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Controversies in modern evolutionary biology:
the imperative for error detection and quality
control
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Abstract

Background: The data from high throughput genomics technologies provide unique opportunities for studies of
complex biological systems, but also pose many new challenges. The shift to the genome scale in evolutionary
biology, for example, has led to many interesting, but often controversial studies. It has been suggested that part
of the conflict may be due to errors in the initial sequences. Most gene sequences are predicted by bioinformatics
programs and a number of quality issues have been raised, concerning DNA sequencing errors or badly predicted
coding regions, particularly in eukaryotes.

Results: We investigated the impact of these errors on evolutionary studies and specifically on the identification of
important genetic events. We focused on the detection of asymmetric evolution after duplication, which has been
the subject of controversy recently. Using the human genome as a reference, we established a reliable set of 688
duplicated genes in 13 complete vertebrate genomes, where significantly different evolutionary rates are observed.
We estimated the rates at which protein sequence errors occur and are accumulated in the higher-level analyses.
We showed that the majority of the detected events (57%) are in fact artifacts due to the putative erroneous
sequences and that these artifacts are sufficient to mask the true functional significance of the events.

Conclusions: Initial errors are accumulated throughout the evolutionary analysis, generating artificially high rates of
event predictions and leading to substantial uncertainty in the conclusions. This study emphasizes the urgent need
for error detection and quality control strategies in order to efficiently extract knowledge from the new genome
data.
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Background
High throughput genomics technologies are now provid-
ing the raw data for genome-level or systems-level stu-
dies [1]. At the same time, the avalanche of data also
poses many new challenges. The shift to genome scale
studies in evolutionary biology, for instance, has led to
many interesting, but often controversial studies. Many
branches in the Tree of Life are still the subject of
intense discussions, and simply adding more sequences
has not resolved the inconsistencies [2]. In prokaryotes,

phylogenetic incongruencies are often assumed to be
the result of lateral gene transfers, but the frequency of
these events has been challenged recently [3,4]. In
eukaryotes, the ancestral relationships between the
major eukaryotic kingdoms [5-8], as well as many more
recent clades such as fish or mammalian [9-11], are also
hotly debated. It has been suggested that at least some
of the conflicting results from evolutionary analyses are
due to differences in the models and methodologies
used to test the original hypotheses, e.g. [12,13], as well
as errors in the input sequences [2].
High throughput biological datasets are notoriously

incomplete [14-16], noisy and inconsistent and DNA or
protein sequences are no exception. The DNA
sequences produced by next generation sequencing
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(NGS) technologies or low-coverage assemblies pose
particular problems [17,18]. A number of recent studies
have investigated the rate of errors in these new genome
sequences and their impact on the accuracy of down-
stream analyses [19-22]. In the context of proteome stu-
dies, the DNA sequencing errors are further confounded
by inaccuracies in the delineation of the protein-coding
genes. Coding regions are mostly predicted by automatic
methods, but the relationship between genes, transcripts
and proteins is complex and automated genome annota-
tion is not completely accurate. Thus, ten years after the
publication of the human genome, the exact number of
human protein-coding genes is still unknown [23].
Furthermore, recent analyses have shown that, even for
those genes that have been identified, the complete
exon/intron structure is correctly predicted for only
about 50-60% of them [24-26]. In eukaryotic genomes,
the situation is also complicated by widespread alterna-
tive splicing events, which affects more than 92-94% of
multi-exon human genes [27].
To what extent do these quality issues affect our

understanding of the evolutionary events shaping mod-
ern organisms? Although sequence errors are essentially
ignored in most genome-scale analyses, some studies
have addressed certain aspects of this question. For
example, Hubisz and coworkers [19] investigated the
impact of DNA sequencing errors in low-coverage gen-
ome assemblies on inferred rates and patterns of inser-
tion/deletion and substitution on the mammalian
phylogeny. Schneider et al. [28] showed that the esti-
mated amount of positively selected genes in genome
scale analyses may be inflated by the presence of unreli-
able sequences.
Here, we have investigated the impact of erroneous

protein sequences, resulting from either DNA sequen-
cing errors or inaccurate prediction of exon/intron
structures, on evolutionary analyses and the detection of
important genetic events. We concentrated specifically
on duplication events, which are known to be an impor-
tant source of functional diversity [29-32] and where
there has been a great deal of debate about the long
term fate of duplicated genes. Two main models have
been proposed for the evolution of novel gene function
associated with gene duplication. The neofunctionaliza-
tion model predicts the evolution of a new function in
one of the duplicates, with accelerated evolution of the
deconstrained copy compared with the copy that retains
the ancestral function. The subfunctionalization model
implies the division of the ancestral functions among
the duplicates and does not make any prediction about
the symmetry or asymmetry of sequence evolution.
Although individual cases of both modes of evolution
have been reported, the relative frequency of the differ-
ent scenarios in nature is still not clear [12,33,34].

To some extent, the evolutionary fate of duplicated
genes depends on the duplication mechanism. After tan-
dem duplications or large-scale (e.g. whole-chromosome
or whole-genome) duplications, both gene copies retain
the same genome context. In contrast, after segmental
duplications or retrotranspositions, one of the gene
copies retains the ancestral genome position while the
other copy is relocated elsewhere. It is generally
expected that the gene copy that retains the genome
context will be more conserved, and thus will be more
likely to retain the ancestral functions [35]. The hypoth-
esis is that newly duplicated genes that have been trans-
posed to new chromosomal locations experience a new
genomic and epigenetic environment, modifying the
expression and/or function of the genes.
In this work, we have searched for duplication events

that contradict this hypothesis, in order to quantify the
effect of protein sequence errors on our ability to accu-
rately identify unusual evolutionary histories. The goal
was not to identify an exhaustive list of duplications, but
to establish a reliable test set of events that could be
used for the error analysis. Using the well-studied
human genome as a reference, we identified 114,680
homologs in 13 high coverage vertebrate genomes from
the Ensembl [36] database that were located in a region
with local synteny (Figure 1). We then identified 688
cases where another homolog of the reference human
gene was found elsewhere in the vertebrate genome
with significantly higher sequence similarity than the
syntenic homolog. In other words, we identified 688
gene triplets, composed of one human reference gene
and two corresponding gene copies from another verte-
brate genome (the local “syntenic homolog” and the
remote “highest similarity homolog”), that might indi-
cate putative asymmetric evolution after duplication
(AED) events where the less similar gene copy retained

Figure 1 Evolutionary scenario involving asymmetrical
evolution after duplication (AED). A schematic view of the AED
events included in this study. Using the human gene Hi as a
reference, homologs are detected in each vertebrate genome that
maintain the same genome neighborhood as the human gene. At
the same time, the homologs from each genome with the highest
similarity to the human reference gene are identified (full arrows
indicate similarity homologs and dashed arrows indicate syntenic
homologs). We then selected AED events where the relocated
similarity homolog has evolved significantly faster than the local
syntenic homolog.
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the ancestral gene-neighbourhood. To determine what
proportion of these putative AED events may be due to
erroneous protein sequences (resulting from either DNA
sequencing errors or badly predicted protein coding
regions), we identified potential sequence errors in the
gene triplets and showed that the majority (57%) of
detected AED events are in fact false positives. A Gene
Ontology (GO) functional analysis highlighted a number
of GO categories that are over-represented in the true
positive gene set, which were masked before filtering of
the erroneous sequences.

