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Abstract

I present a computational approach to calculate the population growth rate, its sensitivity

to life-history parameters and associated statistics like the stable population distribution

and the reproductive value for exponentially growing populations, in which individual

life history is described as a continuous development through time. The method is

generally applicable to analyse population growth and performance for a wide range of

individual life-history models, including cases in which the population consists of

different types of individuals or in which the environment is fluctuating periodically. It

complements comparable methods developed for discrete-time dynamics modelled with

matrix or integral projection models. The basic idea behind the method is to use Lotka’s

integral equation for the population growth rate and compute the integral occurring in

that equation by integrating an ordinary differential equation, analogous to recently

derived methods to compute steady-states of physiologically structured population

models. I illustrate application of the method using a number of published life-history

models.
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I N T R O D U C T I O N

Computation of population growth rate and its sensitivity

to changes in vital rates (e.g. survival, growth, development

and reproduction) is an important approach in conserva-

tion biology (e.g. Morris & Doak 2002), ecotoxicology

(e.g. Kooijman & Metz 1984; Klok et al. 1997), pest

management (e.g. Shea & Kelly 1998), as well as evolutionary

ecology (e.g. van Tienderen 2000). These analyses most often

exploit matrix models (Caswell 2001) to project long-term

changes in population density under the assumption that

environmental conditions and hence vital rates remain

unchanged. Matrix models allow for an easy computation

of the asymptotic population growth factor k as the

dominant eigenvalue of the projection matrix [here and

below I will reserve the term population growth rate for the

quantity r ¼ log (k), as technically k itself is not a rate].

k succinctly summarizes the influence of life-history com-

ponents on population performance. The dominant right

and left eigenvector of the matrix represent the stable

distribution of the exponentially growing population and the

reproductive value of individuals in different life-history

stages, respectively (Caswell 2001). The eigenvectors can

moreover be used to compute the sensitivity of k to changes

in vital rates (Caswell 1978). Expressions for these measures

of population performance (growth factor k and its

sensitivity, stable distribution and reproductive value) were

first derived for constant environments and later extended to

environments in which vital rates vary periodically (Caswell

& Trevisan 1994) or stochastically (Tuljapurkar 1990) or are

influenced by population density (Takada & Nakajima 1992).

Matrix models are based on two types of discretization:

(i) the population is subdivided into distinct classes or

stages, most often age, size or stage of development and
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(ii) population dynamics are described on a discrete-time

basis. Subdivision into population stages inevitably intro-

duces discretization errors if individuals are in reality

classified by a continuously varying trait such as body size.

Methods have been developed to objectively select a stage

classification that most faithfully represents such a contin-

uous population distribution (Vandermeer 1978), but these

approaches at best minimize the problems that these errors

introduce into the population projection and do not

eliminate them (Easterling et al. 2000; Pfister & Stevens

2003). Integral projection models (Easterling et al. 2000;

Ellner & Rees 2006) are akin to matrix models, but represent

the population by a continuous distribution and thus solve

the problems associated with discrete stages. Ellner & Rees

(2006) summarize basic theory and computational details for

integral projection models, analogous to the theory for

matrix population models (Caswell 2001), in which individ-

uals are classified by an arbitrary number of variables.

Both matrix and integral projection models describe

dynamics on a discrete-time basis, projecting the population

state from time t to some future time t + 1. This time

discretization has at least two advantages. Observational

data on survival, reproductive output and stage transitions

of individuals are usually collected on a discrete-time basis

as well and can hence be used directly to parameterize the

models. In addition, by parameterizing the population

model on the basis of such observational data it also

accounts phenomenologically for any unexplained and

possibly stochastic variability in vital rates among individuals

in the same stage. Matrix and integral projection models are

therefore the ideal tool to extrapolate observations on vital

rates to future population performance. However, demo-

graphic analyses may also start out by formulating a

mathematical model of the individual life history, such as

a dynamic energy budget (DEB) model (Kooijman & Metz

1984; Kooijman 2000), and address the question how

particular assumptions about life history affect population

performance (e.g. Kooijman & Metz 1984; Klok & De Roos

1996; Hulsmann et al. 2005; Rinke & Vijverberg 2005).

Formulating a matrix population model may then be

complicated, if the individual-level dynamics are described

on a continuous-time basis. For example, Klanjscek et al.

