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A B S T R A C T   

Background and aims: Lipoprotein(a) [Lp(a)] and interleuking-6 (IL-6), an inflammation biomarker, have been 
established as distinct targets of the residual atherosclerotic cardiovascular disease (ASCVD) risk. We aimed to 
investigate the association between them, and the potential clinical implications in ASCVD prevention. 
Methods: A literature search was conducted in PubMed until December 31st, 2022, using relevant keywords. 
Results: Elevated lipoprotein(a) [Lp(a)] levels constitute the most common inherited lipid disorder associated 
with ASCVD. Although Lp(a) levels are mostly determined genetically by the LPA gene locus, they may be altered 
by acute conditions of stress and chronic inflammatory diseases. Considering its resemblance with low-density 
lipoproteins, Lp(a) is involved in atherosclerosis, but it also exerts oxidative, thrombotic, antifibrinolytic and 
inflammatory properties. The cardiovascular efficacy of therapies lowering Lp(a) by >90% is currently inves
tigated. On the other hand, interleukin (IL)-1b/IL-6 pathway also plays a pivotal role in atherosclerosis and 
residual ASCVD risk. IL-6 receptor inhibitors [IL-6(R)i] lower Lp(a) by 16–41%, whereas ongoing trials are 
investigating their potential anti-atherosclerotic effect. The Lp(a)-lowering effect of IL-6(R)i might be attributed 
to the inhibition of the IL-6 response elements in the promoter region of the LPA gene. 
Conclusions: Although the effect of IL-6(R)i on Lp(a) levels is inferior to that of available Lp(a)-lowering thera
pies, the dual effect of the former on both inflammation and apolipoprotein (a) synthesis may prove of equal or 
even greater significance when it comes ASCVD outcomes. More trials are required to establish IL-6(R)i in ASCVD 
prevention and elucidate their interplay with Lp(a) as well as its clinical significance.   

1. Introduction 

Elevated lipoprotein(a) [Lp(a)] is the most common inherited lipid 
disorder associated with atherosclerotic cardiovascular disease (ASCVD) 
[1,2]. Lp(a) is a low-density lipoprotein (LDL) particle in which apoli
poprotein B (ApoB) is covalently bound to apo(a), a protein that re
sembles plasminogen [3]. Lp(a) inheritance follows an autosomal 
dominant pattern, and is mostly influenced by a single gene, the LPA 
gene, located in chromosome 6q23 [4,5]. Lp(a) levels double within the 

first year of life as the apo(a) gene reaches full expression between the 
first and second year of life [1]. Onwards, Lp(a) levels are minimally 
affected by diet, physical activity, and other environmental factors [1, 
3]. On the contrary, Lp(a) may be altered by conditions of stress, such as 
infections and sepsis, as well as chronic inflammatory diseases, 
including rheumatoid arthritis (RA), systemic lupus erythematosus 
(SLE), and psoriasis [1,3]. Traditionally, the threshold for elevated Lp(a) 
levels is set at >30 mg/dL (>75 nmol/L), with almost 20% of the general 
population having Lp(a) > 50 mg/dL (>125 nmol/L) [1,6]. Of note, Lp 
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(a) measurement remains challenging, mainly due to the variability in 
Kringle IV repeats and apo(a) structure [1,5]. Although clinical assays 
identifying a unique non-repetitive epitope in apo(a), recognizing each 
Lp(a) particle once and reporting levels as nmol/L would be ideal, most 
assays incorporate polyclonal antibodies recognizing different epitopes, 
and thus potentially underestimate or overestimate Lp(a) levels 
depending on the presence of small or large isoforms, respectively [1,5]. 
A plethora of experimental, observational, and genetic studies have 
shown a linear relationship between Lp(a) levels and the development of 
ASCVD, as well as heart failure and calcific aortic valve stenosis [1,7,8]. 
Interestingly, there is a debate whether this increased ASCVD risk is 
persistent only in individuals with residual inflammatory risk, as indi
cated by the presence of elevated high-sensitivity C reactive protein 
(hsCRP >2 mg/L) [9–12]. 