Results
Estimation of sequence error rates
We predicted protein sequence errors, resulting from
genome sequencing errors and exon/intron prediction
errors, in the 14 high coverage vertebrate genomes
(Table 1) from the Ensembl database, using a previously
published method [37]. First, we constructed multiple
sequence alignments (MSAs) for each of the 19,778
human protein sequences defined by the Human Pro-
teome Initiative (HPI) and their potential vertebrate
homologs. The sequences in the alignments were then
clustered into more similar subgroups and errors were
predicted if discrepancies were observed between one
sequence and its close neighbours, for example between
human-chimpanzee or between fish genomes. The error
detection protocol was thus used to identify lineage-spe-
cific insertions, deletions or sequence segments, which
are inconsistent with the conservation information in
the MSA. Finally, we calculated the rate of sequence
errors found in all 19,778 MSAs (Figure 2A). The MSAs
contained a total of 344,437 protein sequences and
240,313 potential sequence errors, giving an estimated

sequence error rate of at least 0.7 errors per sequence.
The total number of sequences with at least one poten-
tial error was 142,836. Thus, on average 41% of
sequences were predicted to be erroneous.
The observed error rates were not homogeneous

across the different species. Lower rates were observed
for the human and mouse proteomes, with 30-31% erro-
neous sequences, as might be expected for these well
studied organisms. Among the non-human primate pro-
teomes considered here, lower error rates were esti-
mated for the orangutan (Pongo pygmaeus), compared

Table 1 Ensembl genomes used in this study

Genome identifier Organism No. of genes No. of proteins

ENSP ’Human’,’Homo sapiens’ 21971 60953

ENSPTR ’Chimpanzee’,’Pan troglodytes’ 19829 39256

ENSPPY ’Orangutan’,’Pongo pygmaeus’ 20068 29256

ENSMMU ’Macaque’,’Macaca mulatta’ 21905 42370

ENSECA ’Horse’,’Equus caballus’ 20322 28128

ENSCAF ’Dog’,’Canis familiaris’ 19305 29804

ENSBTA ’Cow’,’Bos taurus’ 21036 29517

ENSMUS ’Mouse’,’Mus musculus’ 23873 43630

ENSRNO ’Rat’,’Rattus norvegicus’ 22503 37672

ENSMOD ’Opossum’,’Monodelphis domestica’ 19471 34132

ENSGAL ’Chicken’,’Gallus gallus’ 16736 22945

ENSORL ’Medaka’,’Oryzias latipes’ 19686 25174

ENSTNI ’Tetraodon’,’Tetraodon nigroviridis’ 19602 23909

ENSDAR ’Zebrafish’,’Danio rerio’ 21322 35967

Protein sequences were obtained from the Ensembl database version 51.

Figure 2 Estimation of sequence error rates. A) Percentage of
predicted sequence errors in 19,778 protein families in 14 vertebrate
genomes. In blue, the percentage of sequences with at least one
error. In red, the percentage of total errors observed. B)
Classification of sequence errors into 7 types according to their
position in the sequence and their nature (see methods). The
histogram shows the frequencies of each error type observed in all
protein sequences (C-deletion = C-terminal deletion; C-extension =
C-terminal extension; N-deletion = N-terminal deletion; N-extension
= N-terminal extension; segment = suspicious sequence segment:
deletion = internal deletion; insertion = internal insertion).
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to the chimpanzee (Pan troglodytes) and especially the
Rhesus macaque (Macaca mulatta). The relatively high
error rate for the macaque is not surprising since the
macaque genome in Ensembl version 51 is a preliminary
assembly using whole genome shotgun (WGS) reads
from small and medium insert clones. On the other
hand, the relative error rates in chimpanzee and orangu-
tan are more surprising. Both the chimpanzee and oran-
gutan genomes have been sequenced to 6x coverage, but
in a recent study of primate genome assembly quality,
the chimpanzee genome assembly was estimated to be
of higher quality [38].
Nevertheless, the same study found that about 70% of

inferred errors in the orangutan genome were clustered
in the 3.2% of the assembly that is of low quality, imply-
ing that > 96% of the assembly could be considered of
high fidelity. We found the highest error rates in the
opossum, chicken and fish proteomes, with > 45% erro-
neous sequences. Although these genomes have all been
sequenced to high coverage, the lack of a well annotated
reference genome from a closely related model organism
may result in lower quality protein sequence prediction.
The predicted protein sequence errors were then char-

acterized according to two different factors: (i) the nat-
ure of the error, i.e. insertion, deletion or suspicious
segment and (ii) the position in the sequence, i.e. at the
N/C-terminus or within the sequence. Figure 2B shows
the proportion of the different errors observed. The
most commonly found error was the presence of a sus-
picious sequence segment, possibly representing a mis-
predicted exon. At the N- and C- termini, deletions
were observed more frequently than extensions.
Although this may be due in part to the protocol used
to detect sequence errors, it may also reflect the diffi-
culty of predicting the first and last coding exons. In
contrast, internal insertions were more common than
internal deletions, suggesting that more internal errors
were due to the over-prediction of introns as coding
sequences, rather than the under-prediction of exons.

Comparison of similarity and synteny based homologs
Putative orthologs were predicted for each of the 19,778
human proteins based on the MSAs of the human refer-
ence sequences and related sequences from the 13 ver-
tebrate genomes. Two different approaches were
implemented. First, the sequences from each organism
with the smallest evolutionary distance were identified
based on pairwise alignments extracted from the MSAs,
and denoted “highest similarity homologs”. Second,
“syntenic homologs” were defined based on the local
gene order conservation. The genome coverage achieved
by the two methods is shown in Figure 3 and Table S1
in Additional file 1. The highest similarity homologs
covered 80% of the 265,658 genes in the 13 vertebrate

genomes, ranging from 89% in chimpanzee to 68% in
zebrafish. As expected, a smaller proportion (43%) of
homologs was found with locally conserved synteny,
including 77% of chimpanzee genes and only 3% of zeb-
rafish. Although our definition of locally syntenic
regions is relatively stringent, we observe a comparable
coverage to other existing methods. For example, we
found 51% of mouse genes to be syntenic with human,
compared to 59% using the method developed by [39].
Other more refined methods have been developed, such
as Syntenator [40], that use less stringent criteria to
define conserved syntenic regions. By allowing more
gene mismatches and gene insertions/deletions, Syntena-
tor aligned 79% of mouse genes with human.
We then investigated whether the gene that is most

similar on the sequence level is also the gene that shares
the same gene-neighbourhood (Figure 3 and Table S2 in
Additional file 1). Of the 212,409 similarity homologs
identified in the 13 vertebrate genomes, 113,517 were
found in locally syntenic regions. In mammals, this
represents 69% of the highest similarity homologs. This
is less than that estimated in a previous study [41],

Figure 3 Number of putative ortholog relationships between
human and 13 vertebrate genomes. A. Putative ortholog
relationships between human and each of the 13 vertebrate
genomes used in this study were identified by similarity-based and
synteny-based approaches. B. The proportion of orthologs predicted
by the synteny approach for which the same ortholog was
predicted by the similarity-based approach.
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where 97.5% of Inparanoid orthologs in human, mouse,
rat and dog were found in syntenic regions, most likely
due to our stricter definition of local synteny. On the
other hand, only 1% of the identified syntenic homologs
(1,157 out of 114,680) were not identified by the similar-
ity-based approach. As expected, a generally higher level
of disagreement was observed for more divergent gen-
ome pairs. Nevertheless, in human-chicken comparisons,
the synteny method identified the same homolog as the
similarity approach in 98.8% of the cases. Fewer consis-
tencies were observed in human-fish comparisons (84-
87% of syntenic homologs were also the highest similar-
ity homologs), possibly due in part to the whole genome
duplications in the fish lineage, resulting in a larger
number of paralogs.

Asymmetric evolution events
We then examined in more detail the 1,157 gene triplets
(consisting of the human reference sequence and the
two homologs representing putative orthologs in one of
the 13 vertebrate genomes), where the syntenic homolog
was not the same as the highest similarity homolog. To
avoid including chance outcomes caused by very similar
rates of sequence evolution of these homologs relative
to the human sequence, we identified significantly differ-
ent rates of evolution at the 95% confidence level (see
Methods). Of the 1,157 gene triplets, a total of 688 cor-
responded to evolutionary scenarios where the syntenic
homolog (i.e. the gene copy with the shared genome
neighbourhood) evolved significantly faster (Table 2). A
complete list of the 688 gene triplets is available in
Table S3 in Additional file 1. The alternative scenario

for asymmetric evolution where the remote copy
evolved faster than the synteny copy is not detected by
our protocol. since in this case the homologs defined by
similarity and synteny would be the same.