(2006) construct a projection matrix on the basis of a DEB

model. To compute the matrix entries the stable age

distribution within a particular life-history stage has to be

evaluated, which itself depends on the population growth

factor k (see also Caswell 2001, p. 164). As a consequence,

the matrix construction and computation of k requires a

rather complex, multistep iterative process (see also Klok &

De Roos 1996; Klok et al. 1997, for an earlier example).

If the model of individual life history treats time as a

continuous variable, physiologically structured population

models (Metz & Diekmann 1986; De Roos 1997) are a more

natural choice to describe demography. Physiologically

structured population models describe the changes of a

continuous population distribution on a continuous-time

basis using either partial differential equations (Metz &

Diekmann 1986; De Roos 1997) or integral equations

(Diekmann et al. 1994). However, to compute the population

growth rate for such a model requires solving an integral

equation, which in its simplest form can be written as:

1 ¼
Z1
0

e�rabðaÞFðaÞ da ð1Þ

This is Lotka’s integral equation for calculating the

population growth rate r [¼ log (k)], in which b(a) repre-

sents the individual fecundity at age a and F(a) the survival

probability up to that age. Practical applications of this

equation have commonly involved a discretization of the

integral occurring in its right-hand side (e.g. Michod &

Anderson 1980; Taylor & Carley 1988; Stearns 1992).

Caswell (2001, p. 197) discourages this approach and argues

that formulating a discrete-time, matrix model should be

preferred over any attempt to write discrete versions of

Lotka’s equation. A condition similar to Lotka’s integral

equation determines the steady-state of a structured

population model in case the population would not grow

exponentially but would approach equilibrium as a result of

some form of density dependence (see Metz & Diekmann

1986; De Roos et al. 1990; De Roos 1997, for examples).

For such steady-state analysis of physiologically structured

populations Diekmann et al. (2003, see also Kirkilionis et al.

2001) recently derived methods, in which the integral in the

steady-state condition is computed without discretizing it

(see Claessen & De Roos 2003 for a more intuitive

explanation). In this paper, I exploit the similarity between

the aforementioned steady-state condition and Lotka’s

integral equation to adapt these methods and present a

simple computational approach to compute the population

growth rate r and its associated statistics (sensitivities, stable

distribution and reproductive value) using Lotka’s integral

eqn 1 or generalized versions of it. The idea behind the

approach is to evaluate the integral in the right-hand side of

the equation by means of numerical integration of an

ordinary differential equation (ODE). The method is

generally applicable to analyse population growth and

performance for a wide range of individual life-history

models, provided individual development throughout life is

deterministic and the population is growing exponentially in

a constant or periodically varying environment. I will

illustrate the method using published life-history models

and show how it can be applied to cases of varying

complexity, including situations in which individuals vary in

their trait values and situations in which the life history is
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characterized by discrete reproduction but development is

continuous in time.

C O M P U T I N G T H E P O P U L A T I O N G R O W T H R A T E

The basic idea

Given that no single individual lives forever, Lotka’s integral

equation for the population growth rate r is more

appropriately specified as:

1 ¼
ZAm

0

e�rabðaÞF ðaÞ da ð2Þ

In this equation Am represents the maximum age an

individual can possibly attain or at which the survival

function has become indistinguishable from 0: F(Am) » 0.

In practice, if the survival function only becomes equal to 0

in the limit a fi ¥, one has to choose a threshold age

beyond which further contributions to the integral in eqn 2

become negligible. In all examples presented below I have

used as a maximum age the value Am that satisfies the

condition F(Am)e)rAm ¼ 1.0·10)9.

Define the function L(a,r) as follows:

Lða; rÞ ¼
Za

0

e�rabðaÞFðaÞ da ð3Þ

L(a,r) resembles the integral in Lotka’s equation but up to

age a, as opposed to the maximum age Am. Here and below,

I consistently include r as a function argument of L(a,r) to

indicate that r is the variable of interest we want to solve for.

