosis	phantom.14	Based	on	this	
framework,	Gatenby	and	Gore15,16	differentiated	between	2	
regimes:	𝜏c ≫ 𝜏	and	𝜏c ≪ 𝜏,	where	the	average	correlation	
time	�c	for	a	fluid	element	to	change	direction	is	related	to	
a	velocity- encoding gradient	(VEG)	of	duration	2�.

The	 assumption	 𝜏c ≫ 𝜏	 constitutes	 the	 foundation	
of	 the	 work	 concerned	 with	 turbulence	 encoding.17,18	
However,	 to	 the	best	of	our	knowledge,	 this	assumption	
has	never	been	verified	for	phase-	contrast	MRI.	Whereas	
in	vitro	and	in	vivo	measurements19-	21	 in	stenotic	aortae	
with	realistic	flow	conditions	have	predicted	a	correlation	
time	�c	in	the	millisecond	range,	it	at	the	same	time	inval-
idates	the	assumption	𝜏c ≫ 𝜏	given	practical	bipolar	gradi-
ent	waveform	lobe	durations	�.

Of	 note,	 early	 work	 by	 Stepišnik22,23	 introduced	 a	
description	 of	 motion	 spectra	 in	 terms	 of	 the	 velocity	
auto-	correlation	 function	 and	 its	 Fourier	 transform	 for	
diffusion	MRI.	The	main	conclusion	derived	by	Stepišnik	
is	 that	 the	attenuation	of	 the	magnitude	 signal	 solely	de-
pends	 on	 the	 area	 of	 the	 overlap	 of	 gradient	 and	 motion	
spectra.	 Callaghan	 and	 Stepišnik24	 successfully	 applied	 a	
method	using	different	gradient	spectra	for	predicting	the	
frequency-	varying	diffusion	coefficient	in	a	moving	fluid.	In	
turbulent	flow	MRI,	to	the	best	of	our	knowledge,	no	such	
considerations	have	been	made.	Newling	et	al25	state	that	
the	correlation	time	must	be	imaged	on	a	voxel	basis	to	ob-
tain	precise	estimates	of	the	diffusivity;	however,	although	
they	refer	to	Gao	and	Gore’s	technique,	they	do	not	apply	it.

The	 objectives	 of	 the	 current	 work	 are	 threefold:	
First,	 the	 spectral	 response	of	motion-	encoding	gradient	
waveforms	 (including	 velocity-	encoding	 and	 velocity-	
compensated	 waveforms)	 is	 derived	 and	 evaluated	 with	
respect	 to	 their	 theoretical	encoding	power	of	character-
istic	turbulent	flow	spectra.	It	is	shown	that	VEGs	of	iden-
tical	first-	gradient	moments	but	different	durations	result	
in	different	degrees	of	underestimation	of	turbulence	pa-
rameters.	 Second,	 a	 method	 for	 quantification	 of	 turbu-
lent	motion	 spectra	using	 velocity- compensated gradients	
(VCG)	 is	 presented	 and	 used	 to	 correct	 for	 systematic	
underestimation	 of	 turbulence	 parameters	 derived	 from	
velocity-	encoded	data.	Third,	a	correction	method	for	tur-
bulence	parameter	estimation	using	VEGs	with	different	
durations	and	without	prior	probing	of	the	turbulent	mo-
tion	spectra	is	proposed.

2 |  THEORY

2.1 | Encoding of incoherent motion 
using motion- encoding gradients

The	k-	space	signal	equation	yielding	data	d(t),

is	based	on	the	Fourier	relation	of	the	spatially	dependent	
complex-	valued	transverse	magnetization	𝜌0

(
��⃗r� (t)

)
	in	the	

excited	volume	�	given	phase,

and	evaluated	as	 the	 time	 integral	of	 the	gradient	wave-
form	 ��⃗G (t)	 and	 the	 time-	dependent	 position	 vector	 of	
magnetization	 ��⃗r� (t)	 starting	 at	 a	 reference	 point	 in	
time	 t0	 (assumed	 zero	 for	 the	 remainder	 of	 the	 paper).	
Because	 the	 current	 paper	 focuses	 on	 motion-	encoded	
phase,	 henceforth	 ��⃗G (t)	 is	 termed	 motion-	encoding	
gradient	 (MEG).	 Depending	 on	 the	 order	 of	 moment	
compensation,	 a	 VEG	 with	 vanishing	 zeroth	 moment	
����⃗M0 (TE) = � TE

0
��⃗G (t) dt ≡ 0	 or	 a	 VCG	 with	 vanishing	 ze-

roth	and	first	moment	 ����⃗M1 (TE) = � TE
0

��⃗G (t)
(
t − t0

)
dt ≡ 0	

with	respect	to	TE	is	obtained.

2.1.1	 |	 Temporal	interpretation

If	incoherent	motion	is	present	in	a	voxel,	the	Fourier	phase	
� (t)	 results	 from	an	ensemble	of	magnetization,	and	 the	
signal	received	can	be	written	as	the	ensemble	average26

(1)d (t) = ∫
�

𝜌0

(
��⃗r� (t)

)
ej𝜑(t)d��⃗r� (t) ,

(2)𝜑 (t) = 𝛾 ∫
t

t0

��⃗G
(
t�
)
⋅ ��⃗r�

(
t�
)
dt�,
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where	index	c	denotes	the	cumulant	average,27	whereas	the	
volume	integral	is	omitted	for	brevity.	If	a	Gaussian	distribu-
tion	is	assumed	(see	Appendix),	the	resulting	expression	for	
the	signal	of	an	ensemble	of	magnetization	with	Gaussian	
phase	distribution	is	given	as

Because	�(t)	in	Equation	(4)	is	real	valued,	it	exhibits	a	
damping	of	the	magnitude,	which	is	referred	to	as	dephas-
ing	due	to	intravoxel	SD	(IVSD18).

Performing	a	per	partes	integration,28	Equation	(4)	re-
sults	in

where	 �⃗q (t) = ∫ t
0
��⃗G

(
t�
)
dt�	denotes	the	time	integral	of	the	

gradient	 waveform,	 and	 v⃗ (t)	 denotes	 the	 instantaneous	
velocity.	 Of	 note,	 the	 amount	 of	 spin	 ensemble	 dephas-
ing	 (ie,	 the	 value	 of	�(t))	 is	 solely	 dependent	 on	 the	 ratio	

of	 the	 correlation	 time	 scale	�c	 (proportional	 to	 the	 term	
v⃗
(
t1
)
v⃗
(
t2
)
LC

,	further	defined	in	Equation	(8))	and	the	du-
ration	�	of	the	MEG	given	a	fixed	encoding	strength.

The	 assumption	 𝜏c ≫ 𝜏	 implies	 that	 the	 spectral	 en-
ergy	of	the	random	process	 v⃗

(
t1
)
v⃗
(
t2
)
LC

	 is	confined	in	

a	low	frequency	regime	compared	to	the	spectrum	of	the	
VEG.	 Therefore,	 the	 amount	 of	 dephasing	 given	 by	�(t)	
in	Equation	(5)	can	be	controlled	by	the	MEG	amplitude	
alone,	independent	of	duration	�,	as	long	as	𝜏c ≫ 𝜏	holds.	
However,	satisfying	𝜏c ≫ 𝜏	for	a	given	correlation	time	�c	

in	the	millisecond	regime	would	result	in	infeasible	MEG	
durations.	It	can	therefore	be	necessary	to	operate	in	the	
regime	�c ≈ �.	As	can	be	seen	in	Figure	1,	�c	may	vary	spa-
tially	and,	for	pulsatile	flow,	vary	also	temporally.

(3)E (t) = ej�(t) = exp

�
∞�
n=1

(−1)n

n ! ∫
t

0 ∫
t

0

⋯ ∫
t

0

⟨ j� �
t1
�
j�

�
t2
�
⋯j�

�
tn
�⟩c dt1dt2⋯dtn

�
,

(4)
E (t) = exp

⎡
⎢⎢⎢⎢⎢⎣

− j 𝛾 ∫
t

0

��⃗G
�
t�
�
⋅ r⃗ (t�)dt�

���������������������������
𝜑0(t)+𝜑v(t)

−
1

2
𝛾2 ∫

t

0 ∫
t

0

��⃗G
�
t1
�
⋅ r⃗

�
t1
�
r⃗
�
t2
�
LC

⋅ ��⃗G
�
t2
�
dt1dt2

���������������������������������������������������������������������������
𝛼(t)

⎤
⎥⎥⎥⎥⎥⎦

.