Effect of erroneous sequences on prediction of
asymmetrical evolution
The 688 gene triplets identified above, consisting of the
human reference sequence, the highest similarity homo-
log and the synteny homolog, constitute a reliable test
set representing potential asymmetrical evolution events.
To study the impact of errors on the prediction of AED
events, we identified erroneous sequences in this test
set. Figure 4A shows the number of events that are
assumed to be artifacts since at least one of the
sequences was predicted to be erroneous, as well as the
number of remaining ‘true’ events. Of the 688 gene tri-
plets, only 294 (43%) do not contain erroneous
sequences and may correspond to true events, while a
total of 394 (57%) are putative artifacts.
As might be expected, the proportion of artifactual

events varies with the different genomes studied,
depending on the percentage of erroneous sequence
detected (Figure 4B). For example, 19% of chimpanzee
and 24% of mouse predicted events are due to artifacts,
while this figure increases significantly for the draft
macaque and chicken genomes (69% and 88% respec-
tively). It is interesting to note that a larger proportion
of artifacts are observed in the orangutan genome than
in the chimpanzee, even though the orangutan genome
is predicted to contain less sequence errors than the
chimpanzee (see above).

Table 2 Number of syntenic homologs with significantly faster evolutionary rates compared to the remote similarity
homolog

Genome
identifier

No. of syntenic
homologs

No. of inconsistencies: syntenic versus highest similarity
homologs

Significant asymmetric evolution
events (AED)

Human 15295 37 21

Chimpanzee 12881 54 26

Orangutan 12286 121 82

Macaque 11447 59 37

Horse 11443 64 39

Dog 10486 59 30

Cow 12276 70 33

Mouse 10439 117 69

Rat 9261 126 65

Opossum 6231 65 41

Chicken 1027 166 99

Medaka 907 114 83

Tetraodon 701 111 63

Total 114680 1157 688

These may indicate putative asymmetric evolution after duplication (AED) events where the less similar gene copy retained the ancestral gene-neighbourhood.
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In order to validate the putative protein sequence
errors leading to artifactual AED events, we investigated
the 413 predicted sequence errors in the human refer-
ence sequences and their syntenic homologs. The results
of the analysis are shown in Table 3 and examples of
the different errors detected are provided in Additional
file 2. The majority (59%) of the erroneous sequences
resulted from DNA sequencing or assembly errors, char-
acterised by the presence of ‘N’ characters in the DNA
sequences. For the remaining 171 protein sequence
errors, we searched for the missing protein fragments in
the corresponding DNA sequences. For errors involving
missing segments (i.e. internal insertion, N/C-terminal
extensions or suspicious segments), 89 of the 148 miss-
ing segments were detected and we therefore concluded
that the error was due to an inaccurate gene structure
prediction. In the case of sequence errors corresponding
to inserted segments (internal insertions, N/C-terminal
insertions), 16 of the 23 inserted segments were con-
served in closely related organisms, although 5 of them
had one or more stop codons. Finally, we manually veri-
fied the transcript evidence in Ensembl for all 23 inser-
tions in gene sequences with no genome errors, as well
as for the 59 unconserved deletions. Of these, 62 protein
errors were not supported by any transcript information

and 9 errors were due to the alternative splicing variants
reported for homologous genes. Only 11 (2.7%) of the
413 putative protein sequence errors were identified as
false positive predictions, since a transcript was found
corresponding to the affected sequence segment.

Detailed analysis of sequence errors leading to artifactual
AED events
To investigate whether the sequence errors leading to
artifactual events were enriched for a particular type, we
classified the errors into 7 types as described above. We
then calculated the proportion of the different error
types found in the gene triplets corresponding to the
688 predicted AED events (Figure 5). In the human
reference sequences, only 32 errors were predicted, as
might be expected since the human genes have been
very widely studied. The majority (24 out of 32) of the
human sequence errors were found at the N/C termini,
with the exception of a small number of internal
sequence segments that were labeled as being
suspicious.
When all the sequences in the gene triplets were

pooled, no significant enrichment was observed in the
frequency distribution of the different error types caus-
ing artifactual events, compared to the background dis-
tribution observed in all the sequences (as shown in
Figure 2). The goodness-of-fit was measured using a
likelihood ratio chi-square statistic (chi-square = 3.12, p-
value = 0.79). Nevertheless, different error types were
observed when the syntenic and highest similarity
homologs were considered separately. For example, arti-
factual events were observed more frequently if the syn-
tenic homolog, i.e. the gene copy that retained the
genome neighbourhood after duplication, contained sus-
picious segments. In contrast, N- and C-deletions in the
highest similarity homolog, i.e. the gene copy that was
relocated, were more likely to cause artifacts.
Figure 6 shows an example of an artifactual event

observed in the gene triplet corresponding to [Swiss-prot:
COPG_HUMAN] and the two homologs from macaque
(the full length alignment is provided in Figure S1 in Addi-
tional file 1). The COPG protein forms part of the coato-
mer complex, involved in protein transport between the
endoplasmic reticulum and the Golgi. The macaque synte-
nic homolog [Ensembl:ENSMMUP00000017291] contains
a suspicious segment and an exon deletion that artificially
increase its evolutionary distance to human, due to a low
quality segment in the genome sequence (indicated by ‘N’
characters in the gene sequence). Consequently, another
macaque protein [Ensembl:ENSMMUP00000006382] is
identified as the highest similarity homolog of human
COPG, resulting in an artifactual AED event prediction. In
fact, [Ensembl:ENSMMUP00000006382] is the ortholog of
[Uniprot:COPG2_HUMAN].

Figure 4 Effect of erroneous sequences on prediction of
asymmetrical evolution in 13 vertebrate genomes. A. The
presence of erroneous sequences give rise to a number of
artifactual AED events (shown in red). The remaining events are
defined as putative AED events (shown in blue). B. Comparison of
percentage of protein sequences predicted to contain errors and
percentage of artifactual AED events for each genome.
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The orthology prediction method used in the Ensembl
project, based on a phylogenetic gene tree approach,
finds the correct 1-to-1 orthology relationship between
the human and macaque COPG proteins. Unfortunately,
many other orthology databases are less successful. For
example, in the Inparanoid database (inparanoid.sbc.su.
se), the Ensembl human COPG and macaque COPG2
sequences are in the same orthologous cluster, while no
human ortholog is found for the macaque COPG
sequence.

Functional analysis of asymmetrical evolution events
In order to investigate the effect of filtering the erro-
neous sequences on the subsequent functional analysis
of asymmetrical evolution events, we conducted a gene
ontology (GO) term enrichment analysis. Specifically, we
investigated the 688 AED events detected in this work,
where the local syntenic homolog was observed to
evolve more rapidly than the relocated highest similarity
homolog. At this stage, we excluded 81 events where
the human reference sequence had more than one exon,
but the relocated homolog had only one exon, since
they are likely to be non-functional pseudogenes. For
comparison purposes, we used two gene lists: (i) gene
list 1 corresponding to the remaining 607 detected

Table 3 Validation of putative protein sequence errors

Putative protein errorsa Genome
errorsb

Exon
conservationc

Transcript evidence % FP errorg

Yes No Yes No No Splicing variantse FP error predictionf

Suspicious segment 223 161 62 43 19 12 3 4 1.8

Deletion 7 1 6 6 0 0 0 0 0.0

N-deletion 68 26 42 19 23 18 2 3 4.4

C-deletion 64 26 38 21 17 16 0 1 1.6

Deletion sub-total 362 214 148 89 59 46 5 8 2.9

Putative protein errors Genome errors Intron
conservationd

Transcript evidence % FP error

Yes No Yes
(stop)

No No Splicing variants FP error prediction

Insertion 22 15 7 6 (1) 1 5 2 0 0.0

N-extension 18 7 11 7 (3) 4 7 1 3 16.7

C-extension 11 6 5 3 (1) 2 4 1 0 0.0

Insertion sub-total 51 28 23 16 (5) 7 16 4 3 5.9

Total 413 242 171 100 14 62 9 11 2.7

Putative errors were estimated by analyzing the corresponding gene sequences. aThe total number of protein sequence errors included in the analysis. bThe
number of errors resulting from genome sequencing or assembly errors. cThe number of missing segments detected in the corresponding gene sequences. dThe
number of errors resulting from alternative splicing variants reported for homologous genes. eThe number of inserted sequence segments detected in the gene
sequences of homologous proteins. The number of these inserted sequence segments with at least one stop codon is given in brackets. fThe number of errors
supported by transcript evidence, i.e. false positive (FP) error predictions. gThe percentage of the total number of putative errors that were invalidated by the
analysis.