The simple idea underlying the method I present is to

compute L(a,r) by numerical integration of the following

ODE, which is derived by differentiating the expression for

L(a,r) with respect to a:

dL

da
¼ e�rabðaÞFðaÞ; Lð0; rÞ ¼ 0 ð4Þ

Provided explicit expressions for the birth rate b(a) at age a

and the survival probability F(a) up to that age and given a

value for r, this ODE can readily be solved using any kind of

mathematical software packages (MATLAB, MAPLE) up to the

maximum age Am. The population growth rate is now that

particular value of r, which satisfies:

LðAm; rÞ � 1 ¼ 0 ð5Þ

This last equation can be solved using a root-finding

method, such as the secant or Newton-Raphson method

(Press et al. 1988) that are standard parts of all mathe-

matical software packages (MATLAB, MAPLE). Because

L(Am,r) is a monotonously decreasing function of r,

these methods moreover readily converge to the required

root, which I will indicate with ~r . Solving eqn 5 is like

finding the root of any other type of nonlinear equation

in one unknown variable, except that whenever the

function L(Am,r) in the left-hand side of the equation has

to be evaluated we have to integrate ODE (eqn 4)

numerically with the current estimate of r.

Once the population growth rate ~r has been found, it

is relatively easy to also compute all other quantities that

are of interest in a demographic analysis – stable age

distribution, reproductive value and sensitivity and elas-

ticity of the population growth rate with respect to

parameters. The stable age distribution is given by the

explicit expression:

SðaÞ ¼ e�~raF ðaÞ ð6Þ
in which S(a) represents the density of individuals with age a

in the exponentially growing population relative to the

density of newborn individuals. Similarly, the reproductive

value v(a) – i.e. the average contribution of an individual of

age a to future generations relative to its contribution as a

newborn – is given by (Fisher 1930, p. 27 and Metz &

Diekmann 1986, pp. 155–156):

vðaÞ¼ e�~raFðaÞ
� ��1

ZAm

a

e�~rabðaÞF ðaÞ da¼1�Lða;~rÞ
e�~raF ðaÞ ð7Þ

Obviously, to compute v(a) for a particular age we have to

calculate Lða;~r ) and hence we need to integrate the ODE in

eqn 4 numerically up to that particular age using the

computed value of the population growth rate ~r . Finally, an

expression for the sensitivity of the population growth rate ~r
to small changes in a particular parameter p can be derived

by differentiating both sides of eqn 5 with respect to p, while

taking into account that the population growth rate ~r
depends on p as well:

@LðAm; rÞ
@r

@r

@p
þ @LðAm; rÞ

@p
¼ 0

As long as the population growth rate is uniquely

determined, which it generically is, the derivative @L/@r is

unequal to 0. The sensitivity of the population growth rate ~r
with respect to p can therefore be computed as:

@~r

@p
¼ � @LðAm;~rÞ

@r

� ��1
@LðAm;~rÞ

@p
ð8Þ

As analytical expressions for the derivatives of the function

L(Am,r) are lacking, the differentials in eqn 8 have to be

calculated numerically. For example, to obtain @L/@r we

would compute:
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@L

@r
� DL

Dr
¼ LðAm;~r þ Dr=2Þ � LðAm;~r � Dr=2Þ

Dr

This computation involves two additional integrations of

the ODE in eqn 4 with the slightly perturbed values

~r þ Dr=2 and ~r � Dr=2, in which Dr is a small step size

(e.g. Dr ¼ 1� 10�4~r ). Sensitivities can subsequently be

translated into elasticities using the standard definition

ðp=~rÞð@~r=@p). All these computational steps are readily

implemented in software packages like MATLAB or MAPLE.

Generic MATLAB scripts for this purpose are provided as

Supplementary Material to this paper.

The above presentation of the method focuses on the

issue of computing the integral in Lotka’s integral equation

by means of numerical integration. However, the real power

of the method lies in its applicability to situations without

explicit functions for the individual fecundity at age a, b(a)

and the survival probability up to that age F(a), respectively.

For example, if fecundity and survival are the outcome of a

more complicated model of individual life history, such as a

DEB model, or if newborn individuals exhibit some

variation in their physiological traits. In the following

examples I will show how the method covers these more

complex situations.

A simple age-dependent example

This example illustrates the simplest extension of the basic

idea presented above, in which mortality of individuals is

specified by a daily mortality rate m(a). As case study I use

the life history of the Mediterranean fruitfly (Ceratitis

capitata) or Medfly in short, which has been extensively

studied and documented (e.g. Carey 1993; Müller et al.

2001). Carey (1993, p. 159) shows that the daily mortality

rate of medflies increases exponentially with age and

provides parameter estimates for this relationship between

mortality rate and age. Müller et al. (2001) present fecundity

data, which are best described by an exponentially declining

fecundity as a function of the time since the onset of

reproduction. Table 1 specifies the life-history equations

and parameter estimates as derived by Carey (1993) and

Müller et al. (2001).