(5)E (t) = exp

⎡
⎢⎢⎢⎢⎢⎣

− j 𝛾 ∫
t

0

�⃗q
�
t�
�
⋅ v⃗ (t�)dt�

�������������������������
𝜑v(t)

−
1

2
𝛾2 ∫

t

0 ∫
t

0

�⃗q
�
t1
�
⋅ v⃗

�
t1
�
v⃗
�
t2
�
LC

⋅ �⃗q
�
t2
�
dt1dt2

�������������������������������������������������������������������������
𝛼(t)

⎤
⎥⎥⎥⎥⎥⎦

,

F I G U R E  1  (A)	Turbulence	characteristics	in	a	jet	region	vary	spatially	and	temporally	and	can	be	described	by	random	processes	with	
different	properties.	Underlying	mean	velocity	magnitude	data56	|u|	enables	differentiation	between	jet	core	and	boundary	zone,	for	example,	
which	are	expected	to	show	different	turbulence	characteristics	(compare	TKE	plots	in	Binter	et	al.56).	(B)	Depending	on	the	region,	for	
example,	at	the	jet	boundary,	velocity	autocorrelation	functions	exhibit	a	shorter	correlation	time	�c1	when	compared	to	�c2	in	the	jet	core.	
(C)	This	results	in	different	VACF	spectra	Dm,n (�) , m,n ∈ {x, y, z}.	The	eddy	frequency	 feddy	is	used	to	describe	the	spectral	dynamics	of	
the	simplified	random	processes.	− 5∕3	line	depicts	the	begin	of	the	inertial	range	of	the	2	spectra,	respectively.	 feddy,	eddy	frequency;	TKE,	
turbulent	kinetic	energy;	VACF,	velocity	autocorrection	function
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When	neglecting	all	terms	with	orders	higher	than	1	
in	the	expansion	of	the	general	distribution,	Equation	(4)	
results.	The	 term	�v (t)	 is	 the	 phase	 component,	 which	
encodes	bulk	motion,	whereas	the	second	term	� (t)	en-
codes	 incoherent	motion	 fluctuating	around	 the	mean.	
The	tensor	property	of	the	product	of	the	vectors	 �⃗q

(
𝜏1
)
,	

�⃗q
(
𝜏2
)
	and	the	matrix	v⃗

(
𝜏1
)
v⃗
(
𝜏2
)
LC

,	in	theory,	enables	
probing	 of	 every	 element	 of	 the	 matrix	 by	 encoding	 a	
linear	combination	of	the	matrix	elements.	Because	the	
correlation	matrix	v⃗

(
𝜏1
)
v⃗
(
𝜏2
)
LC

	is	necessarily	symmet-
ric,	 a	 dataset	 of	 6	 orthogonal	 measurements,	 that	 is,	 a	
linear	combination	of	 the	upper	or	 lower	triangle,	pro-
vides	all	necessary	information.	ICOSA6,29	for	example,	
is	 used	 to	 sample	 the	 surface	 of	 an	 icosahedron	 space,	
which	 is	 spanned	by	 the	main	gradient	directions	with	
the	necessary	6	measurements.	Recent	implementations	
have	employed	a	multi-	venc	approach9	using	a	set	of	3	dif-
ferent	venc’s	to	account	for	the	nonlinearity	in	the	encod-
ing	of	�(t)	in	E(t).

2.1.2	 |	 Spectral	interpretation

The	velocity	autocorrection	function	(VACF)	of	a	random	
motion	process	is	defined	as

where	v⃗ (t)	is	the	instantaneous	velocity.	Given	a	stationary	
ergodic	random	process,	temporal	and	spatial	averaging	can	
be	 exchanged	 yielding	 the	 same	 result,	 and	 only	 the	 time	
interval	�	(and	not	the	exact	origin	of	time	of	the	measure-
ment)	matters.26	The	VACF	can	therefore	be	written	as

The	 correlation	 time	 �c	 defines	 a	 time	 scale	 for	 the	
“memory”	of	the	random	process26,30	as

The	spectrum	of	the	VACF	is	given	as	the	Fourier	pair

where	m, n	denote	different	spatial	directions	{x, y, z}	and	
Dm,n (�)	is	also	known	as	the	self-	diffusion	tensor.26	In	the	
right-	most	term,	the	even	property	of	VACF (�)	is	utilized.	

Equation	(9)	can	be	used	to	reveal	the	spectral	relationship	
between	the	MEG	and	VACF	spectrum,	given	as	S (�, t)	and	
Dm,n,	respectively,	as

Further	 details	 about	 the	 derivation	 can	 be	 found	
elsewhere.28

The	MEG	spectrum	is	given	as

where	 q̃ (�, t) = ∫ t
0
q
(
t�
)
ej�t

�

dt�	 and	 q (t) = ∫ t
0
G
(
t�
)
dt�,	

that	is,	the	Fourier	transform	of	the	time	integral	of	gradient	
waveform	samples	(see	Appendix	or	Ref.	[31]).

From	Equation	(10),	several	conclusions	can	be	drawn:

1.	 The	 signal	 attenuation	 caused	 by	 �(t)	 is	 determined	
by	 the	 area	 under	 the	 curve	 that	 is	 given	 by	 the	
product	of	the	VACF	spectrum	Dm,n (�)	and	the	MEG	
spectrum,	 that	 is,	 the	 sensor	 spectrum	 S(�, t).

2.	 If	the	MEG	waveform	would	be	an	ideal	bipolar	Dirac	
function	(��⃗G (0) = c⃗,	��⃗G (𝜏) = − c⃗,	��⃗G (t) = �⃗0 ∀ t � {0, 𝜏}	,	
c⃗ ∈ ℝ

3	 ie,	 a	 VEG	 waveform),	 the	 gradient	 spectrum	
S (�, t) = const ∀�,	 which	 hence	 permits	 probing	 the	
entire	VACF	spectrum.	This	can	be	interpreted	as	the	
short	gradient	pulse	approximation32	in	analogy	to	lit-
erature	on	measuring	the	diffusion	coefficient.33

3.	 If	the	correlation	time	is	significantly	shorter	than	the	
time	for	motion	encoding,	𝜏c ≪ 𝜏,	Equation	(10)	can	be	
approximated23	as

which	results	 in	 the	equation	derived	by	Torrey34	once	
the	Parceval	identity31	is	applied

with	Dm,n (0)	being	the	self-	diffusion	coefficient	 for	the	
directional	indices	m, n,	which	is	not	dependent	on	�	be-
cause	Dm,n (�) ≈ Dm,n (0) ∀�	is	assumed.

4.	 TKE	 is	 given	 as	 k = ∫∞
0
Em,m (�) d�,	 where	 Em,m(�)	

denotes	the	energy	spectrum,35	which	can	be	interpreted	
as	 the	VACF	spectrum	Dm,m (�)	 (further	details	 in	 the	
Appendix).	 Subsequently,	 only	 probing	 of	 the	 entire	

(6)VACF (t, 𝜏) = v⃗ (t) v⃗ (t+𝜏) = ∫
∞

t

v⃗
(
t�
)
⋅ v⃗

(
t� + 𝜏

)
dt�,

(7)VACF (𝜏) = v⃗ (0) v⃗ (𝜏).

(8)𝜏c =
∫∞
0
v⃗ (0) v⃗ (t�)dt�

v⃗ (0)2
.

(9)

Dm,n (�) =
1

2 ∫
∞

−∞

vm (0) vn (t
�)ej�t

�

dt� = ∫
∞

0

vm (0) vn (t
�)ej�t

�

dt�,

(10)� (t) =
1

2�
�2 ∫

∞

−∞

Dm,n (�) S(�, t)d�.

(11)S (�, t) = |q̃ (�, t)|2 ,

(12)� (t) =
1

2�
�2Dm,n (0) ∫

∞

−∞

S (�, t) d�,

(13)
𝛼 (t) = 𝛾2Dm,n (0) ∫

t

0

||||∫
u

0

��⃗G
(
t�
)
��⃗G

(
t�
)
dt�

||||
2

�����������������������������
q(u)

du
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VACF	 spectrum	 in	 the	 limit	 of	 short	 gradient	 pulses	
results	 in	 quantitatively	 correct	 estimates	 of	 TKE.

5.	 Different	frequency	ranges	of	the	VACF	spectrum	can	
be	probed,	 if	 the	gradient	spectral	 response	 is	 tailored	
accordingly,	potentially	allowing	reconstruction	of	the	
entire	VACF	spectrum	from	multiple	measurements.

2.1.3	 |	 Relation	to	turbulence	theory

Reynolds	 decomposition	 of	 turbulent	 velocity	 fields	 re-
sults	in	separate	mean	and	fluctuating	velocity	field	com-
ponents.35	The	fluctuating	component	can	be	described	by	
a	random	process36	with	correlation	time	�c.	If	v⃗ (t)	is	as-
sumed	to	be	the	velocity	of	a	fluid	particle	in	the	flow	field,	
it	is	found	by	inserting	VEG	waveforms	into	Equation	(5)	
that	�(t)	encodes	the	VACF.37

The	Reynolds	stress	tensor	(RST)	is	defined	by	the	co-
variance	of	velocity	components,

where	�2mn = ⟨umun ⟩ , m,n ∈ {x, y, z}.35	The	 definition	 of	
the	covariance	of	the	velocity

directly	 connects	 the	 RST	 to	 the	 location	 correlation	 (de-
noted	in	Equation	(4)	and	defined	in	the	Appendix)	when	
using	VEGs.