Figure 5 Characterization of sequence errors in predicted
asymmetrical evolution events. Errors are classified into 7 types
according to their position in the sequence and their nature (see
methods). The proportions of the different classes found in the
human reference sequences, the syntenic homolog (V_syn) and the
highest similarity homolog (V_sim) are shown, as well as the
proportions observed in the pooled sequences in the gene triplets.
(C-deletion = C-terminal deletion; C-extension = C-terminal
extension; N-deletion = N-terminal deletion; N-extension = N-
terminal extension; segment = suspicious sequence segment:
deletion = internal deletion; insertion = internal insertion).
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events, including both artifactual and putative true
events and (ii) gene list 2 corresponding to 250 putative
true events only (Table S4 in Additional file 1). The two
gene lists were then analyzed for enrichment of GO
terms using the AmiGO [42] web server, using the com-
plete set of human genes as the background set and
default parameters (Tables S5-6 in Additional file 1).
The results of the AmiGO analyses were also submitted
to the GO-Module [43] web server, in order to reduce
the complexity and identify ‘key’ GO terms (Table 4).
Gene list 1 was enriched in 24 key GO terms, includ-

ing a number of vertebrate specializations (e.g. anatomi-
cal structure development), but also some fundamental
eukaryotic processes (e.g. regulation of metabolic pro-
cesses, gene expression, axon guidance). For example,
the term ‘RNA biosynthetic process’ is found with a P-
value of 5E-16, involving 101 (20%) of the 607 genes in
the list. However, only 6 of these 24 key GO terms are
associated with the true events in gene list 2. Thus, the
remaining 18 (75%) enriched GO terms are probably
false positives resulting from the artifactual events.
Furthermore, and perhaps more importantly, important
key GO terms associated with the true events are not
enriched in gene list 1, notably neurogenesis related
functions. After filtering of gene triplets with erroneous
sequences, gene set 2 was enriched in 10 key terms,
including neuron differentiation functions, and response
to the environment.
Figure 7 shows an example of a true AED event

detected in the hepatoma-derived growth factor (HDGF)
protein family. The HDGF and HDGF-like family mem-
bers are characterized by a conserved PWWP domain in
the N-terminal region. In human, the HDGF protein
[Ensembl:ENSP00000349878] exhibits growth factor
properties and has been implicated in organ develop-
ment and tissue differentiation of the intestine, kidney,
liver, and cardiovascular system. In addition, the role of
HDGF in cancer biology has recently become a focus of

research, since HDGF was found to be over-expressed
in a large number of different tumor types (genecards.
org). Whereas some family members, such as HDGF
and HDGFL2, are expressed in a wide range of tissues,
the expression of others is very restricted. For example,
HDGFL1 and HDGFL4 are only expressed in testis,
although their precise functions are still unknown. We
observed an EAD event in several organisms, including
mouse and rat. For example, mouse HDGFL1
[Ensembl:ENSMUSP00000057557] on chromosome
13 is syntenic with human HDGFL1 [Ensembl:
ENSP00000230012] on chromosome 6, but mouse
HDGF [Ensembl:ENSMUSP00000005017] shares higher
sequence similarity with human HDGFL1 (58% identity
versus 53%). Although mouse HDGFL1 is specifically
expressed in testis, like human HDGFL1, the human and
mouse proteins are more divergent in the C-terminal
region and probably have different functions. In
fact, mouse HDGFL1 lacks the caspase cleavage site
identified in mouse HDGF, as well as a number of
conserved residues that are known to be phosphory-
lated (genecards.org).

Discussion
Several recent studies have highlighted the prevalence of
errors in genes predicted from genome sequences
[24-26,44], particularly in eukaryotic genes. The situa-
tion is further complicated by the fact that multiple
transcript variants are often expressed by the same gene.
Nevertheless, orthology and paralogy, which are funda-
mental concepts for most evolutionary analyses, are gen-
erally defined at the gene level. Many systems, including
Ensembl compara [45], simply select the longest tran-
scripts to represent a gene, although there is no guaran-
tee that the longest predicted transcripts in different
organisms are equivalent. Some authors have specifically
addressed these issues by defining relationships at the
transcript level [46,47] or by using processed

Figure 6 An example of an artifactual AED event. Part of the multiple sequence alignment of the human COPG protein sequence [Ensembl:
ENSP00000325002] and putative orthologs in the macaque genome. The suspicious segment is boxed in grey. For the Ensembl macaque
sequences, exons are colored alternately in black and blue. Residues overlapping splice sites are shown in red.
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transcription units, i.e. a combination of all overlapping
sequence variants in the genomic region [48]. Neverthe-
less, these remain partial solutions only and do not
resolve all problems.
These quality issues may lead to inaccurate or erro-

neous conclusions if they are integrated indiscriminately
in downstream evolutionary or functional analyses. As
an example, when annotating a new genome, gene
structure data is often transferred from the genome of a
closely related species, e.g., many chimpanzee genes in
the Ensembl database were predicted based on compari-
sons with human transcript data. These gene sequences
were then used to perform genome-wide scans for posi-
tive selection [49]. Although more positively selected
genes were identified in chimpanzees compared to
human, it has been suggested that the majority of the
signals may be due to errors in the original sequences
or in the gene alignments [50]. Thus, we have a vicious

circle, where the gene sequences that provide the start-
ing point for most evolutionary analyses are themselves
generally predicted based on evolutionary information.

Protein sequence error rates
We detected erroneous protein sequences based on dis-
crepancies in the conservation of vertebrate protein
MSAs. The sequence errors may result from (i) DNA
sequencing errors, (ii) badly predicted introns/exons,
(iii) different splicing variants predicted in different
organisms. We estimated the frequency of erroneous
sequences to be at least 41%, although some genomes
are more error-prone than others, depending on factors
such as sequencing coverage or the availability of a well
annotated genome from a closely related organism.
In this study, we only considered sequences from the

Ensembl database and we used cross-comparisons
between species to identify discrepancies. However,

Table 4 GO term enrichment analysis for artifactual and putative AED events

GO enrichment for all events GO enrichment for true events only

GO ID GO biological process P-
value

GO ID GO biological process P-
value

0032501 multicellular organismal process 4.E-43 0032501 multicellular organismal process 2.E-13

0048856 anatomical structure development 2.E-32 0050896 response to stimulus 9.E-12

0065007 biological regulation 4.E-26 0048856 anatomical structure development 3.E-09

0080090 regulation of primary metabolic process 6.E-21 0042060 wound healing 2.E-07

0071842 cellular component organization at cellular level 3.E-20 0050789 regulation of biological process 1.E-06

0060255 regulation of macromolecule metabolic process 5.E-19 0071842 cellular component organization at
cellular level

2.E-06

0051171 regulation of nitrogen compound metabolic process 5.E-19 0007596 blood coagulation 4.E-06

0032774 RNA biosynthetic process 5.E-16 0022008 neurogenesis 5.E-05

2000112 regulation of cellular macromolecule biosynthetic process 7.E-16 0006928 cellular component movement 6.E-05

0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolic
process

1.E-15 0030182 neuron differentiation 4.E-04

0010467 gene expression 4.E-13

0042060 wound healing 4.E-09

0007596 blood coagulation 2.E-08

0006810 transport 2.E-08

0007166 cell surface receptor linked signaling pathway 3.E-06

0007411 axon guidance 5.E-06

0007601 visual perception 2.E-05

0016477 cell migration 5.E-05

0030168 platelet activation 1.E-04

0006195 purine nucleotide catabolic process 1.E-04

0009207 purine ribonucleoside triphosphate catabolic process 5.E-04

0016568 chromatin modification 6.E-04

0006915 apoptosis 8.E-04

0060173 limb development 9.E-04

Comparison of GO term enrichment analysis for (i) gene list 1 corresponding to 607 predicted asymmetrical evolution events, including both artifactual and
putative true events and (ii) 25O true events obtained after filtering the erroneous sequences. GO terms for biological processes were found with P < 10-4 using
AmiGO and then filtered with GO-Module (only key terms are shown). Terms that are specific to only one gene list are highlighted in bold.
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Ensembl may produce predictions that are consistent
across organisms, i.e. may reproduce the same errors in
different genomes or propagate intron/exon structures.
Thus, our estimate of the average sequence error rate is
probably conservative. Another recent study [51]
showed that the Ensembl compara sequence prediction
method correctly identified only 55% of coding tran-
scripts exactly.