The survival probability F(a) up to age a is related to the

instantaneous mortality rate m(a) by the following relation-

ship (Metz & Diekmann 1986; De Roos 1997):

F ðaÞ ¼ exp �
Za

0

mðaÞ da

0
@

1
A

Differentiating this relationship with respect to a reveals

that F(a) is the solution of the ODE dF/da ¼ )m(a)F

with initial condition F(0) ¼ 1. Lacking an explicit

expression for F(a) its value can hence be computed by

integrating the latter ODE at the same time as integrating

the ODE for L(a,r). In practice, it is often numerically

more efficient to solve an ODE for the stable age

distribution S(a) (eqn 6) instead of the survival probability

F(a) as it saves multiplication by the factor exp()ra) and

in addition yields the stable age distribution as immediate

result of the integration. Instead of solving the ODE in

eqn 4 with an explicit expression for the survival

probability F(a) the value of L(Am,r) in eqn 5 can

therefore also be computed by solving the following

system of two differential equations:

dS
da
¼ �ðmðaÞ þ rÞS ðaÞ; Sð0Þ ¼ 1

dL
da
¼ bðaÞSðaÞ; Lð0; rÞ ¼ 0

8<
: ð9Þ

The MATLAB code in Appendix S4 uses this approach to

calculate the population growth rate and the sensitivities of

the population growth rate with respect to the different life-

history parameters, while Table 1 summarizes the results of

these computations.

The exponentially increasing mortality rate of medflies

with age allows for deriving an explicit expression for F(a),

yielding a Gompertz survival function (Carey 1993, p. 159).

As shown in Appendix 1 this in turn allows for the

derivation of a nonlinear, but analytical expression of

Lotka’s equation. The latter I used as an alternative method

to compute the population growth rate and its sensitivities

to the five model parameters (see Appendix 1). In addition

to the population growth rate and the parameter sensitivities

obtained by integration of the ODEs in eqn 9 and solving

eqn 5, Table 1 also presents the deviations of these results

from the analytical values obtained by means of the

approach presented in Appendix 1. The estimates for the

population growth rate obtained with the two different

methods differ < 0.0001% from each other, while the

relative differences in parameter sensitivities range from

0.0007% to 0.006%. The results of the computational

approach using integration obviously compare very well

with the analytical results given that the discrepancies are of

the same order of magnitude as the relative accuracy

(0.0001%) with which the numerical solution of the ODEs

in eqn 9 is computed.

As yet another approach the population growth rate can

also be estimated as the dominant eigenvalue of an age-

classified matrix model, in which the stage transition and

fertility entries are estimated from the individual survival

function F(a) and fecundity function b(a) (see Appendix 1).

As we are dealing with continuous reproduction and hence

a continuous population age distribution deriving these

matrix entries requires an assumption about the projection

interval, which at the same time determines the age

4 A. M. De Roos Idea and Perspective
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classification. I used the relationships presented by Caswell

(2001, eqns 2.24 and 2.34 on pp. 23–25) to compute these

matrix entries, assuming a maximum age of 50 days, which

approximately equals the maximum age in the integration

of the ODEs in eqn 9. With a projection and age-

classification interval of 0.5, 1.0, 2.0 and 4.0 days the

population growth rate predicted by the matrix model

differed 12.4%, )0.13%, )4.4% and 2.43%, respectively,

from the analytically derived value (see Appendix 1). The

matrix model hence yields an estimate of the population

growth rate that deviates much more from the analytical

value than the estimate obtained through the integration

approach presented in this paper. In addition, the deviation

depends on the choice of the projection and age-

classification interval in such a way that a smaller

projection interval does not necessarily yield a better

estimate. For populations with continuous reproduction

the integration approach thus yields more reliable estimates

of the population growth rate, even in populations that are

only structured by age.