2.2 | Spectra of VEG and VCG

The	gradient	spectra	S(�, t)	 for	VEGs	with	identical	first	
gradient	 moment	 M1 = �∕

(
�venc

)
	 for	 venc = 450 cm∕s	

(used	 in	 recent	 works9)	 but	 different	 frequencies	 are	
shown	in	Figure	2A.	The	VEG	waveforms	respect	the	gra-
dient	limit	specifications	given	in	the	Methods	section.

The	gradient	spectrum	of	a	VEG	with	duration	2�	and	
fVEG = 1∕ (2�)	is	characterized	by	a	sinc	function	with	the	
first	zero	crossing	at	 f0 = 2fVEG∕N	(Figure	2B),	where	N	is	
the	number	of	repetitions.	In	general,	the	zero-	frequency	
lobe	is	always	dominant.

In	Figure	2C,	VCG	gradient	waveforms	for	a	different	
number	 of	 repetitions	 but	 constant	 frequency	 fVCG	 are	

(14)RST =

⎡⎢⎢⎢⎣

�2xx �2xy �2xz
�2yx �2yy �2yz
�2zx �2zy �2zz

⎤⎥⎥⎥⎦
,

(15)⟨umun ⟩ = umun − um un,

F I G U R E  2  Gradient	waveforms	and	
spectra	for	(A,	B)	VEG	(venc = 450 cm∕s,		
fVEG = {500, 1000, 1200}Hz),	and	(C,	D)	
VCG	( fVCG = 1000Hz,	NfVCG

= {2, 5, 10}).	
The	spectra	plots	are	calculated	according	
to	Equation	(11)	and	are	normalized	
by	their	value	at	 f = 0	and	 f = fVCG	for	
VEGs	and	VCGs,	respectively.	(A)	The	
gradients	have	same	first	moment	M1	(ie,	
same	venc)	but	different	durations,	which	
(B)	determine	the	spectral	coverage.	
Inset:	secondary	peaks	in	the	spectrum	
with	amplitude	reduced	by	a	factor	of	
approx.	500	compared	to	zero	frequency	
amplitude	can	be	neglected.	(C)	VCG	
amplitudes	are	defined	by	their	maximum	
first	moment	during	encoding	time	
max
t
M1(t), t =

[
0, tdur

]
	(see	Supporting	

Information	Figure	S4).	VCGs	exhibit	
a	(D)	narrow	peak	in	the	spectrum	that	
renders	them	suitable	for	point-	wise	
probing.	VCG,	velocity-	compensated	
gradient;	VEG,	velocity-	encoding	gradient
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shown.	Their	amplitude	is	scaled	according	to	their	max-
imum	 first	 moment	 over	 time.	 The	 VCG	 spectra	S (�, t)	
(Figure	 2D)	 exhibit	 a	 lobe	 at	 the	 gradient	 frequency;	
however,	 they	 do	 not	 show	 a	 zero-	frequency	 lobe.	Their	
spectra	 are	 well	 suited	 for	 point-	wise	 probing	 the	VACF	
spectrum	due	to	their	narrow	frequency	band	in	the	gra-
dient	spectrum.

2.3 | Encoding power of gradients

Given	 Equation	 (10),	 knowledge	 about	 both	 the	 VACF	
spectrum	Dm,n (�)	 and	 MEG	 spectrum	S (�, t)	 is	 neces-
sary	 to	 estimate	 the	 encoding	 strength	�(t).	 VACF	 spec-
tra	of	stenotic	flows	have	been	investigated	in	numerous	
works.19,21,38-	46	 Assuming	 a	 simplified	 1D	 model	 VACF	
spectrum	E

(
�, l, cl

)35	given	by

where	�	 is	 the	 wave	 number,	 l	 a	 reference	 length,	 and	
fl
(
�, cl

)
	is	a	nondimensional	function	which	defines	the	

shape	of	the	inertial	range	and	tends	to	unity	for	small	�l,	
a	VACF	spectrum	based	on	cl = f 2

eddy
l	can	be	defined.	The	

cutoff	frequency	feddy	defines	the	onset	of	the	−5/3	inertial	
range35	and	ranges	from	several	10	Hz42	up	to	1000	Hz,47	
depending	on	the	Reynolds	number	Re	and	viscosity	�.	For	
example,	increasing	the	viscosity	from	�water = 0.71mm2∕s
to	�blood = 2.6mm2∕s	at	36°C48	and	keeping	other	parame-
ters	 constant	 increases	 the	 eddy	 frequency	 almost	

fourfold.	Exemplary	plots	of	VACF	and	VEG	spectra	are	
depicted	in	Figure	3A.

Depending	 on	 the	 specific	 shape	 of	 the	 VACF	 spec-
trum,	the	coverage	of	the	VEG	spectrum	might	be	insuf-
ficient.	 Using	 a	 normalized	 form	 of	 Equation	 (10)	 and	
D (�) = E

(
�, l, cl

)
	yields	the	relative	encoding	power	�̃(t)	

of	a	VEG	spectrum	S (�, t),

depending	 on	 the	 eddy	 frequency,	 which	 is	 shown	 in	
Figure  4A,	 where	 integration	 was	 performed	 in	 the	 fre-
quency	 range	 as	 given	 in	 Figure	 3.	 The	 relative	 encoding	
power	for	a	fixed	VEG	frequency	of	 fVEG = 900Hz	but	vary-
ing	 feddy	regimes	is	depicted	in	Figure	4B.

2.4 | Current approach of intravoxel 
SD estimation

The	IVSD	�	is	encoded	based	on	the	signal	model	presented	
by	Dyverfeldt	et	al,17	which	relates	 the	magnitude	signal	of	
2	 differently	 encoded	 segments	 |S (kv1

) |	 and	|S (kv2
) |	 using			

the	encoding	velocity	moments	kv1	and	kv2	according	to

The	model	relies	on	the	assumption	𝜏c ≫ 𝜏,	which	was	
estimated	 around	 �c ≥ 10ms18	 based	 on	 MRI	 data.49	 In	

(16)fl
(
�, l, cl

)
=

(
�l

�l+cl

) 5

3

,

E
(
�, l, cl

)
=�−5∕3fl

(
�, l, cl

)
,

(17)�̃ (t) =
∫∞
−∞

D (�) S (�, t) d�

∫∞
−∞

D (�) d�
,

(18)� =

√√√√√2 ln
(|S(kv2)|

|S(kv1)|
)

k2
v1
− k2

v2

.

F I G U R E  3  (A)	Comparison	of	normalized	VACF	spectra	D (ω)	for	 feddy ∈ {100, 2000}Hz	and	VEG	spectra	for	gradient	frequencies	
fVEG ∈ {100, 2000}Hz	using	logarithmic	scaling.	For	low-	frequency	VACF	spectra,	the	high-	frequency	VEG	provide	sufficient	spectral	
coverage,	whereas	the	low	frequency	VEG	coverage	may	be	insufficient.	− 5∕3	lines	depict	the	slope	of	the	VACF	spectra	in	the	inertial	
range.	(B)	Using	VCG	of	frequency	 fVCG,n, n ∈ ℕ,	it	is	possible	to	reconstruct	an	estimate	D̃ (ω)	of	the	true	VACF	spectrum	D(ω)	per	voxel.	
This	information	can	be	used	for	correction	of	limited	spectral	coverage	of	VEG.	 feddy,	eddy	frequency;	 fVEG, VEG frequency
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vitro	 measurement	 using	 laser	 Doppler	 anemometry	 of	
realistic	 flow	 conditions	 and	 viscosity,	 predict,	 however,	
�c ≈ 1ms.21	 This	 may	 invalidate	 the	 assumption	 𝜏c ≫ 𝜏	
as	the	spectral	coverage	of	the	gradients	is	not	taken	into	
account.

3 |  METHODS

3.1 | Large eddy simulation

Computational	 fluid	 dynamics	 (CFD)	 simulations	 using	
a	 large	 eddy	 simulation	 approach	 in	 OpenFOAM	 v1912	
were	performed	on	a	“stenotic”	tube	(75%	area	reduction,	
cosine	shape50).	A	parabolic	inlet	profile	resulting	in

based	on	the	free	flow	diameter	D,	the	mean	flow	velocity	
u	at	the	inlet,	and	the	dynamic	viscosity	of	whole	blood	at	
36°C	 (� = 2.6mm2∕s),	 was	 used.	 Details	 about	 the	 mesh	
and	validation	of	the	CFD	solver	can	be	found	in	Supporting	
Information	Figures	S1	and	S2,	respectively.

For	nonstationary	input	data,	as	Petersson	et	al	noted,51	
agreement	between	a	large	eddy	simulation	and	simulated	
MRI	data	is	poor	if	the	time-	averaged	flow	quantities	are	
used.	Instead	of	randomly	choosing	timeframes	from	the	
instantaneous	solution,51	the	CFD	data	was	extracted	con-
tinuously	in	time,	beginning	at	an	arbitrary	reference	time	
point,	and	then	fed	into	the	MRI	simulation.	This	process	

emulates	the	start	of	an	MRI	acquisition	at	some	point	in	
time	and	running	the	MRI	simulation	for	the	duration	of	
the	MEG.	Therefore,	time-	resolved	CFD	data	were	exported	
for	slices	in	the	x,z-	plane	with	Δt = 100μs	and	linearly	in-
terpolated	onto	the	MRI	simulation	time	grid.	Supporting	
Information	Video	S1	shows	the	CFD	slices	over	time.