Identification of evolutionary events
Our main goal was to determine to what extent these
erroneous sequences affect subsequent evolutionary ana-
lyses. We focused on a specific event: gene duplication
and the evolutionary fate of paralogs, since gene dupli-
cation is often assumed to be the most important source
of new functions.
Since duplication events where the local copy has

evolved more rapidly may indicate unusual evolutionary

scenarios, innovations or adaptations, we specifically
searched for examples of such asymmetric evolution
events. Our approach involved the identification of
reliable AED events that could be used as a test set for
estimating the impact of sequence errors. We therefore
designed a stringent protocol where we included only
high coverage genomes and used the well studied
human genome as a reference. We then identified puta-
tive orthologs in 13 vertebrate genomes, based on either
sequence similarity or local synteny conservation. The
similarity-based method used a very simple model of
sequence evolution, in order to avoid bias towards one
particular model. Nevertheless, this model clearly over-
simplifies the complex evolutionary processes involved,
and in the future, it would be interesting to investigate
the effect of a more realistic model of sequence evolu-
tion on AED detection, once sequencing/annotation
errors have been removed. We also used a strict

Figure 7 A putative AED event. A) Multiple sequence alignment of hepatoma-derived growth factor (HDGF) and HDGF-like proteins. Black
lines indicate the two main subgroups corresponding to the duplication node in the phylogenetic tree. Known phosphorylation sites are
labeled with asterisks. B) The phylogenetic tree constructed using the Neighbour-Joining algorithm with 500 bootstraps. Bootstrap values for
each node are shown in red. The distance between human and mouse HDGF1 sequences (in blue) is longer than the distance between human
HDGF1 and mouse HDGF sequences (in green).
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definition of local synteny, which led to lower genome
coverage in the ortholog prediction step. For the detec-
tion of asymmetric evolution, we used a simple measure
of amino acid divergence and specified a high signifi-
cance threshold that would ensure only reliable predic-
tions. Nevertheless, 688 putative AED events were
identified that were then used to perform an in-depth
investigation of the effect of sequence errors.

Impact of sequence errors
We compared the syntenic and highest similarity homo-
logs and identified cases where significantly faster evolu-
tionary rates were observed in the syntenic homolog, i.e.
the gene copy that retained the genome neighbourhood
after duplication, compared to the relocated highest
similarity homolog. Initially, 688 AED events were iden-
tified, of which 81 similarity homologs were potential
retropseudogenes with a reduced exonic map. The
majority (57%) of the remaining detected events corre-
sponded to erroneous sequences and only 250 repre-
sented putative true AED events. Thus, we conclude
that care should be taken when performing genome-
wide scans to search for genes with unusual patterns,
since outlying genes are more likely to be due to arti-
facts in the input sequences than the result of true evo-
lutionary events. Furthermore, our in-depth study
revealed some of the mechanisms by which errors in the
input sequences are propagated during the event predic-
tion. For example, a badly predicted internal segment in
one of the homologs results in an increased evolutionary
distance to the human reference sequence, while a loss
in the more variable N/C-terminal regions artificially
reduces the distance. These observations provide guide-
lines for future error detection and correction strategies
that will hopefully allow us to reduce the impact of the
sequencing errors.
In asymmetric evolution, one duplicate evolves or

degrades faster than the other and often becomes func-
tionally or conditionally specialized. In this context, the
accurate detection of the ‘functional’ homologs, i.e. pro-
tein pairs that play functionally equivalent roles [52], is
critical. We have shown that orthology assignment and
the detection of important genetic events are severely
impacted by the high proportion of errors in the initial
set of protein sequences, even in high coverage gen-
omes. The errors in the initial data are accumulated and
amplified in the higher-level analyses. Our estimated
rate of 41% erroneous protein sequences leads to 57%
errors in AED event prediction and, in the subsequent
Gene Ontology (GO) functional analysis, 75% of the
enriched terms are in fact false positives.
The false positive terms in the functional analysis can

be very costly to investigate experimentally and a reduc-
tion in the false discovery rate is clearly desirable. They

are also sufficient to mask some of the true functional
enrichments. After filtering the artifactual events corre-
sponding to erroneous sequences, the remaining AED
events were enriched in a number of GO categories,
including neuron differentiation and response to exter-
nal stimuli. Interestingly, human-specific duplicates evol-
ving under adaptive natural selection also include genes
involved in neuronal and cognitive functions, as well as
response to inflammation or stress [53]. Similarly, gene
families involved in copy number variations (CNVs) are
enriched for similar categories, including interactions
with the environment, neurophysiological processes and
brain development [54]. A recent study suggested that
the relationship between CNVs and positive selection
may play an important role in the emergence and evolu-
tion of species-specific traits in primates [55]. Genes in
many of these categories are thus thought to be impor-
tant in evolutionary adaptation and to be particular tar-
gets of natural selection.

Conclusions
Up to half of all protein sequences in today’s genome
databases contain erroneous insertions, deletions or sus-
picious segments. The high error rates have profound
implications, not only for the analysis of protein func-
tions, interaction networks, biochemical pathways or
disease phenotypes, but also for our understanding of
life’s evolution.
The putative sequence errors identified here lead to a

significant number of false positives in the detection of
asymmetric evolution events, which, if ignored, are suffi-
cient to obscure their true functional significance. We
have looked at one important event, asymmetric evolu-
tion after duplication, but the effect of protein sequence
errors is likely to be similar for other types of events.
This might explain many of the contradictions observed
in many recent evolutionary studies, aggravating the
effects of differences in source data, methodology and
planning of experiments [12].
Exploitation of the new genome data is clearly chal-

lenging, due to the size of the data sets, their complexity
and the high level of noise, and the situation is not
likely to improve with low coverage genomes becoming
the norm. As a consequence, data cleaning tools and
robust statistical analyses will be essential for its reliable
interpretation. With as many as 50% erroneous
sequences, the simple removal of this data will result in
the loss of too much information. It will be necessary to
validate and correct the sequence errors and ideally,
propagate these corrections to the public databases.
Some recent efforts have been undertaken to address
these issues [19,26,47], but additional work will be
essential to reduce the impact of error and to extract
the true meaning hidden in the data.
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The alternative is an escalating process where sys-
tematic errors are accumulated at each level of the ana-
lysis, generating artificially high rates of unusual event
predictions and eventually leading to an ‘error cata-
strophe’, where the noise overwhelms the true signal.

Methods
Protein sequence data sets
Human protein coding genes were retrieved from the
Human Proteome Initiative (HPI) and Swiss-prot
databases [56], resulting in a total of 19,778 human
sequences. Each gene was then used as a query for a
BlastP [57] search in a database consisting of the pro-
teomes of 14 vertebrates (Table 1) with almost com-
plete genomes from the Ensembl (version 51)
database [36]. The Ensembl human protein sequence
with the highest similarity to the HPI query was
designated as the reference protein sequence. For
each of the 19,778 human reference sequences, poten-
tial orthologs were then identified using two different,
complementary approaches: sequence similarity and
local synteny.