Currently, there is no approved Lp(a)-lowering treatment [1,3]. 
Statins tend to increase Lp(a) levels by 10%, while proprotein convertase 
subtilisin/kexin type 9 (PCSK9) inhibitors are associated with a 20–30% 
decrease [1,3]. Recently, novel treatments have shown promising re
sults. Specifically, anti-sense oligonucleotides (ASOs) and small inter
fering RNAs (siRNAs) inhibiting hepatic apo(a) synthesis decrease Lp(a) 
levels by more than 90% and, presently, they are being investigated in 
cardiovascular outcome trials [13,14]. 

Monoclonal antibodies directed against either IL-6 or its receptor [IL- 
6(R)i], which are widely used in RA and other autoimmune diseases, 
have also shown a potential Lp(a)-lowering effect [1,15–17]. Of note, 
the literature has indicated a proatherogenic role of IL-6 in ASCVD, and 
thus the role of IL-6 inhibition in cardiovascular prevention is being 
investigated by randomized controlled trials (RCTs) [16,17]. 

This review aims to discuss relevant evidence on the relationship 
between Lp(a), IL-6(R)i, and ASCVD, as well as the underlying 
mechanisms. 

2. Methods 

For the present state of the art literature review a thorough search 
was conducted on PubMed until December 31st, 2022, using the 
following keywords and their combinations: “interleukin-6”, “IL-6”, “IL- 
6 inhibitor”, “IL-6R inhibitor”, “anti-IL-6 monoclonal antibody”, “anti- 
IL-6R monoclonal antibody”, “lipoprotein(a)”, “Lp(a)” and “atheroscle
rotic cardiovascular disease”. References of eligible articles were scru
tinized for relevant articles. 

3. Lipoprotein (a) and inflammation 

3.1. Lipoprotein(a) and interleukin-6 axis in inflammation 

Lp(a)-induced atherosclerosis and the processes of foam cell forma
tion, smooth muscle fiber proliferation and plaque development, have 
been mostly attributed to the high content of oxidized phospholipids 
(OxPL) in the Lp(a) particle which increase arterial wall inflammation 
by activating circulating monocytes and endothelial cells, and less to its 
atherogenic lipid content, which is considerably lower than that of LDL 
[18,19]. Lp(a) has been additionally linked to systemic inflammation, 
including the IL-6 axis [1]. 

IL-6 is a hormone-like cytokine which participates in innate and 
adaptive immunity and exhibits both pro- and anti-inflammatory 
properties. IL-6 is produced mainly by T cells, but also by monocytes, 
fibroblasts, and endothelial cells, usually at sites of inflammation [20]. 
Apart from inflammation, IL-6 has a metabolic role, including regulation 
of lipid metabolism and insulin resistance [20]. IL-6 binds to either 
soluble or membrane-bound receptors, as well as to glycoprotein 130 
(gp130) to create a hexameric complex [20]. Upon receptor activation, 
intracellular signaling is initiated via the janus kinase as well as the 
signal transducer and activator of transcription (JAK-STAT) pathway, 
ultimately leading to target gene transcription [20]. This gives rise to 
both local and systemic inflammation, sequelae of which are 

dysregulation of the balance between regulator and effector T and B 
cells, as well as immunoglobulin and acute-phase protein production 
[20]. 

The Lp(a) gene (LPA) has several response elements to IL-6; c.-46 to 
c.-40 is the most important one to be associated with apo(a) upregula
tion in the presence of IL-6 21. Thus, in the IL-6 milieu, apo(a) and 
subsequently Lp(a) may act as acute phase reactants [22]. On the other 
hand, IL-6-mediated induction of apo(a) and Lp(a) can be reversed by 
other cytokines, namely transforming growth factor β1 and tumor ne
crosis factor-a (TNF-a), which are also increased during inflammatory 
conditions [23]. This evidence underlines the complex nature of Lp(a) 
regulation, which is maintained by the opposing actions of stimulatory 
and inhibitory cytokines. Of note, inflammatory conditions like RA, SLE, 
Crohn’s disease as well as coronavirus disease 2019 (COVID-19) have 
been associated with elevated Lp(a) levels [24–29]. 