3.2 | MRI simulation VEG

Our	 recently	 presented	 MRI	 simulation	 particle	 tracing	
approach52	was	extended	to	include	random	motion	based	
on	a	discrete	random	walk	model.53	The	fluctuating	veloc-
ities	v′x , v

′
z	were	kept	constant	for	a	spatially	varying	time	

constant	defined	by	the	Lagrangian	integral	time

where	k,	�,	and	�	denote	the	TKE;	the	standard	dissipation	
rate;	 and	 the	 specific	 dissipation	 rate	 of	TKE	 of	 the	 large			
eddy	 simulation	 turbulence	 model,	 respectively.	 The	
eddy	 lifetime	 �eddy = 2TL	 relates	 to	 the	 eddy	 frequency	
as	 feddy = 1∕�eddy.	 As	 shown	 in	 Figure	 5,	 the	 eddy	 fre-
quency	of	the	dataset	used	as	input	data	was	in	the	range	
feddy = [1000, 5000]Hz.	 A	 similar	 approach	 has	 also	 been	
used	 in	other	works	concerned	with	turbulent	MRI	simu-
lations.54	The	current	simulation	does	not	assume	isotropy	
and	employs	Cholesky	decomposition	to	draw	samples	from	
correlated	distributions	given	by	the	covariance	matrix	Σ	ac-
cording	to

(19)Re =
uD

�
= 4000, (20)TL ≈ 0.30

k

�
= 0.30

1

�
,

F I G U R E  4  (A)	Relative	encoding	power	�̃ (t)	given	by	Equation	(17)	(color	and	isolines)	depending	on	the	 fVEG	(abscissa)	and	the	 feddy	
(ordinate)	for	venc = 450 cm∕s	for	given	maximum	slew	rate	and	gradient	amplitude	(respective	values	stated	above	the	plot).	(B)	Assuming	
gradient	limits	of	slew	rate	195	T/m/s	and	maximum	gradient	amplitude	0.03	T/m	(currently	available	on	clinical	MRI	systems)	and	VACF	
spectra	comprising	 feddy ∈ [100, 500],	for	example,	the	magnitude	damping	exp(�̃ (t) )	of	the	VEG	at	maximum	frequency	900	Hz	varies	within	
up	to	±10%	depending	on	 feddy	(plot	is	normalized	by	value	�̃ (t)	at	first	frequency).	This	results	in	spatially	varying	damping	and	is	dependent	
on	the	voxel	position	for	inhomogeneous	turbulent	flows.	It	cannot	be	corrected	for	(all	gradients	already	have	same	venc).	The	uncertainty	
due	to	a	range	of	 feddy	in	a	noise-	less	signal	is	shown	by	red/green	areas	and	indicated	by	percentage	values.	�̃ (t),	relative	encoding	power



1238 |   DILLINGER et al.

where	Σ	is	derived	from	RST	values	�2mn, m,n ∈ {x, z}	taken	
from	CFD	data.

The	 computational	 framework,52	 written	 in	 MatLab	
R2017b	 (MathWorks,	 Natick,	 MA),	 was	 modified	 to	
utilize	 GPU	 functions,	 and	 the	 forward	 Euler	 method	
(fixed	 step	 length	 of	 Δt = 1μs)	 was	 used	 to	 increase	
speed	 and	 extensibility.	 A	 total	 of	ntot = 106	 tracer	 par-
ticles	 were	 seeded	 in	 the	 simulated	 FOV.	 The	 par-
ticles’	 position	 increment	 per	 time	 step	 is	 given	 by	
Δi (t +Δt) =

(
vi (t) + v�

i
(t)

)
Δt, i ∈ {x, z}	.	 The	 CFD	

input	 time	 frames	were	 linearly	 interpolated	 in	 time	be-
tween	 simulation	 time	 steps	 t 	 and	 t +Δt.	 Supporting	
Information	Video	S2	exemplary	shows	 the	particle	mo-
tion	over	simulation	time.

Simulation	 runs	 with	 different	 gradient	 frequencies	
fVEG	 (ie,	 several	 S(kv2),	 same	 venc)	 were	 compared	 to	 a	
nonencoded	 reference	 data	 (S(kv1),	 that	 is,	 without	 ap-
plying	a	VEG	and	hence	venc =∞).	The	segments	venc ≠ 0	
and	 venc =∞	 (reference)	 were	 not	 assumed	 to	 be	 sep-
arated	 in	 time,	 that	 is,	 using	 the	 same	 CFD	 input	 data	
time	 frames.	This	 mimics	 a	 beat-	interleaving	 strategy	 of	
motion-	encoding	segments	as	in	cardiac-	gated	scans.	The	
encoding	 was	 simulated	 only	 in	 z-	direction	 because	 the	
extension	to	other	directions	is	readily	made	and	provides	
no	new	insights.	Equation	(18)	was	used	for	calculation	of	
�zz.	Ground	truth	was	assumed	to	be	the	first	CFD	input	
data	time	frame	at	t = 0	down-	sampled	to	the	MRI	image	
size.

To	keep	the	simulation	tractable	on	a	normal	worksta-
tion,	 the	 simulation	 time	 was	 limited	 to	 the	 velocity-	
encoding	phase	tdur,	where	tdur =

1

min(fVEG)
= 2ms	because	

fVEG = {500, 1000, 1200}Hz.	 Of	 note,	 this	 mimics	

instantaneous	readout	at	time	tdur,	which	enables	the	cur-
rent	work	to	focus	on	the	effects	of	motion	encoding	rather	
than	 readout	 artefacts	 due	 to	 motion.52	 No	 noise	 or	 coil	
sensitivities	 were	 simulated.	 In	 addition,	 particles	 were	
seeded	on	a	2D	plane,	and	through-	plane	velocities	were	
neglected	 to	 reduce	 computational	 load.	The	 simulation	
was	 repeated	 10	 times,	 and	 resulting	 images	 were	
averaged.

3.3 | Gradient waveform spectra

The	VEG	spectrum	S (�, t)	(Equation	(11))	was	evaluated	
after	 the	gradient	was	played	out,	 that	 is,	at	t = tdur.	The	
VEG	 waveforms	 used	 in	 the	 simulation	 are	 depicted	 in	
Figure	2A.	The	gradient	waveforms	were	centered	around	
tdur∕2.	The	VEG	spectra	depicted	in	Figure	2B	were	nor-
malized	to	their	maximum	value,	which	is	proportional	to	
their	first	gradient	moment.26

3.4 | Intravoxel mean velocity variations

The	estimation	of	Intravoxel	mean	velocity	variations	as	
given	by	Dyverfeldt18	reads

where	�turb	 and	�IVSD	 denote	 the	 IVSD	 due	 to	 turbulence	
and	 the	 measured	 IVSD,	 respectively.	 Estimation	 of	 the	
term	 inside	 the	 brackets	 is	 based	 on	 a	 linear	 velocity	 gra-
dient	 across	 a	 voxel.18	 This	 estimation	 is	 valid	 as	 long	 as	
magnetization	does	not	move	across	several	voxels	during	
motion	encoding.	Because	 the	current	paper	 is	 concerned	
with	high-	flow	regimes,	it	is	estimated	that,	for	severe	steno-
sis	 (vmax ≥ 4m∕s6)	and	 typical	motion-	encoding	durations	

(21)

� x,z ∼� (0, 1) ,

LLT =Σ, Σ=

[
�2xx �2xz
�2zx �2zz

]
, Σ is spd,

[
v�x
v�z

]
=L

[
� x
� z

]
,

(22)�turb =

√
�2
IVSD

−
2

k2v
ln

(|SMVV (0) |
|SMVV(kv)|

)
,

F I G U R E  5  Probe	positions	P1	to	P5	used	for	the	Lagrangian	VACF	and	VACF	spectrum	calculation.	Underlay	image	encodes	the	 feddy	
(colorbar)	of	the	first	CFD	input	data	frame.	Probe	1	and	5	are	in	high	eddy	frequency	regions	(jet	border),	whereas	probe	2	and	3	are	in	low	
eddy	frequency	regions	(jet	core).	Probe	4	is	set	in	an	intermediate	 feddy	region	(transitional	region	where	the	jet	breaks	down).	Markers	not	
to	scale	with	the	probe	radius	r.	CFD,	computional	flow;	Pi,	Probe	i
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(0.5-	1	ms),	magnetization	moves	by	more	than	1	voxel	(typi-
cal	resolution	2.5	mm)	in	the	jet	region.