Putative orthologs based on sequence similarity
For each human reference sequence, a modified version
of the PipeAlign [58] protein analysis pipeline was used
to construct a multiple sequence alignment (MSA) for
all sequences detected by the BlastP search with E < 10-
3 (maximum sequences = 500). PipeAlign integrates sev-
eral steps, including post-processing of the BlastP
results, construction of a MSA of the full-length
sequences with DbClustal [59], verification of the MSA
with RASCAL [60] and removal of unrelated sequences
with LEON [61]. In this modified version, DbClustal
was replaced by the MAFFT [62] program, since the
computational speed of MAFFT is better suited to high
throughput projects. The MSAs obtained from this pipe-
line were then annotated with structural and functional
information using MACSIMS [63], an information man-
agement system that combines knowledge-based meth-
ods with complementary ab initio sequence-based
predictions. MACSIMS integrates several types of data
in the alignment, in particular Gene Ontology annota-
tions, functional annotations and keywords from Swiss-
prot, and functional/structural domains from the Pfam
database [64].
Based on the MSA, the evolutionary pairwise distance,

d, between any two sequences was defined as the num-
ber of amino acid substitutions per site under the
assumption that the number of amino acid substitutions
at each site follows the Poisson distribution. Thus:

d = − ln
(
1 − p

)

where d is the pairwise distance and p is the propor-
tion of different amino acids aligned (dissimilarity).
Then, for each human reference sequence, Hi, the

sequences from the 13 vertebrate organisms with the
highest similarity (i.e. the smallest distance) to Hi were
identified and denoted Vn_Simi, where Vn refers to one
of the 13 vertebrate organisms (Figure S2A in Addi-
tional file 1).

Putative orthologs based on local synteny
The chromosomal localization of all genes coding for
protein sequences was obtained from the Ensembl data-
base. Locally developed software was used to identify
regions on the human chromosomes where local syn-
teny was conserved between the human genome and
each of the other 13 vertebrate genomes. The chromo-
somes in each genome are thus represented as a linear
sequence of genes. For each human reference sequence,
the local syntenic homolog was defined as outlined in
(Figure S2B in Additional file 1). For the coding gene,
Hi, at position i on the human genome, its neighbours
(Hi-1 and Hi+1) were identified. For each of the 13 verte-
brate genomes, the sequences with the highest similarity
to Hi-1 and Hi+1 were selected from the MSA as
described above, and denoted Vn_Simi-1 and Vn_Simi+1

respectively, where Vn refers to one of the 13 vertebrate
genomes. A local synteny homolog, Vn_Syni exists for
Hi and genome Vn if: (i) homologs were found in Vn
for Hi-1 and Hi+1, (ii) the separation between the highest
similarity homologs, denoted Vn_Simi-1 and Vn_Simi+1,
on the genome was less than 5 genes and (iii) a homo-
log of Hi was found on the genome between Vn_Simi-1

and Vn_Simi+1. The homolog of Hi localized between
V_Simi-1 and V_Simi+1 with the highest similarity (smal-
lest evolutionary distance) to the human reference
sequence was then defined as the syntenic homolog.
Genes with ambiguous genomic locations, such as

scaffolds etc., were discarded since the synteny relation-
ship could not be reliably established. In addition, local
or tandem duplications were excluded since the genome
contexts of the two gene copies were similar. Although
tandem duplicates should be adjacent to each other on
one chromosome, extensive gene inversions may insert
irrelevant genes into the tandem arrays. We therefore
used a stringent threshold and excluded cases where
Vn_Simi and Vn_Syni were separated on the genomes
by less than 10 genes.

Automatic detection of potential sequence errors
For each MSA corresponding to a human reference
sequence, an automatic protocol was used to detect
sequence discrepancies that may indicate gene predic-
tion errors. Different types of prediction error were
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considered, such as excluding coding exons, including
introns as part of the coding sequence, or wrongly pre-
dicting start and termination sites. The protocol is
described in detail elsewhere [37]. Briefly, the sequences
in the MSA were first clustered into more related subfa-
milies then, for each subfamily, sequences with potential
errors were identified using an empirical rule-based
approach. (i) Badly predicted exons were identified
using the RASCAL algorithm [60] as outliers or ‘suspi-
cious’ sequence segments (Figure 8A). (ii) Badly pre-
dicted start or stop sites were identified by considering
the positions of the N/C-terminal residues for each
sequence in the subfamily alignment (Figure 8B). Nor-
mal values were defined as lying within the lower and
upper quartiles of the distribution of terminal positions.
Sequences with terminal positions outside this window
were annotated as potential deletion/extension errors.
(iii) Inserted introns (Figure 8C) were detected if a sin-
gle sequence contained an insertion of more than 10
residues. (iv) Missing exons (Figure 8D) were detected if
a single sequence contained a deletion of more than 10
residues.
Each error was then classified in one of 7 different

classes: internal insertions, internal deletions, suspicious
sequence segments, extensions at the N- or C-terminus,
and deletions at the N- or C-terminus.

Validation of potential sequence errors
The errors in the protein sequences were estimated by
analysing the corresponding DNA gene sequences from
the Ensembl database. First, if the gene sequence
contained a run of ‘N’ characters, we assumed that the
predicted protein sequence error was the result of a
DNA sequencing or assembly error. Second, the gene
sequences with no ‘N’ characters were searched for the
missing protein sequence fragments. For errors corre-
sponding to internal deletions, deletions at the N- or
C- terminus or suspicious sequence segments, the miss-
ing protein fragment was extracted from a closely
related sequence in the multiple alignment. The protein
fragment was then aligned to the gene sequence from
the ENSEMBL database using the PairWise software
[65]. The fragment was considered to be present in the
gene sequence if the percent identity of the protein and
translated gene sequences was greater than a given
threshold. The threshold used here was specific to the
pair of organisms compared and was defined as the
lower quartile of the protein sequence identities for the
complete proteomes of the two organisms. A similar
protocol was used for the errors corresponding to inser-
tions in a given protein sequence, except that, in this
case, the protein fragment corresponding to the inser-
tion was aligned to the gene sequence of another closely

Figure 8 Detection of potential sequence errors. Examples of sequence discrepancies (highlighted in blue) that are identified in the
subfamily alignments. A) Potential mispredicted exons, resulting in suspicious sequence segments, are identified based on the conserved blocks
in the subfamily alignment. B) Potential start and stop site errors are predicted based on the distribution of the positions of the N/C-terminal
residues. C) Identification of a potential inserted intron, based on the presence of a single sequence with the insertion in a given subfamily. D)
Identification of a potential missing exon, based on the presence of a single sequence with a deletion in a given subfamily.
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related sequence. Finally, the transcript evidence for the
protein sequences in the Ensembl database was searched
manually for known transcripts and splicing variants.

Prediction of asymmetrical evolutionary rates
It has been suggested that, after a gene duplication
event, one duplicate generally maintains the ancestral
function while the other is free to evolve and acquire
novel functionality. This scenario implies that the pro-
tein with conserved functionality will undergo less
sequence evolution than the one exploring new func-
tionalities. To determine which of the two homologs
described above (highest sequence similarity or syntenic)
was more likely to share the same function as the
human reference sequence, we estimated the difference
between the two evolutionary distances: human refer-
ence to similarity homolog and human reference to syn-
tenic homolog. Thus, for each of the 13 vertebrate
genomes considered in this study, we have a triplet of
homologs, Hi, Vn_simi, Vn_syni, and we want to esti-
mate the difference Δ between two distances d(Hi,
Vn_simi) and d(Hi, Vn_syni).
We used an estimator based on pairwise sequence dis-

tances similar to one defined previously, that is relatively
fast to compute and has almost the same statistical
power as the widely used maximum likelihood estimator
[66]. The distance, d, between two sequences is defined
as the number of amino acid substitutions per site under
the assumption that the number of amino acid substitu-
tions at each site follows the Poisson distribution, as
before. The variance s of the distance d is given by:

σ2 (d) = p/
[(

1 − p
)

n
]

where p is the proportion of amino acid differences
and n is the total number of amino acids compared.
If X has two homologs Y and Z, and Y is the closest

homolog to X, an estimator for the difference in evolu-
tionary distances is:

� = d (X, Y) − d (X, Z)

The variance of the difference can be computed as:

σ2 (�) = σ2 (d (X, Y)) + σ2 (d (X, Z))

− 2cov (d (X, Y) , d (X, Z))

and thus, an upper bound for the variance of the esti-
mator is:

σ2 (�) = σ2 (d (X, Y)) + σ2 (d (X, Z))

Finally, we assume X,Y are significantly closer than X,
Z if:

� < −k.σ (�)

In this work, the parameter k was set to 1.96, reflect-
ing the 95% confidence level. Thus, we would expect 5%
of the tested gene triplets to falsely reject the hypothesis
of asymmetrical evolution.