Müller et al. incubated human hepatocytes separately with IL-6 and 
tocilizumab, an IL-6(R)i, and this led to over- and under-expression of 
the LPA gene, respectively. On the contrary, an anti-TNF agent (adali
mumab) did not change Lp(a) levels [21]. Another study examined the 
association between IL-6 and Lp(a) showing that the − 174G/C single 
nucleotide polymorphism of the IL-6 gene is associated with high Lp(a) 
levels [30]. 

In this context, IL-6(R)i could potentially lower Lp(a) by inhibiting 
the effect of IL-6 on the promoter region of the LPA gene and, thus, 
leading to decreased apo(a) production. 

3.2. Lipoprotein(a) and interleukin-6 inhibitors 

A few studies have investigated the association between IL-6(R) in
hibition and Lp(a) levels (Table 1) [31–40]. These were post-hoc ana
lyses of RCTs handling IL-6(R)i or prospective cohorts including patients 
with RA, except for 1 study which included patients with chronic kidney 
disease (CKD). The intervention arms included tocilizumab, sarilumab 
or ziltivekimab, while the comparator groups comprised of placebo or 
other immunomodulating drugs; follow-up period ranged from 12 to 48 
weeks. 

As shown in Table 2, all studies demonstrated decreases in Lp(a) 
levels following IL-6(R)i administration. Inter-group statistical signifi
cance was shown in 7 studies, while significant changes from baseline 
were seen in 4 intervention groups. In the intervention group, Lp(a) 
changes ranged from − 5 to − 26.4 mg/dL, while Lp(a) changes varied 
between − 0.2 and − 1.1 mg/dL in the comparator groups. Overall, IL-6 
(R)i reduced Lp(a) levels by 16–41%, and this reduction was dose- 
dependent in a study with ziltivekimab. 

Of note, none of the studies using tocilizumab or sarilumab evaluated 
major adverse cardiovascular events (MACE). On the contrary, Ridker 
et al. [38] reported 1 non-fatal myocardial infarction in the ziltivekimab 
7.5 mg group, 1 non-fatal myocardial infarction in the ziltivekimab 15 
mg group, and 1 cardiovascular death in the placebo group. 

4. Interleukin-6 inhibitors and atherosclerotic cardiovascular 
disease 

4.1. Interleukin-6 axis and atherosclerosis 

Chronic inflammation and ASCVD risk are linked mostly via the 
NLRP3 inflammasome – IL-1 – IL-6 axis [16,17]. 

The NLRP3 inflammasome is a multimeric cytosolic protein complex, 
which is assembled by pathogen-associated molecular patterns (PAMPs) 
and DAMPs that activate the NLRP3 cytoplasmic receptor [16,41]. In the 
context of atherosclerosis, special emphasis has been placed on DAMPs, 
which include LDL, cholesterol crystals, calcium pyrophosphate crystals, 
uric acid crystals, glucose, disturbed blood flow, and hypoxia [16,41]. 
The NLRP3 inflammasome is also activated by neutrophil extracellular 
traps (NETs), which are pro-atherosclerotic, cytotoxic, nucleus-derived, 
net-like chromatin formations released extracellularly [16,41,42]. 
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Table 1 
Characteristics of studies investigating the association between IL-6(R) inhibition and Lp(a) levels.  

First Author Year Study Type Population Sample 
size 

Duration 
(weeks) 

Intervention Comparator 

Ferraz-Amaro 
[31] 

2019 Prospective RA 27 48 TCZ (8 mg/kg, IV, q4w) N/A 

Gabay [32] 2016 Post hoc analysis of an RCT (phase IV) 
[ADACTA] 

RA 324 24 TCZ (8 mg/kg, IV, q4w) ADA 

Gabay [33] 2020 Post hoc analysis of an RCT (phase III) 
[MONARCH] 

RA 307 24 Sarilumab (200 mg, SC, q2w) ADA 

Garcia-Gomez 
[34] 