The	IVSD	due	to	mean	velocity	only	is	given	as

and	can	be	assessed	by	performing	the	simulation	without	
fluctuating	velocities.	Because	massless	tracer	particles	are	
used,	 any	 spatial	 gradient	 in	 the	 mean	 velocity	 field	 will	
contribute	 to	�2

MVV
	 (see	 Appendix;	 particle	 motion	 equa-

tion).	For	correction,	�2
MVV

	 is	 subtracted	 from	�2
IVSD

	 to	ob-
tain	results	devoid	of	IVSD	due	to	mean	velocity.	Resulting	
IVSD	from	mean	velocity	�MVV	 is	presented	in	Supporting	
Information	Figure	S3.

3.5 | VACF and VACF spectrum D(�)

The	 Lagrangian	 velocity	 autocorrelation	 function	 VACF	
is	given	by	calculating	the	autocorrelation	of	velocity	sam-
ples	of	probe	velocities.	The	particles	were	selected	at	t = 0	
at	 given	 locations	 shown	 in	 Figure	 5	 within	 a	 radius	 of	
r = 1mm,

where	rs, ts	denote	the	probe	position	and	probed	time,	re-
spectively,	 and	 p ∈ {particle indices within r}.	 Taking	 the	
mean	VACFm,m

�
ts
�
=

1

�p�
∑�p�

p�=1
VACFm,m,p�

�
ts
�
,	 multiply-

ing	it	with	a	Tuckey	window	of	the	same	length	and	apply-
ing	 the	 discrete	 Fourier	 transform	 results	 in	 the	 velocity	
autocorrelation	spectrum	(VACF	spectrum)	Dm,m(�).

3.6 | MRI simulation VCG

For	probing	the	VACF	spectrum,	the	MRI	simulation	was	
conducted	 assuming	 a	 high-	performance	 gradient	 sys-
tem	(maximum	gradient	amplitude	80	mT/m,	maximum	
slew	 rate	 210	 T/m/s);	 gradient	 frequencies	 were	 set	 to	
fVCG = [100, 200,⋯, 5000]Hz,	resulting	in	50	probing	fre-
quencies;	and	waveforms	were	repeated	for

to	 achieve	 approximately	 the	 same	 spectral	
band	  width.	 Given	 a	 fixed-	time	 encoding	 	window	
tdur =min

(
NfVCG

)
∕min

(
fVCG

)
= 20ms  and  NfVCG  	repetitions	

for  	VCG	 of	 frequency	 fVCG,	 the	 spectral  	width	 of	 the	

response	 lobe  becomes	 independent	 of	 fVCG,	 	allowing	
the	 entire	 spectrum	 to	 be	 probed	 by	 changing	 the	
gradient	 frequency.	 VCG	 waveforms	 were	 cal-
culated	 such	 that	 their	 maximum	 first	 moment	
M1,max =max

t

(
M1 (t)

)
= ∫ t0+t

t0
G (t)

(
t − t0

)
dt	 corresponded	

to	venc = �∕(�M1, max) = 450 cm∕s	(see	Supporting	Information		
Figure	S4),	where	again	t0 = 0	was	assumed.

Resulting	gradient	spectra	and	waveforms	are	depicted	
in	 Figure	 9C,D,	 respectively.	 Due	 to	 integer	 rounding	 in	
Equation	(25),	the	relationship	between	first	moment	and	
peak	values	in	the	spectra	holds	only	approximatively.	The	
resulting	 images	 were	 calculated	 according	 to	 Equation	
(18),	where	�zz	denotes	the	encoding	of	the	intravoxel	SD	
along	the	direction	z.

For	 probing	 the	 VACF	 spectrum,	 mean	 velocities	
were	 set	 to	 zero	 to	 avoid	 changes	 in	 turbulence	 pa-
rameters	 due	 to	 mean	 particle	 motion	 and	 to	 enable	
comparison	to	ground	truth.	Because	particles	are	ex-
pected	 to	stay	within	a	region	with	spatially	homoge-
neous	parameters,	Lagrangian	 (moving	particles)	and	
Eulerian	 (voxel)	 spectra	 yield	 the	 same	 result.	To	 en-
sure	 spatial	 and	 temporal	 homogeneity,	 feddy = 1kHz	
and	�zz = 0.3m∕s	were	fixed	for	all	CFD	input	data	time	
frames	for	all	voxels.

3.7 | Spectral correction method

By	 employing	 knowledge	 about	 the	 spectrum	 D (�)

and	 the	 gradient	 spectrum	S(�, t),	 the	 limited	 spectral-	
encoding	 ability	 of	 the	 VEG	 gradients	 was	 corrected	 on	
a	voxel	basis.	For	given	flow,	this	results	in	a	quantitative	
correct	estimate	of	SDs	�mn, m,n ∈ {x, y, z}.

The	 per-	voxel	 estimate	 of	 VACF	 spectra	 D̃ (�)	 was	
calculated	 from	 simulations	 with	 VCGs	 by	 linearly	 in-
terpolating	between	probed	frequencies	(Figure	3B).	The	
relative	encoding	power	�̃ (t)	per	voxel	was	given	by	the	
full	version	of	Equation	(17)	and	used	for	correction	by	
employing

given	 an	 uncorrected	 measurement	 of	�fVEG	 resulting	 in	
the	corrected	estimate	�corrected	of	IVSD	for	a	given	VEG	
frequency	 fVEG	using	Equation	(18).

Without	additional	VCG	measurements,	 the	VEG	spec-
trum	S(�, t)	 could	 be	 estimated	 from	 gradient	 waveforms	
exclusively.	Assuming	D (�) ≈ const. ∀ω,	Equation	(17)	re-
sulted	in	an	estimate	for	the	encoding	power	for	a	given	VEG

(23)�2MVV =
2

k2v
ln

(|SMVV (0) |
|SMVV(kv)|

)
,

(24)

VACFm,m,p
�
ts
�
= ⟨um,p

�
rs, ts

�
um,p

�
rs, ts

�⟩ , m ∈ {x, z} ,

(25)NfVCG
= 2

⌊
fVCG

max
(
fVCG

)
⌋

(26)�corrected = �fVEG ∕ �̃fVEG ,

(27)�̃fVEG (t) = ∫
∞

−∞

S (�, t) d�,
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which	was	used	to	correct	for	experiments	employing	VEGs.	
Phase-	contrast	sequences	with	high	and	low	venc	values	to	
account	 for	 nonlinearities	 in	 Equation	 (18)	 may	 result	 in	
different	VEG	frequencies	and,	if	uncorrected	for,	inconsis-
tencies	 in	�mn	 estimation	 across	 venc	 values.55	The	 spectra	
S(�, t)	 of	 VEGs	 fVEG = {500, 1000, 1200}Hz	 were	 calcu-
lated	according	to	Equation	(11),	and	the	encoding	power	
across	venc	values	was	normalized	using

4 |  RESULTS

4.1 | VACF spectrum

The	VACFs	in	x	and	z	direction	and	their	spectra	at	differ-
ent	probe	positions	are	depicted	 in	Figure	6.	Depending	
on	the	specific	probe	position	rs	as	a	function	of	time	and	
corresponding	 feddy(rs, t),	the	VACF	spectrum	follows	the	
shape	 of	 exemplary	 model	 spectra	 defined	 in	 Equation	
(16)	 with	 the	 roll-	off	 frequency	 related	 to	 the	 eddy	 fre-
quency.	The	spectrum	 is	 inherently	multiplied	by	a	sinc	
function	 due	 to	 the	 discrete	 random	 walk	 model	 used;	
the	 local	 minima	 are	 given	 by	 the	 update	 rate	 feddy	 the	

magnetization	 experiences	 during	 simulation	 time.	 Due	
to	 the	 high	 flow	 velocity	 in	 z	 direction	 (Figure	 6C,D),	
it	can	be	seen	 that	probe	1	has	a	 low	correlation	during	
t = [0, 0.1]ms	because	the	probed	particles	start	in	a	high	
feddy	 region	 and	 are	 transported	 to	 a	 lower	 feddy	 region.	
This	results	in	reduced	correlation	due	to	spatial	inhomo-
geneity	of	velocity	and	turbulence	parameters,	and	subse-
quently	a	higher	frequency	coverage	in	the	spectrum.

4.2 | Mean velocity and turbulence 
parameter estimation

In	 the	 plots	 shown	 in	 Figure	 7,	 results	 of	 estimated	
mean	 velocities	 are	 similar	 for	 different	 VEG	 frequen-
cies.	Spatial	misregistration	due	to	finite	VEG	duration	
is	 found	 when	 compared	 to	 ground	 truth.	 The	 spatial	
misregistration	 corresponds	 to	 the	 distance	 Δz = Vz�	
that	a	particle	would	move	during	 time	tdur∕2,	because	
VEGs	are	centered	at	tdur∕2.	The	misregistration	is	given	
by	Δz = 2mm	 in	 a	 region	 where	 the	 mean	 velocity	 is	
approximately	 2	 m/s	 and	 tdur = 2ms.	 For	 the	 IVSD	 re-
sults	depicted	 in	Figure	8,	�zz	 is	 seen	 to	be	 reduced	by	
50%	when	compared	to	ground	truth	when	using	a	VEG	
of	500	Hz.	On	the	other	hand,	 increasing	the	VEG	fre-
quency	decreases	the	difference	between	�zz	and	ground	

(28)�̃�
fVEG

=
�̃fVEG

�̃max(fVEG)
.