Additional material

Additional file 1: Supporting figures and tables. Supporting figures
and tables for the manuscript are provided as a PDF file.

Additional file 2: Examples of erroneous protein sequences and
their validation. Example text and figures are provided as a PDF file.

Acknowledgements
We would like to thank the members of the Laboratory of Integrative
Bioinformatics and Genomics for fruitful discussions, and the members of
the Strasbourg Bioinformatics Platform for their support. This work was
funded by the ANR (EvolHHuPro: BLAN07-1-198915) project, the AFM
Décrypthon programme and Institute funds from the CNRS, INSERM, and the
Université de Strasbourg.

Author details
1Department of Integrated Structural Biology, IGBMC (Institut de Génétique
et de Biologie Moléculaire et Cellulaire) CNRS/INSERM/Université de
Strasbourg, 1 rue Laurent Fries, Illkirch, F-67404, France. 2Medical
Biochemistry Department, Federal University of Rio de Janeiro, Avenida
Carlos Chagas Filho 373, Rio de Janeiro, 21941-902, Brazil. 3UMR-CNRS 6632
Evolution Biologique et Modélisation, Université de Provence, 3, Place Victor
Hugo, Marseille, 13331, France.

Authors’ contributions
FP participated in the design of the study, constructed the multiple
alignments and synteny data, and helped draft the manuscript. BL designed
and carried out the ortholog predictions and participated in the analysis of
the data. PP participated in the design of the study and the genetic event
analysis, and helped draft the manuscript. OP participated in the design and
coordination of the study and the analysis of the data and helped draft the
manuscript. JDT conceived the study, participated in its design and
coordination, and helped to analyse the data and to draft the manuscript.
All authors read and approved the final manuscript.

Received: 30 June 2011 Accepted: 4 January 2012
Published: 4 January 2012

References
1. Mardis ER: A decade’s perspective on DNA sequencing technology.

Nature 2011, 470(7333):198-203.
2. Philippe H, Brinkmann H, Lavrov DV, Littlewood DT, Manuel M, Worheide G,

Baurain D: Resolving difficult phylogenetic questions: why more
sequences are not enough. PLoS Biol 2011, 9(3):e1000602.

3. Soria-Carrasco V, Castresana J: Estimation of phylogenetic inconsistencies
in the three domains of life. Mol Biol Evol 2008, 25(11):2319-2329.

4. Stiller JW: Experimental design and statistical rigor in phylogenomics of
horizontal and endosymbiotic gene transfer. BMC Evol Biol 2011,
11(1):259.

5. Koonin EV: The origin and early evolution of eukaryotes in the light of
phylogenomics. Genome Biol 2011, 11(5):209.

6. Pace NR: Mapping the tree of life: progress and prospects. Microbiol Mol
Biol Rev 2009, 73(4):565-576.

7. Parfrey LW, Lahr DJ, Knoll AH, Katz LA: Estimating the timing of early
eukaryotic diversification with multigene molecular clocks. Proc Natl
Acad Sci USA 2011, 108(33):13624-13629.

8. Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S: On the last
common ancestor and early evolution of eukaryotes:

Prosdocimi et al. BMC Genomics 2012, 13:5
http://www.biomedcentral.com/1471-2164/13/5

Page 14 of 16

http://www.biomedcentral.com/content/supplementary/1471-2164-13-5-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-13-5-S2.PDF
http://www.ncbi.nlm.nih.gov/pubmed/21307932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21423652?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21423652?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18701430?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18701430?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21923904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21923904?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19946133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21810989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21810989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21034815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21034815?dopt=Abstract


reconstructing the history of mitochondrial ribosomes. Res
Microbiol 2011, 162(1):53-70.

9. Negrisolo E, Kuhl H, Forcato C, Vitulo N, Reinhardt R, Patarnello T,
Bargelloni L: Different phylogenomic approaches to resolve the
evolutionary relationships among model fish species. Mol Biol Evol 2010,
27(12):2757-2774.

10. Campbell V, Lapointe FJ: An application of supertree methods to
Mammalian mitogenomic sequences. Evol Bioinform Online 2010, 6:57-71.

11. Agnarsson I, Kuntner M, May-Collado LJ: Dogs, cats, and kin: a molecular
species-level phylogeny of Carnivora. Mol Phylogenet Evol 2010,
54(3):726-745.

12. Studer R, Robinson-Rechavi M: How confident can we be that orthologs
are similar, but paralogs differ? Trends Genet 2009, 25:210-216.

13. Kumar S, Filipski AJ, Battistuzzi FU, Kosakovsky Pond SL, Tamura K: Statistics
and Truth in Phylogenomics. Mol Biol Evol 2011.

14. Sanderson MJ, McMahon MM, Steel M: Phylogenomics with incomplete
taxon coverage: the limits to inference. BMC Evol Biol 2010, 10:155.

15. Aittokallio T: Dealing with missing values in large-scale studies:
microarray data imputation and beyond. Brief Bioinform 2010,
11(2):253-264.

16. Berthoumieux S, Brilli M, de Jong H, Kahn D, Cinquemani E: Identification
of metabolic network models from incomplete high-throughput
datasets. Bioinformatics 2010, 27(13):i186-195.

17. Pop M, Salzberg SL: Bioinformatics challenges of new sequencing
technology. Trends Genet 2008, 24:142-149.

18. Hayden EC: Genome builders face the competition. Nature 2011,
471(7339):425.

19. Hubisz M, Lin M, Kellis M, Siepel A: Error and error mitigation in low-
coverage genome assemblies. PLOS One 2011, 6:e17034.

20. Vilella AJ, Birney E, Flicek P, Herrero J: Considerations for the inclusion of
2x mammalian genomes in phylogenetic analyses. Genome Biol 2011,
12(2):401.

21. Hoff KJ: The effect of sequencing errors on metagenomic gene
prediction. BMC Genomics 2009, 10:520.

22. Milinkovitch M, Helaers R, Depiereux E, Tzika A, Gabaldon T: 2X genomes -
depth does matter. 2010, 11:R16.

23. Pertea M, Salzberg SL: Between a chicken and a grape: estimating the
number of human genes. Genome Biol 2011, 11(5):206.

24. Brent MR: Steady progress and recent breakthroughs in the accuracy of
automated genome annotation. Nat Rev Genet 2008, 9(1):62-73.

25. Harrow J, Nagy A, Reymond A, Alioto T, Patthy L, Antonarakis SE, Guigo R:
Identifying protein-coding genes in genomic sequences. Genome Biol
2009, 10(1):201.

26. Nagy A, Hegyi H, Farkas K, Tordai H, Kozma E, Banyai L, Patthy L:
Identification and correction of abnormal, incomplete and mispredicted
proteins in public databases. BMC Bioinformatics 2008, 9:353.

27. Hallegger M, Llorian M, Smith CW: Alternative splicing: global insights.
Febs J 2010, 277(4):856-866.

28. Schneider A, Souvorov A, Sabath N, Landan G, Gonnet GH, Graur D:
Estimates of positive Darwinian selection are inflated by errors in
sequencing, annotation, and alignment. Genome Biol Evol 2009, 1:114-118.

29. Ohno S: Evolution by gene duplication Berlin (Germany): Springer Verlag;
1970.

30. Semon M, Wolfe KH: Consequences of genome duplication. Curr Opin
Genet Dev 2007, 17(6):505-512.

31. Kassahn KS, Dang VT, Wilkins SJ, Perkins AC, Ragan MA: Evolution of gene
function and regulatory control after whole-genome duplication:
comparative analyses in vertebrates. Genome Res 2009, 19(8):1404-1418.

32. Levasseur A, Pontarotti P: The role of duplications in the evolution of
genomes highlights the need for evolutionary-based approaches in
comparative genomics. Biol Direct 2011, 6:11.

33. Durand D, Hoberman R: Diagnosing duplications–can it be done? Trends
Genet 2006, 22(3):156-164.

34. Conant GC, Wolfe KH: Turning a hobby into a job: how duplicated genes
find new functions. Nat Rev Genet 2008, 9(12):938-950.