2017 Cross-sectional analysis of a prospective 
study [CARMA] 

RA 441 N/A TCZ Anti-TNF 
Other biologic (RTX, 
ABA) 
Non-biologic 

Lee [35] 2016 Substudy of an RCT (phase III) 
[MEASURE] 

RA 20 12 TCZ (8 mg/kg, IV, q4w) N/A 

McInnes [36] 2015 RCT, phase III RA 132 24 TCZ (8 mg/kg, IV, q4w) Placebo 
Pierini [37] 2021 Prospective RA 28 12 TCZ (4–8 mg/kg, IV, q4w or 

162 mg SC) 
N/A 

Ridker [38] 2021 RCT, Phase II CKD 264 24 Ziltivekimab (7.5–30.0 mg, SC, 
q4w) 

Placebo 

Schultz [39] 2010 Prospective RA 11 12 TCZ (8 mg/kg, IV, q4w) N/A 
Virone [40] 2019 Ancillary study of an RCT, Phase III [ROC] RA 203 24 TCZ (500 mg, IV, q4w) Anti-TNF 

ABA: Abatacept; ADA: Adalimumab; CKD: Chronic kidney disease; IV: intravenous; N/A: Not applicable; RA: Rheumatoid arthritis; RCT: Randomized controlled trial; 
RTX: Rituximab; SC: subcutaneous; TCZ: Tocilizumab; TNF: Tumor necrosis factor; q2w: every 2 weeks; q4w: every 4 weeks. 

Table 2 
Effect of IL-6(R) inhibitors on Lp(a) levels.  

First Author 
(Year) 

Intervention Comparator  

Agent Sample size 
(females, %) 

Age 
(years) 

Lp(a) - change from 
baseline (mg/dL) 

Agent Sample size 
(females, %) 

Age 
(years) 

Lp(a) - change from 
baseline (mg/dL) 

P value 

Ferraz-Amaro 
(2019) [31] 

TCZ 27 (88) 52 ± 11 At 12 w: 6 (− 33, − 0) N/A N/A N/A N/A 0.008c 

Gabay (2016) 
[32] 

TCZ 162 (80) 54 ± 13 At 8 w: 7.6 (12)a ADA 162 (82) 53 ± 12 At 8 w: -1.1 (15.1)a N/А 

Gabay (2020) 
[33] 

Sarilumab 153 (84) 50 ± 13 At 12 w: -5.9 (− 13.4, 
− 1.3) 
At 24 w: -6.03 (− 15.7, 
− 2.1) 
− 41% 

ADA 154 (79) 53 ± 12 At 12 w: -0.2 (− 5.4, 
2.8) 
At 24 w: -0.45 (− 4.0, 
2.8) 
− 2.8% 

<0.0001de 

Garcia-Gomez 
(2017) [34] 

TCZ 21 (89) 43 ± 14 8.5 (6.0–15.5)b Anti-TNF 131 (76) 43 ± 13 15.4 (6.0–32.3)b 0.05d 

Other 
biologic 

24 (66) 43 ± 15 10.8 (2.2–26.3)b 

Non- 
biologic 

265 (75) 48 ± 13 16.7 (7.2–40.0)b 

Lee (2016) [35] TCZ 20 (79) 59 
(54–62) 

At 12 w: -12.2 (− 17.2, 
− 7.2) 
− 41% 

N/A N/A N/A N/A 0.000c 

McInnes (2015) 
[36] 

TCZ 69 (83) 57 
(49–62) 

At 12 w: -37% 
At 24 w: -38% 

Placebo 63 (75) 57 
(50–64) 

At 12 w: -0.3% 
At 2 4w: -0.4% 

<0.0001df 

Pierini (2021) 
[37] 

TCZ 28 (89) 61 ± 14 At 12 w: -26.4 N/A N/A N/A N/A <0.01c 

Ridker (2021) 
[38] 

Ziltivekimab 7.5 mg: 66 (48) 70 
(60–74) 

At 12 w: -16% Placebo 66 (44) 66 
(60–74) 

At 12 w: 0% <0.0001d 

15 mg: 66 (55) 66 
(59–74) 

− 20% <0.0001d 

30 mg: 66 (48) 68 
(61–76) 