F I G U R E  6  Lagrangian	VACF	in	(A)	x	direction	(index	xx)	and	(B)	z	direction	(index	zz)	for	different	probe	positions	P1	to	P5.	(B),	
(D):	VACF	spectra	in	x	and	z	direction.	Different	probe	positions	relate	to	regions	of	different	eddy	frequencies	and	therefore	different	
autocorrelation	functions	and	spectra.	Particles	in	regions	of	high	 feddy	show	fast	decaying	VACFs	(eg,	probe	1,	2).	Transport	to	a	different	
region	due	to	mean	flow	results	in	a	kink	in	the	VACF	(eg,	VACF	in	z	direction	probe	1).	Highest	frequency	of	start	of	the	inertial	range	in	
(D)	(stream-	wise)	is	found	at	2	kHz	for	probe	1
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F I G U R E  7  (A)	Comparison	of	velocity	simulation	output	for	 fVEG = {500, 1000, 1200}Hz	to	ground	truth	yields	that	the	mean	velocity	is	
found	to	be	imaged	correctly	and	results	in	comparable	images	for	different	 fVEG.	(B)	The	mean	velocity	distribution	does	not	depend	on	 fVEG
.	(C)	The	mean	velocity	profile	shows	only	spatial	misregistration	artefacts	compared	to	ground	truth,	which	relates	to	vz,max tdur∕2	because	
instantaneous	imaging	is	assumed	at	the	end	of	the	VEG	(inset)

F I G U R E  8  Comparison	of	SD	σzz	for	 fVEG = {500, 1000, 1200}Hz	in	z	direction	with	GT	shows	that	σzz	is	systematically	underestimated	
and	its	estimated	values	differ	for	different	 fVEG.	(A)	Increasing	 fVEG	results	in	an	improved	estimation	of	σzz	compared	to	ground	truth.	(B)	
The	σzz	distribution	is	shifted	toward	lower	values	as	 fVEG	decreases.	This	results	in	increased	underestimation	of	SD	values	for	decreased	
fVEG.	σzz	profiles	are	depicted	along	FOVx	(C)	and	FOVz	(D).	Level	of	underestimation	compared	to	GT	is	increased	in	regions	of	high	eddy	
frequency	(compare	Figure	5).	Due	to	mean	velocities,	misregistration	artefacts	are	found	in	(D)	(compare	also	Figure	7).	GT,	ground	truth
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truth.	 Using	 histogram	 analysis	 in	 Figure	 8B,	 a	 differ-
ence	 of	 mean	 value	 of	 29%	 between	 500	 and	 1200	 Hz	
gradient	 is	 found,	whereas	mean	velocity	distributions	
show	no	difference.	Of	note,	the	model	by	Dyverfeldt18	
would	predict	the	same	values	of	�zz	for	all	tested	VEG	
frequencies	because	of	the	same	venc	used.

4.3 | Mean flow influence on 
turbulence estimation

Conducting	the	simulation	without	random	motion	com-

ponents	

[
x′

z′

]
	in	Equation	(21)	results	in	an	estimate	of	�zz	

due	 to	 mean	 velocity	 only.	 Resulting	�zz	 plots	 and	 their	
respective	 histograms	 can	 be	 found	 in	 Supporting	
Information	 Figure	 S3.	 Given	 massless	 tracer	 particles	
were	assumed,	the	imaged	�zz	due	to	mean	velocity	only	
corresponds	to	the	mean	velocity	gradient	in	VEG	direc-
tion	and	is	not	dependent	on	the	VEG	frequency.	Tracer	
particle	dynamics	are	further	discussed	in	the	Appendix.

4.4 | Corrected turbulence estimation

In	Figure	9A,	good	agreement	is	found	between	normal-
ized	 VACF	 spectra	 given	 by	 Lagrangian	 probes	 and	 the	
VACF	 spectrum	 estimated	 from	 VCG	 probing	 measure-
ments,	therefore	confirming	the	feasibility	of	probing	the	
VACF	 spectra.	 Using	 the	 correction	 method	 employing	
knowledge	 about	 both	 the	 VEG	 spectra	 and	 the	 probed	
VACF	spectra	using	VCG	measurements,	Figure	9B	shows	
that	the	estimation	error	reduces	from	−49%	to	−10%	for	
fVEG = 500Hz	and	from	−21%	to	−5%	for	 fVEG = 1200Hz.		
Figure	 9C	 and	 D	 show	 spectra	 and	 waveforms	 of	 VCGs	
with	 varying	 frequencies	 used	 in	 the	 probing	 measure-
ment.	Due	to	their	narrow	bandwidth	of	approx.	100	Hz,	
point-	wise	probing	of	the	VACF	spectrum	is	possible.

In	Figure	10,	estimates	of	IVSD	are	presented	that	have	
been	corrected	without	additional	probing	but	by	employ-
ing	Equation	(28).	The	IVSD	estimates	are	coherent	across	
different	 values	 of	 venc	 but	 underestimate	 ground	 truth.	
This	is	confirmed	in	the	histogram	analysis	in	Figure	10B	
and	profiles	in	Figure	10C	and	D.

F I G U R E  9  (A)	Estimated	VACF	spectrum	D̃m,n(ω)	(black	continuous	line)	compared	to	VACF	spectra	Dm,n(ω)	(black	dotted	line)	using	
spatially	invariant	input	data	and	zero	mean	velocity	to	enable	direct	comparison.	Each	point	of	the	continuous	curve	relates	to	a	simulation	
run	with	the	respective	VCG.	Good	agreement	between	the	Lagrangian	VACF	spectrum	and	the	estimated	spectrum	is	found.	(B)	Applying	
the	correction	method	employing	both	D̃m,n(ω)	(estimated	from	VCG	measurements)	and	S(ω)	(calculated	from	VEG	parameters),	the	
underestimation	is	reduced	from	49%	to	10%	for	500	Hz	VEG.	(C)	Normalized	spectra	of	VCGs	used	for	probing	the	VACF	spectrum.	Due	to	
integer	rounding	in	Equation	(25),	different	numbers	of	repetitions	may	result	in	differences	in	spectral	bandwidth.	Spectra	are	normalized	
in	the	plot	by	the	initial	probing	gradient	where,	due	to	slew	rate	limitations,	maximum	spectra	values	increase	for	higher	frequencies.	(D)	
VCG	waveforms	used	for	probing.	The	plot	depicts	details	of	the	full	waveforms	for	t = [0, tdur]
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5 |  DISCUSSION

Based	on	the	framework	presented,	VEG	and	their	spec-
tral	 response	 in	 relation	 to	 probing	 turbulent	 flow	 have	
been	investigated.

Assuming	 velocity	 autocorrelation	 function	 spectra	 of	
turbulent	flow,35	and	VEG	gradients	with	a	venc	of	450	cm/s	
and	1	ms	duration,	current	models	for	turbulence	quanti-
fication18	 are	 shown	 to	 systematically	 underestimate	 tur-
bulence	parameters	given	a	typical	image	resolution	of	2.5	
mm.	 In	 addition,	 depending	 on	 position	 in	 the	 turbulent	
region,	the	degree	of	underestimation	varies	with	the	VEG	
frequency.	Higher	VEG	frequencies	are	shown	to	reduce	the	
underestimation.	At	the	maximum	frequency	given	by	the	
maximum	slew	rate	and	gradient	strength	available	on	clin-
ical	MRI	systems,	significant	underestimation	of	turbulence	
parameters	remained.	Increasing	the	voxel	size,	however,	is	
expected	 to	 counteract	 this	 effect	 and	 may	 even	 result	 in	
overestimation	 of	 turbulence	 parameters.56	 Estimation	 of	
the	mean	velocity	was	not	affected,	aside	from	misregistra-
tion	errors	due	to	finite	time	duration	of	the	VEG.

Current	 turbulence	 quantification	 models18	 assume	
that	the	Lagrangian	correlation	time	scale	is	much	longer	
than	the	time	duration	of	the	VEG.	In	the	current	paper,	
based	on	CFD	simulations	assuming	realistic	flow	regimes	
and	 viscosity,	 the	 first	 zero	 crossing	 of	 the	 VACF	 was	

found	before	1	ms,	which	relates	to	correlation	time	scales	
shorter	than	typical	VEG	durations.	In	vitro	experiments	
using	 a	 blood	 fluid	 analog	 report	 the	 first	 zero	 crossing	
around	3	ms,21	depending	on	 the	 temporal	phase	of	 the	
pulsatile	flow	and	the	position	upstream	of	their	artificial	
aortic	valve.	Other	in	vitro57	and	in	vivo43	works	report	sig-
nificant	energy	density	above	500	Hz	in	their	spectra.