35. Jun J, Ryvkin P, Hemphill E, Nelson C: Duplication mechanism and
disruptions in flanking regions determine the fate of Mammalian gene
duplicates. J Comput Biol 2009, 16(9):1253-1266.

36. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G,
Fairley S, Fitzgerald S, et al: Ensembl 2011. Nucleic Acids Res 2011, , 39
Database: D800-806.

37. Thompson JD, Linard B, Lecompte O, Poch O: A comprehensive
benchmark study of multiple sequence alignment methods: current
challenges and future perspectives. PLoS One 2011, 6(3):e18093.

38. Meader S, Hillier L, Locke D, Ponting C, Lunter G: Genome assembly
quality: Assessment and improvement using the neutral indel model.
Genome Res 2010, 20:675-684.

39. Boyer F, Morgat A, Labarre L, Pothier J, Viari A: Syntons, metabolons and
interactons: an exact graph-theoretical approach for exploring
neighbourhood between genomic and functional data. Bioinformatics
2005, 21(23):4209-4215.

40. Rodelsperger C, Dieterich C: Syntenator: multiple gene order alignments
with a gene-specific scoring function. Algorithms Mol Biol 2008, 3:14.

41. Jun J, Mandoiu I, Nelson C: Identification of mammalian orthologs using
local synteny. BMC Genomics 2009, 10:630.

42. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S: AmiGO: online
access to ontology and annotation data. Bioinformatics 2009,
25(2):288-289.

43. Yang X, Li J, Lee Y, Lussier YA: GO-Module: functional synthesis and
improved interpretation of Gene Ontology patterns. Bioinformatics 2011,
27(10):1444-1446.

44. Ranwez V, Harispe S, Delsuc F, Douzery EJ: MACSE: Multiple Alignment of
Coding SEquences accounting for frameshifts and stop codons. Plos One
2011, 6(9):e22594.

45. Hubbard TJ, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L,
Coates G, Cunningham F, Cutts T, et al: Ensembl 2007. Nucleic Acids Res
2007, , 35 Database: D610-617.

46. Zambelli F, Pavesi G, Gissi C, Horner DS, Pesole G: Assessment of
orthologous splicing isoforms in human and mouse orthologous genes.
BMC Genomics 2010, 11:534.

47. Goodstadt L, Ponting CP: Phylogenetic reconstruction of orthology,
paralogy, and conserved synteny for dog and human. PLoS Comput Biol
2006, 2(9):e133.

48. Ho MR, Jang WJ, Chen CH, Ch’ang LY, Lin WC: Designating eukaryotic
orthology via processed transcription units. Nucleic Acids Res 2008,
36(10):3436-3442.

49. Bakewell MA, Shi P, Zhang J: More genes underwent positive selection in
chimpanzee evolution than in human evolution. Proc Natl Acad Sci USA
2007, 104(18):7489-7494.

50. Mallick S, Gnerre S, Muller P, Reich D: The difficulty of avoiding false
positives in genome scans for natural selection. Genome Res 2009,
19(5):922-933.

51. Guigo R, Flicek P, Abril JF, Reymond A, Lagarde J, Denoeud F,
Antonarakis S, Ashburner M, Bajic VB, Birney E, et al: EGASP: the human
ENCODE Genome Annotation Assessment Project. Genome Biol 2006,
7(Suppl 1):S2 1-31.

52. Remm M, Storm CE, Sonnhammer EL: Automatic clustering of orthologs
and in-paralogs from pairwise species comparisons. J Mol Biol 2001,
314(5):1041-1052.

53. Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW: Adaptive evolution
of young gene duplicates in mammals. Genome Res 2009, 19(5):859-867.

54. de Smith AJ, Walters RG, Froguel P, Blakemore AI: Human genes involved
in copy number variation: mechanisms of origin, functional effects and
implications for disease. Cytogenet Genome Res 2008, 123(1-4):17-26.

55. Gokcumen OO, Babb PL, Iskow R, Zhu Q, Shi X, Mills RE, Ionita-Laza I,
Vallender EJ, Clark AG, Johnson WE, et al: Refinement of primate CNV
hotspots identifies candidate genomic regions evolving under positive
selection. Genome Biol 2011, 12(5):R52.

56. UniProt: Ongoing and future developments at the Universal Protein
Resource. Nucleic Acids Res 2011, , 39 Database: D214-219.

57. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.

58. Plewniak F, Thompson JD, Poch O: Ballast: blast post-processing based on
locally conserved segments. Bioinformatics 2000, 16:750-759.

59. Thompson J, Plewniak F, Thierry J, O P: DbClustal: rapid and reliable
global multiple alignments of protein sequences detected by database
searches. Nucleic Acids Res 2000, 28:2919-2926.

60. Thompson JD, Thierry JC, Poch O: RASCAL: rapid scanning and correction
of multiple sequence alignments. Bioinformatics 2003, 19:1155-1161.

61. Thompson JD, Prigent V, Poch O: LEON: multiple aLignment Evaluation Of
Neighbours. Nucleic Acids Res 2004, 32:1298-1307.

Prosdocimi et al. BMC Genomics 2012, 13:5
http://www.biomedcentral.com/1471-2164/13/5

Page 15 of 16

http://www.ncbi.nlm.nih.gov/pubmed/21034815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20591844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20591844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20535231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20535231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19900567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19900567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19368988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19368988?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20500873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20500873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19965979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19965979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18262676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21430748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21340033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21340033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21320298?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21320298?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19909532?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19909532?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18087260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18087260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19226436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18752676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18752676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20082635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20333182?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20333182?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18006297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19439512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19439512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19439512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21333002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21333002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21333002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16442663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015656?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015656?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19772436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19772436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19772436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21483869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21483869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21483869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20305016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20305016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16216829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16216829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16216829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18990215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18990215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20030836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20030836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19033274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19033274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21421553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21421553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21949676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21949676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20920313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20920313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17009864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17009864?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18445630?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18445630?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17449636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17449636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19411606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19411606?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11743721?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11743721?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19411603?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19411603?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19287135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19287135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19287135?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21627829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21627829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21627829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10908355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10908355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10908355?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12801878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12801878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14982955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14982955?dopt=Abstract


62. Katoh K, Toh H: Recent developments in the MAFFT multiple sequence
alignment program. Brief Bioinform 2008, 9:286-298.

63. Thompson JD, Muller A, Waterhouse A, Procter J, Barton GJ, Plewniak F,
Poch O: MACSIMS: multiple alignment of complete sequences
information management system. BMC Bioinformatics 2006, 7:318.

64. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL,
Gunasekaran P, Ceric G, Forslund K, et al: The Pfam protein families
database. Nucleic Acids Res 2010, , 38 Database: D211-222.

65. Birney E, Thompson J, Gibson T: PairWise and SearchWise: finding the
optimal alignment in a simultaneous comparison of a protein profile
against all DNA translation frames. Nucleic Acids Res 1996,
24(14):2730-2739.

66. Dessimoz C, Gil M, Schneider A, Gonnet G: Fast estimation of the
difference between two PAM/JTT evolutionary distances in triplets of
homologous sequences. BMC Bioinformatics 2006, 7:529.

doi:10.1186/1471-2164-13-5
Cite this article as: Prosdocimi et al.: Controversies in modern
evolutionary biology: the imperative for error detection and quality
control. BMC Genomics 2012 13:5.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Prosdocimi et al. BMC Genomics 2012, 13:5
http://www.biomedcentral.com/1471-2164/13/5

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/18372315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18372315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16792820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16792820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8759004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8759004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8759004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17147817?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17147817?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17147817?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Estimation of sequence error rates
	Comparison of similarity and synteny based homologs
	Asymmetric evolution events
	Effect of erroneous sequences on prediction of asymmetrical evolution
	Detailed analysis of sequence errors leading to artifactual AED events
	Functional analysis of asymmetrical evolution events

	Discussion
	Protein sequence error rates
	Identification of evolutionary events
	Impact of sequence errors

	Conclusions
	Methods
	Protein sequence data sets
	Putative orthologs based on sequence similarity
	Putative orthologs based on local synteny
	Automatic detection of potential sequence errors
	Validation of potential sequence errors
	Prediction of asymmetrical evolutionary rates

	Acknowledgements
	Author details
	Authors' contributions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