− 25% <0.0001d 

Schultz (2010) 
[39] 

TCZ 11 (64) 51 ± 4 At 4 w: -10.2a 

At 12 w: -14.6a 
N/A N/A N/A N/A <0.05cg 

Virone (2019) 
[40] 

TCZ 47 (80) N/A At 24 w: -5 (− 11, 1) Anti-TNF 96 (83) 56 
(45–64) 

At 24 w: -1 (− 2.0, 1.0) <0.001d 

Abbreviations: ADA: Adalimumab; N/A: Not applicable; TCZ: Tocilizumab; TNF: Tumor necrosis factor. 
a Values represent mean values; the rest of the Lp(a) values are expressed as median. 
b Values represent Lp(a) measurements post-treatment, not changes from baseline. 
c In comparison with baseline. 
d In comparison with control group(s). 
e At week 24. 
f At week 12. 
g At both weeks 4 and 12. 
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During the process of pyroptosis, the NLRP3 inflammasome produces 
IL-1b and IL-18, which are potent mediators of systemic inflammation 
[16,41]. IL-1b is initially produced as pro-IL-1b, and, upon activation of 
the NLRP3 inflammasome, it is cleaved into its active form by caspase-1 
16, 41. IL-1b has autocrine, paracrine, and endocrine effects, and is 
implicated in the pathogenesis of autoinflammatory diseases, gout, 
diabetes, atherosclerosis, and neurodegenerative diseases. IL-1b induces 
its own production, together with that of IL-6 16, 41. IL-6 may also be 
induced by other factors such as TNF, toll-like receptors, prostaglandins, 
adipokines, and stress [43]. During acute inflammation, IL-6 promotes 
the hepatic synthesis of various acute-phase proteins, such as fibrinogen, 
plasminogen activator inhibitor-1 (PAI-1), serum amyloid A (SAA) and 
CRP, implicated in host immune responses, but also in thrombogenesis 
[16,41]. Of note, an IL-6-mediated increase in the risk of MACE has been 
noted in patients with COVID-19 29. Persistently elevated IL-6 levels 
result in a shift to chronic inflammation and, subsequently, to tissue 
damage [44]. Effects on the cardiovascular system include endothelial 
dysfunction, arterial stiffness, microvascular flow dysfunction, and 
atherosclerosis [16]. An example of persistent systemic inflammation 
where IL-6 has a pivotal role is RA. RA is the most common autoimmune 
disease associated with accelerated atherosclerosis, and, in fact, this 
effect occurs even in the absence of classic cardiovascular risk factors 
[45–47]. 

In this context, therapeutic strategies aiming at upstream molecules 
of this axis, and primarily at IL-6 and IL-1b, have been developed [17,48, 
49]. 

4.2. Cardiovascular outcome trials handling anti-inflammatory drugs 
targeting the NPLR3 inflammasome and the IL-1b/IL-6 pathway 

Recently, several RCTs have assessed the effect of the NPLR3 
inflammasome – IL-1b – IL-6 pathway inhibitors on atherosclerosis [48]. 
The first RCT providing robust evidence on the inflammatory hypothesis 
was Canakinumab Anti-Inflammatory Thrombosis Outcome Study 
(CANTOS) [50]. This proof-of-concept study showed that the adminis
tration of the highest dose (300 mg) of canakinumab, an anti-IL-1b 
monoclonal antibody, in addition to lipid-lowering therapy was associ
ated with MACE reduction by 15% in patients with established ASCVD 
and elevated hsCRP (hazard ratio, HR: 0.85, 95% CI: 0.74–0.98) [50]. 
However, canakinumab was associated with a higher incidence of fatal 
infection vs placebo [50]. The next major study to provide evidence on 
the association between inflammation and ASCVD was Cardiovascular 
Inflammation Reduction Trial (CIRT). Low-dose methotrexate (15–20 
mg weekly) did not reduce levels of interleukin-1β, interleukin-6, or 
CRP, and was not associated with cardiovascular event reduction 
compared with placebo [51]. On the other hand, Colchicine Cardio
vascular Outcomes Trial (COLCOT) evaluated the efficacy of low-dose 
colchicine (0.5 mg qd), an NLRP3 inflammasome inhibitor, on MACE 
reduction after myocardial infarction (MI). Colchicine administration 
within 30 days of MI reduced MACE (HR: 0.77, 95% CI: 0.61–0.96), and 
this finding was subsequently verified in individuals with chronic cor
onary artery disease in the LoDoCo2 trial (HR: 0.69; 95% CI: 0.57–0.83) 
[52,53]. Likewise, CLEAR-SYNERGY is currently investigating the effect 
of colchicine (0.5 mg, twice daily) with or without spironolactone (25 
mg, once daily) and SYNERGY stent in patients with acute MI [54]. 