On	 current	 MRI	 systems,	 the	 venc	 value	 is	 set	 by	 the	
user,	whereas	gradient	 timings	are	optimized	depending	
on	 other	 sequence	 parameters.	 Because	 the	 spectral	 re-
sponse	depends	on	the	VEG	duration,	such	an	approach	
does	 not	 provide	 full	 control	 for	 quantifying	 turbulence	
parameters.	For	VEG	of	900	Hz	(tdur ≈ 1ms),	it	was	found	
that	the	turbulence	parameter	estimation	uncertainty	for	
a	range	of	VACF	spectra	can	exceed	±10%	in	addition	to	
the	 systematic,	 quantitative	 underestimation	 of	 turbu-
lence	parameters.

It	is	important	to	note	that,	depending	on	the	duration	
of	the	VEG,	estimation	of	turbulence	parameter	results	in	
different	values.	This	effect	 is	not	dependent	on	venc	and	
cannot	be	completely	corrected	for	without	information	of	
both	the	VEG	spectrum	and	the	velocity	autocorrelation	
function	(VACF)	spectrum.

To	 address	 systematic	 underestimation	 of	 turbu-
lence	 parameters	 using	 VEGs,	 a	 method	 using	 velocity-	
compensated	waveforms	has	been	presented.	VCGs	exhibit	

F I G U R E  1 0  (A)	Estimated	SD	σzz	for	VEG	frequencies	 fVEG = {500, 1000, 1200}Hz	with	applied	VEG	spectrum	correction	according	to	
Equation	(28)	without	prior	probing	of	the	VACF	spectrum	by	VCG	measurements.	(B)	The	σzz	distribution	is	consistent	within	different	
fVEG.	Compared	to	ground	truth,	the	distribution	is	underestimated	because	max

(
fVEG

)
< ∞.	σzz	profiles	along	FOVx	(C)	and	FOVz	(D)	show	

coherent	estimates	of	the	SD	across	different	 fVEG	after	applying	the	correction	method
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a	narrow	peak	in	the	gradient	spectrum	and	hence	are	suit-
able	for	encoding	and	reconstructing	the	VACF	spectrum	
with	 improved	accuracy.	Comparison	to	spectra	of	simu-
lated	probes	yielded	very	good	agreement.	Because	VACF	
spectra	 vary	 spatially	 in	 turbulent	 flows,39	 the	 presented	
method	holds	potential	to	correct	for	systematic	errors	in	
turbulence	quantification	on	a	voxel	basis.

To	 ensure	 applicability	 of	 the	 correction	 method	 in	
practice	 without	 the	 need	 for	 additional	 measurements,	
the	possibility	of	correction	using	only	VEG	spectra	with-
out	probing	the	VACF	spectrum	was	investigated.	It	was	
found	that	the	RST	estimates	could	be	corrected	to	be	co-
herent	throughout	different	VEG	frequencies.

5.1 | Limitations

The	current	work	 is	 limited	 in	 terms	of	 its	 restriction	to	
nonpulsatile	flow	boundary	conditions	in	the	CFD	simu-
lation.	However,	because	the	MRI	simulation	concerned	
with	 VEGs	 focuses	 on	 the	 velocity-	encoding	 time	 span	
(tdur ≤ 2ms),	 realistic	 aortic	 inlet	 conditions	 would	 only	
result	 in	negligible	changes	of	 flow	rate	during	tdur.

58	Of	
note,	the	VEG	MRI	simulation	itself	employs	time-	varying	
input	data	from	CFD.	The	2D	MRI	simulation	with	input	
data	from	3D	CFD	does	not	consider	through-	plane	veloc-
ities.	Nevertheless,	because	the	evaluation	only	included	
in-	plane	parameters,	no	effects	on	the	results	are	to	be	ex-
pected.	No	noise	or	coil	sensitivities	were	simulated.	Due	
to	limited	slew	rates,	depending	on	their	frequency,	VEGs	
or	VCGs	may	have	small	gradient	amplitudes	that	hamper	
the	applicability	in	a	real	experiment	due	to	the	presence	
of	noise.	In	vitro	experiments	and	optimized	waveforms59	
will	 be	 subject	 to	 future	 research.	 Whereas	 the	 VCG	
waveforms	 used	 in	 this	 work	 respected	 gradient	 slew	
rate/amplitude	limits	of	available	MRI	gradient	systems,	
they	 employed	 increased	 encoding	 times	 (tdur = 20ms).	
Accordingly,	TEs	are	long,	leading	to	reduced	SNR	due	to	
T2*	 decay.	 Practical	 investigation	 of	 SNR-	related	 limita-
tions	of	turbulent	flow	encoding	using	VCGs	are	planned	
for	our	future	research.

The	reference	segment	venc =∞	and	encoded	segments	
venc ≠ 0	have	not	been	separated	in	time	during	the	simu-
lation	 process.	 Because	 readout	 effects	 were	 the	 focus	 of	
another	 work52	 and	 have	 not	 been	 considered,	 no	 signal	
attenuation	 and	 phase	 accumulation	 result	 for	 venc =∞,	
rendering	the	reference	segment	start	time	independent.	If	
readout	effects	were	to	be	considered,	particle	tracing	must	
be	performed	for	venc =∞	and	venc ≠ 0	segments	separately,	
and	input	data	time	frames	must	be	separated	based	on	the	
assumed	interleaving	strategy	of	the	MRI	sequence.

Assumptions	 about	 the	 VACF	 spectra	 are	 based	 on	
CFD	results	using	realistic	flow	parameters;	however,	the	

VACF	 spectrum	 may	 differ	 from	 the	 simulated	 spectra	
in	reality.	The	probing	of	VACF	spectra	in	vitro	will	be	a	
subject	 of	 future	 research.	 Previous	 works54	 employed	 a	
similar	particle	tracing	approach	but	did	not	provide	any	
information	about	VACF	spectra.	The	current	work	is	em-
ploying	a	discrete	random	walk	model;	however,	alterna-
tives	 such	 as	 continuous	 random	 walk	 models	 could	 be	
used.60	 In	addition,	altering	 the	viscosity	of	 the	working	
fluid	changes	 the	VACF	spectrum,	which	hampers	com-
parability	of	different	works.	In	this	work,	the	viscosity	of	
whole	blood	and	a	realistic	Reynolds	number	were	used,	
intended	to	mimic	in	vivo	flow	parameters.

Relying	 on	 a	 particle-	tracing	 approach,	 particles’	 dy-
namics	influence	the	simulation	results.	Rather	than	im-
posing	specific	particle	parameters	(eg,	particle	drag	force	
outlined	in	Equation	(46)),	massless	particles	were	used.	
These	particles	do	not	suppress	any	dynamics	that	might	
be	 important	 for	 tracing,	 however;	 they	 are	 susceptible	
to	gradients	of	the	mean	velocity	field.	To	overcome	this	
limitation,	mean	velocity	variation	correction	was	applied	
(Supporting	Information	Figure	S3).

6 |  CONCLUSION

Theoretical	 considerations	 and	 computer	 simulations	 as	
presented	in	this	work	suggest	that	bipolar	VEGs	in	phase-	
contrast	MRI	of	stenotic	flows	with	short	correlation	times	
result	in	systematic	and	significant	underestimation	of	tur-
bulence	parameters.	To	address	this	shortcoming,	tailored	
VCGs	are	proposed	to	offer	an	approach	to	improved	quan-
titative	mapping	of	turbulent	blood	flow	characteristics.
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FIGURE S1	Depiction	of	the	computational	mesh	used	in	
the	Large	Eddy	Simulation
FIGURE S2	Comparison	of	velocity	profiles	of	own	sim-
ulation	relative	 to	published	DNS	results2	 for	Re = 1000	.	
The	 velocity	 profiles	 are	 given	 along	 the	 normalized	 ra-
dius	r∕R	 for	 normalized	 velocity	u∕U	 for	 four	 positions	
Z= z∕D={0, 1, 7, −2}.	 Velocity	 profiles	 of	 the	 two	 ap-
proaches	agree
FIGURE S3	Imaged	standard	deviation	�zz	and	its	distri-
bution	due	to	mean	velocity	only.	As	the	simulation	em-
ploys	massless	tracer	particles,	the	images	�zz	correspond	
to	 spatial	 mean	 velocity	 gradients	 (highlighted	 by	 black	
arrows	 in	Velocity	Gradient	and	Standard	Deviation	 im-
ages).	Of	note,	�zz	due	to	mean	velocity	gradients	does	not	
depend	on	the	VEG	frequency	fVEG	as	opposed	to	�zz	due	to	
random	motion	as	demonstrated	in	the	main	manuscript
FIGURE S4	Definition	of	VCG	waveforms	is	based	on	their	
maximum	 first	 moment	 over	 encoding	 time	

max
t

(
M1 (t)

)
=∫

t0+t

t0

G (t)
(
t− t0

)
dt	 corresponding	 to	

venc =
�

�max
t

(
M1 (t)

).	 M1

(
tdur

)
= 0	 is	 equivalent	 to	

M1 (TE) = 0	as	no	readout	was	simulated.	The	VCG	wave-
form	with	lowest	fVCG = 100Hz	was	repeated	for	NfVCG,100

= 2

VIDEO S1	Depiction	of	the	input	data	for	the	MRI	simulation	
as	output	by	the	Large	Eddy	Simulation.	The	data	includes	
mean	velocity	components	in	x,y,z	direction,	mean	velocity	
magnitude,	Cholesky	factorized	IVSD	and	eddy	frequency
VIDEO S2	Example	of	the	MRI	simulation	running	over	
time	(moving	green	bar	marks	current	simulation	time).	
The	 particles	 move	 during	 the	 simulation	 time	 span	 ac-
cording	to	their	mean	and	fluctuating	velocity.	Compared	
to	 the	 main	 manuscript,	 the	 number	 of	 particles	 have	
been	reduced	for	visualization	purposes

How to cite this article:	Dillinger	H,	McGrath	C,	
Guenthner	C,	Kozerke	S.	Fundamentals	of	
turbulent	flow	spectrum	imaging.	Magn Reson Med.	
2022;87:1231–	1249.	https://doi.org/10.1002/mrm.29001

https://wiki.anton-paar.com/us-en/whole-blood/
https://doi.org/10.1002/mrm.29001


   | 1247DILLINGER et al.