The fact that the cardioprotective effects of canakinumab, as 
demonstrated by CANTOS, were largely mediated by IL-6 inhibition 
indicates a potential atheroprotective role of IL-6(R)i in ASCVD patients. 
Specifically, a sub-analysis of CANTOS showed that inflammatory risk, 
as defined by high levels of hsCRP and IL-6, was higher in CKD patients 
than in patients with normal renal function [55]. Therefore, CKD pa
tients might benefit more from IL6(R)i treatment. Other RCTs investi
gating the use of IL6(R)i in ASCVD prevention include Randomized 
Evaluation of Patients with Stable Angina Comparing Utilization of 
Noninvasive Examinations (RESCUE) and Ziltivekimab Cardiovascular 
Outcomes Study (ZEUS), as well as the phase II RCT of single-dose TCZ 

in non-ST elevation MI by Kleveland et al., and the ASSessing the Effect 
of Anti-IL-6 Treatment in Myocardial Infarction (ASSAIL) trial, which 
evaluated the effect of single-dose TCZ on myocardial salvage in acute 
ST-elevation MI patients [38,56,57]. Specifically, RESCUE trial, a phase 
II multicenter RCT including patients with stage 3–5 CKD and high 
hsCRP levels, showed that ziltivekimab (7.5–30 mg, every 4 weeks) 
reduces both hsCRP and Lp(a) levels in a dose-dependent manner [38]. 
Given its promising results, ziltivekimab was further advanced into 
ZEUS, a large ongoing cardiovascular outcome trial including patients 
with established ASCVD, stage 3–4 CKD, and high hsCRP [49]. Other 
ongoing trials of IL-6(R)i in non-rheumatic patients with ASCVD include 
GLORIOUS-II, a multifactorial design trial of TCZ in post-open heart 
surgery patients, and DOBERMANN, a trial of dobutamine and 
single-dose TCZ in acute MI patients with cardiogenic shock [58,59]. 

Interestingly, a recent meta-analysis with 26 RCTs comparing anti- 
inflammatory therapies with placebo in patients with established 
ASCVD or at high cardiovascular risk has shown that anti-inflammatory 
treatment, especially that targeting IL-6 pathway may serve as prom
ising treatment strategies to ameliorate the risk of myocardial infarction 
(relative risk, RR: 0.93, 95% CI: 0.88–0.98 and RR: 0.83, 95% CI: 
0.74–0.93, respectively) [60]. 

Finally, considering that the comorbidities of included study par
ticipants, namely established ASCVD and CKD, could be associated with 
elevated Lp(a) levels, additional analyses could help elucidate the effect 
of IL-6(R)i on Lp(a) and associated ASCVD risk. 

5. Clinical implications of Interleukin-6 inhibitors in 
Lipoprotein(a) management 

Lp(a) is an independent, causal, and measurable risk factor of 
ASCVD. Ongoing trials are investigating the cardiovascular efficacy of 
novel therapies inhibiting apo(a) synthesis and lowering Lp(a) over 90% 
[1]. In the absence of approved Lp(a)-lowering treatment, current 
guidelines recommend early intensive risk factor modification in pa
tients with elevated Lp(a) levels [1]. Another approach towards Lp 
(a)-associated ASCVD risk reduction might be the inhibition of the 
IL-6 pathway, which could not only modestly lower Lp(a) levels, but 
mostly ameliorates the accompanying inflammatory effect [28]. A 
post-hoc analysis of the ODYSSEY OUTCOMES study showed that 
treatment with alirocumab mostly benefited acute coronary syndrome 
patients with elevated hsCRP and Lp(a) levels compared to those with 
one or none increased [9]. Similar results were also found by another 
RCT, the Assessment of Clinical Effects of Cholesteryl Ester Transfer 
Protein Inhibition with Evacetrapib in Patients at a High Risk for 
Vascular Outcomes (ACCELERATE) trial [10]. In the setting of primary 
ASCVD prevention, MESA (Multi-Ethnic Study of Atherosclerosis) 
showed that elevated Lp(a) was associated with increased cardiovas
cular disease (CVD) risk in individuals with elevated hsCRP (Hazard 
Ratio, HR: 1.36; 95% CI: 1.02–1.81 for Lp(a): 50–99.9 mg/dL, and HR: 
2.09; 95% CI: 1.40–3.13 for Lp(a) ≥100 mg/dL) [11]. Although isolated 
elevations of either Lp(a) or hsCRP had no effect on CVD risk, the 
combination of elevated Lp(a) ≥50 mg/dL and hsCRP ≥2 mg/L 
contributed significantly to ASCVD risk (HR: 1.62; 95% CI: 1.25–2.10) 
and all-cause mortality (HR: 1.39; 95% CI: 1.12–1.72) [11]. On the 
contrary, the Copenhagen General Population Study has recently shown 
that high Lp(a) remained a significant factor for ASCVD and aortic valve 
stenosis, regardless of CRP levels (HR: 1.61, 95% CI: 1.43–1.81 for those 
with CRP <2 mg/L and HR: 1.57, 95% CI: 1.36–1.82) [12]. Considering 
these controversial results, the theory that patients with elevated Lp(a) 
levels may profit from anti-inflammatory treatment with IL-6(R)i needs 
to be addressed by relevant RCTs. 

6. Perspectives 

Although the effect of IL-6(R)i on Lp(a) levels is not similar to that of 
ASOs or siRNAs, the dual effect of the former on both inflammation and 
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apo(a) synthesis may prove of equal or even greater significance when it 
comes to CVD outcomes. A similar hypothesis was confirmed with sta
tins in the Justification for the Use of Statins in Prevention: an Inter
vention Trial Evaluating Rosuvastatin (JUPITER) trial [61]. After 
enrolling 17,802 apparently healthy men and women with LDL-C <130 
mg/dL and hsCRP ≥2.0 mg/L, JUPITER showed that treatment with 
rosuvastatin 20 mg qd was associated with a significant reduction in 
MACE when compared with placebo (HR: 0.56, 95% CI: 0.46–0.69) 
[61]. Interestingly, this effect was greater in individuals who achieved 
the greatest reductions in LDL-C (<70 mg/dL) and hsCRP (<2 mg/L) 
(HR: 0.35, 95% CI: 0.23–0.54) [61]. 

Furthermore, a topic of interest for future clinical trials would be the 
assessment of the cardiovascular efficacy of anti-inflammatory and Lp 
(a)-lowering combination therapies. Would the addition of an IL-6R(i) 
to Lp(a)-lowering therapies lead to greater ASCVD reduction? Never
theless, Lp(a)-related ASCVD risk management is currently under eval
uation and optimal therapeutic modalities are yet to be discovered. 

7. Conclusions 

Although Lp(a) is mostly genetically determined, it can be increased 
in acute and chronic inflammatory conditions. Evidence derived from 
observational studies and RCTs has shown that treatment with IL-6(R)i 
decreases Lp(a) levels. According to experimental evidence, this could 
be attributed to the inhibition of IL-6, which promotes apo(a) produc
tion. This comes to mark a new era in ASCVD prevention, which focuses 
on the inflammatory pathway of atherosclerosis. Ongoing RCTs inves
tigating the role of IL-6(R)i in secondary ASCVD prevention could help 
elucidate the interaction between these drugs and Lp(a), as well as the 
corresponding effect on clinical outcomes. 
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