APPENDIX 

Derivation of the ensemble mean phase
If	 a	 Gaussian	 distribution	 with	 first	 and	 second	 order	
moments	 different	 from	 zero	 (n = {1, 2})	 is	 assumed,	
Equation	(3)	can	be	simplified	to

Assuming	 a	 stationary	 ensemble,	 the	 integral	 and	 en-
semble	average	of	term	1	in	Equation	(A1)	is	given	as

Term	2	in	Equation	(A1)	can	be	written	as27

where	the	first	term	on	the	RHS	is	given	as

and	the	second	term,	again,	assuming	a	stationary	ensemble	
with	⟨ j� �

t1
�⟩ = ⟨ j� �

t2
�⟩,	results	in

The	location	correlation23	in	Equation	(A3)	is	denoted	
by	index	LC	and	corresponds	to	the	definition	of	the	stand-
ard	deviation	(�2 = ⟨w2 ⟩ − ⟨w⟩2	or	�2 = �

(
w2

)
− � (w)2).	

Combination	of	Equations	(A4)	and	(A5)	results	in	an	ex-
pression	 for	 the	 signal	 of	 an	 ensemble	 of	 magnetization	
with	Gaussian	distribution	according	to

Autocorrelation function of turbulent flow
As	defined	in	the	main	manuscript,	the	autocorrelation	of	
a	random	process	u	is	given	by

where	the	angle	brackets	denote	the	mean	(in	ergodic	pro-
cesses	 either	 ensemble	 or	 temporal).	 In	 the	 case	 of	 a	 sta-
tionary	random	process	only	the	time	difference	� = t2 − t1	
matters	resulting	in

Following	 Kundu	 et	 al,36	 the	 normalized	 autocorrela-
tion	function	is	defined	as

If	 the	autocorrelation	 function	decays	 to	zero	 for	 infi-
nite	times,	it	is	possible	to	define	the	convergent	integral

If	 the	 random	 variable	 of	 interest	 is	 the	 vector-	valued	
velocity,	 the	 two-	point	 velocity	 autocorrelation	 function	
(VACF)	can	be	defined	as

where	u′m,n	denote	the	velocity	fluctuations	for	spatial	indi-
ces	m, n.	The	two-	point	cross	correlation	of	the	velocity	fluc-
tuation	forms	a	Fourier	transform	pair	with	the	Lagrangian	
energy	spectrum	E(�)

The	 kinetic	 energy	 of	 turbulent	 fluctuations	 per	 unit	
mass35	is	defined	as
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which	has	the	unit	
[
k
]
= 1m2∕s2.	The	turbulent	kinetic	en-

ergy	as	used	in	4D	Flow	MRI	literature	is	defined	as

where	�	is	the	density	and	[TKE] = 1 J

m3
.

It	is	found	by	setting	� = 0	and	m = n

such	that	TKE	per	unit	mass	corresponds	to	the	area	under	
the	Lagrangian	energy	spectrum	curve.	This	emphasizes	the	
importance	of	probing	the	VACF	spectrum	to	its	full	extent	
in	order	to	quantitatively	estimate	TKE	in	4D	Flow	MRI.

Derivation of spectrum
Starting	with	the	expression	for	�(t)	given	in	Equation	(5)	
(repeated	here	for	convenience)

the	 factors	 can	 be	 permuted	 using	 the	 rule	
b⊗ (Ta) = (b⊗ a)TT,	 where	 the	 symmetry	 of		
the	 velocity	 autocorrelation	 function	 matrix	
v⃗
(
𝜏1
)
v⃗
(
𝜏2
)
LC

=
(
v⃗
(
𝜏1
)
v⃗
(
𝜏2
)
LC

)T
	 is	 leveraged	 by	 in-

serting	of	Equation	(9)	into	Equation	(A18);

Assuming	gradient	signals	of	limited	energy	and	being	
deterministic,	the	Wiener-	Khintchine	theorem	can	be	ap-
plied	yielding

where	the	complex	conjugate	can	be	neglected	since	the	in-
tegrated	gradient	waveforms	are	real-	valued.	Therefore,	it	is	
found	that	the	autocorrelation	function	Rq(�)	of	the	gradi-
ent	is	given	by	the	absolute	Fourier	coefficients	q (�, t)	being	
squared	resulting	in	the	expression	for	�(t)	as	in	Equation	
(10)	with

Self- similar flows, Reynolds 
number, viscosity
When	comparing	different	flow	scenarios,	the	dimension-
less	Reynolds	number

is	used,	where	u,	d	and	v	are	the	mean	inlet	velocity,	the	un-
occluded	diameter	and	the	dynamic	viscosity,	respectively.	
For	 self-	similar	 flows,	 if	 the	 Reynolds	 number	 is	 kept	 the	
same,	the	resulting	solution	will	be	the	same	for	appropri-
ately	scaled	(=	normalized)	variables.35	Of	note,	this	enables	
one	to	compare	experiments	with	eg,	different	viscosities	if	
the	Reynolds	number	is	equal	by	using	appropriately	scaled	
velocity	variables.	Important	to	note,	however,	is	that	non-	
normalized	variables	such	as	TKE	and	eddy	frequency	are 
not comparable	 without	 prior	 scaling.	 Therefore,	 simula-
tions	conducted	with	same	Re	but	smaller	viscosity	will	ex-
hibit	smaller	TKE	than	those	with	higher	values	of	viscosity.

The	dimensionless	Strouhal	number

is	 used	 as	 normalized	 “frequency”	 axis	 in	 CFD	 spectra	
plots	(eg,	Refs.	[39]	and	[46]),	where	 f ,	d	and	u	are	the	non-	
normalized	frequency,	minimum	diameter	(stenotic	throat)	
and	mean	velocity	at	the	stenosis	throat	(eg,	4×	mean	inlet	
velocity	for	75%	reduction	in	area).

However,	when	changing	viscosity	but	Re	number	and	
Str	axis	remain	unchanged,	one	finds	the	non-	normalized	
frequency	 axis	 f 	 to	 be	 scaled	 by	 viscosity.	 Of	 note,	 this	
changes	 feddy	 at	 which	 eg,	 the	 inertial	 range	 starts.	 The	
transition	frequency	 feddy	is	of	great	importance	for	encod-
ing	theory	discussed	in	the	main	manuscript.

Particle equations of motion
The	 equations	 of	 motion	 for	 an	 inert	 particle	 model	 are	
given	by61

where	the	first	RHS	term	denotes	the	drag	force	per	unit	par-
ticle	mass	and

where	u,	up,	�,	�,	�p,	dp,	Rep	 and	CD	 is	 fluid	 phase	 veloc-
ity,	 particle’s	 velocity,	 molecular	 viscosity	 of	 the	 fluid,	
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fluid	 density,	 particle	 density,	 particle	 diameter,	 parti-
cle	 Reynolds	 number	 and	 drag	 coefficient,	 respectively.	
Previous	 works	 have	 shown	 that	 these	 parameters	 have	
an	influence	on	particle	dynamics.61	As	FD	essentially	de-
scribes	 how	 fast	 the	 particle	 would	 adjust	 its	 velocity	 to	
the	fluid	velocity,	the	particle’s	trajectory	is	affected	by	the	
set	parameters,	especially	for	particle	tracing	in	turbulent	
flow.	In	the	current	manuscript,	massless	tracer	particles	

have	been	used.	On	one	hand,	 this	does	not	use	any	as-
sumptions	on	particle	parameters,	on	the	other	hand,	due	
to	 instantaneous	 velocity	 changes	 due	 to	u − up,	 in	 the	
MRI	 simulation,	 spatial	 gradients	 in	 the	 mean	 velocity	
field	will	result	in	increased	levels	of	imaged	turbulence.	
This	is	discussed	in	the	main	manuscript	in	the	mean	ve-
locity	 variation	 (MVV)	 section	 and	 accounted	 for	 in	 the	
Results	section.