Life history following a dynamic energy budget model

The method to integrate dynamic equations for life-history

quantities, such as survival, simultaneously with the inte-

gration of the ODE that yields the value of Lotka’s integral

can be extended to apply the computational approach to

more complicated models of individual life history. As an

example I use here a simplified version of the DEB model

that was originally developed by Kooijman (2000). In this

model growth, reproduction and survival is dependent on

individual body size and food availability in the environ-

ment. Compared to the original life-history model I have

neglected all model parts that apply to starvation conditions

as well as dynamics of energy reserves, because under

conditions of constant food these parts do not apply or can

be related directly to food availability. In the simplified

model (see Table 2 for its definition) individuals are then

characterized by three individual state variables (also

referred to as i-state variables; Metz & Diekmann 1986):

body size V, here expressed in terms of body volume, the

hazard or mortality rate h of the individual and the amount

Q of damage-inducing compounds (e.g. free radicals) that

increase the individual’s hazard rate. Growth in body size

depends on size itself and on the scaled food intake rate f,

which represents a measure of the food availability in the

environment. The amount of damage-inducing compound

is assumed to increase proportional to the energy expen-

diture on growth and maintenance, while the hazard or

mortality rate increases proportional to the density of

damage-inducing compounds per unit body volume. Indi-

viduals are assumed to reproduce only when larger than a

threshold size Vp. The energy investment into reproduction

is determined on the basis of a careful accounting of various

energy-consuming processes, including energy needed to

maintain the individual’s state of maturity, and therefore is a

complicated function of body size and food availability.

Table 2 lists the model equations and parameters with

default values, as presented by Klanjscek et al. (2006). For a

detailed presentation of the DEB model see Kooijman

(2000), Nisbet et al. (2000), Muller & Nisbet (2000) and

Klanjscek et al. (2006).

Table 1 Model equations, parameters with default value and interpretation, and population growth rate results for the Medfly example model

(Carey 1993; Müller et al. 2001)

Life-history equations

Fecundity: b(a) ¼ b0e)b1(a)Aj) if a > Aj (19)

Mortality rate: m(a) ¼ l0el1a (20)

Parameter Value Description

b0 47.0 day)1 Maximum daily fecundity right after maturation

b1 0.04 day)1 Decay rate in fecundity with age

Aj 11.0 day Age at first reproduction

l0 0.00095 day)1 Daily mortality rate of newborn individuals

l1 0.0581 day)1 Rate of increase of mortality with age

Results

Population growth rate: 0.41906 (+4.0·10)5%)

Sensitivity to b0: 0.0016159 ()9.3·10)4%)

Sensitivity to b1: )0.16460 (+6.3·10)3%)

Sensitivity to Aj: )0.031982 (+7.6·10)4%)

Sensitivity to l0: )1.5264 (+9.1·10)4%)

Sensitivity to l1: )0.011325 (+7.6·10)4%)

Percentages in parentheses represent the difference between the result computed with the integration method and the analytical values

derived in Appendix 1.
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In the DEB model the age at first reproduction is not

a constant parameter but depends on the environment, in

particular the food density, that the individual experiences.

In addition, both adult fecundity and the stable age

distribution only depend indirectly on age through their

dependence on body size and individual hazard rate,

respectively. Nonetheless, the constant food conditions

that are assumed ensure unique relationships between age

and any of the three i-state variables, which only depend

on the individual’s state at birth and food conditions it

experiences throughout life (Kirkilionis et al. 2001; Diek-

mann et al. 2003). These unique relationships between age

and i-state allow for computation of the integral in

Lotka’s equation by integrating the following system of

ODEs:

dS
da
¼ �ðhðaÞ þ rÞS ; S ð0Þ ¼ 1

dL
da
¼ bðf ;V ÞS ; Lð0; rÞ ¼ 0

dV
da
¼ Gðf ;V Þ; V ð0Þ ¼ Vb

dQ
da
¼ Dðf ;V Þ; Qð0Þ ¼ 0

dh
da
¼ H ðQ;V Þ; hð0Þ ¼ 0

8>>>>>>>>><
>>>>>>>>>:

ð10Þ

Table 2 Model variables, parameters with default value and interpretation, and equations describing the dynamic energy budget model,

adapted from Klanjscek et al. (2006)

Variable Dimension Description

V Length3 Volume of the structure compartment

Q Mass Mass of damage-inducing compound

h Probability/time Hazard or mortality rate: probability of death per unit time

Parameter Dimension Value Description

j – 0.8 Energy partitioning coefficient

jR – 0.001 Fraction of reproduction energy realized

in a newborn

m Length/time 0.075 m.year)1 Energy conductance

m Time)1 0.58 year)1 Maintenance rate coefficient: cost of

maintenance relative to cost of growth

g – 1.286* Energy investment ratio: cost of growth

relative to maximum available energy

for growth

Vb Length3 10)9 m3 Structural volume at birth

Vp Length3 1.73 · 10)6 m3 Structural volume at maturation

[Em] Energy/length3 0.7 x� J m)3 Maximum energy reserve density

ha Length ⁄ mass ⁄ time 0:15 m3 mass�1 year�2 Ageing acceleration – rate of increase of the

hazard rate

f – Varied Energy intake scaled to maximum

energy intake

Life-history equations and derived parameters

Rate of change in structural

volume:

G( f,V ) ¼ (fmV 2/3 ) mgV )/( f + g ) (21)

Energy flux to reproductive

processes:

ERð f ;V Þ ¼ ð1 � jÞ Em½ � fg

f þ g
mV 2=3 þ mV
� �

(22)

Energy flux required to maintain

maturity:

EM ¼ (1 ) j)[Em]mgVp (23)

Energetic costs of one newborn: CN ð f Þ ¼ j�1
R Em½ �ðjg þ f ÞVb (24)

Reproduction rate: bð f ;V Þ ¼ max ERðf ;V Þ � EM ; 0ð Þ
CN ðf Þ

if V > Vp (25)

Production rate of damage-inducing

compounds:

D( f,V ) ¼ g[Em](G( f,V ) + mV ) (26)

Rate of increase of the hazard rate: H(Q,V ) ¼ haQ/V (27)

*Value misprinted in original article (T. Klanjscek, personal communication).

�The factor x converts a chosen measure for energy into Joules, which cancels out after parameterization (Fujiwara et al. 2004; Klanjscek et al.

2006).
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The ODEs for the variables V, Q and h in this system as

well as their initial values at age 0 are determined by the life-

history model (Klanjscek et al. 2006), while the first two

ODEs are analogous to the system of equations for the

Medfly example (eqn 9). Integrating this system to the

maximum age Am results in the single quantity of interest:

LðAm; rÞ ¼
ZAm

0

bðf ;V ðaÞÞSðaÞ da ð11Þ

As before the population growth rate ~r is the value of r that

makes the integral L(Am,r) equal to 1 (eqn 5), which has to

be obtained by an iterative solution method. The stable age

distribution follows directly from integrating the system of

ODEs in eqn 10 using r ¼ ~r , while reproductive value and

sensitivities of ~r to changes in parameters can be computed

in the same way as explained above (eqns 7 and 8,

respectively). Figure 1 shows the population growth rate ~r
for the DEB model (Table 2) at different values of the food

availability f. These results were calculated following the

procedure outlined above with the MATLAB code provided in

Appendix S5. Clearly, increasing food density translates into

larger population growth rates, while the population growth

becomes negative below f » 0.4.

More complex life-history models

The previous sections illustrate how the integration

approach can be applied to the most common types of

life-history models that are structured by either age or size.

However, the method is sufficiently flexible that it can also

be applied to a range of more complex cases. In this section

I discuss some of these more complex applications without

presenting all their mathematical details. Relevant equations

are presented in Appendix 2.

Pulsed reproduction

Although the preceding presentation focuses on populations

with continuous reproduction, the method can also be

applied in case reproduction occurs as discrete events during

life history. Matrix models may seem a more natural choice

for demographic analysis of such birth-pulse populations,

but deriving the elements of the projection matrix can be

complicated if life-history development is continuous in

time. For example, consider the DEB model as specified by

the system of ODEs in eqn 10, but assume that

reproduction only occurs at regularly spaced ages Ai ¼ iD.

Furthermore, assume that the number of offspring pro-

duced at age Ai is the product of the cumulative energy

investment into reproduction between age Ai)1 and age Ai

and the probability to survive until age Ai. Modelling a birth-

pulse population that follows such DEB dynamics with a

matrix model would require, among others, the specification

of matrix elements that represent the survival probability

from age Ai)1 to age Ai. Explicit expressions for these

matrix elements are, however, lacking, because the DEB

model only specifies survival in an indirect way by means of

an ODE for the individual hazard rate. In contrast,

computation of the population growth rate r is relatively

straightforward with the integration approach using a system

of ODEs very similar to eqn 10. As before, the growth rate

~r is the (unique) root of the equation L(Am,r) ¼ 1. In this

equation L(Am,r) again represents the expected, cumulative

number of offspring that an individual produces during its

life time, whereby the offspring production at each age a is

discounted by the factor exp()ra). Because of the pulsed

reproduction, however, L(Am,r) has to be computed by

summing up the offspring productions at the regularly

spaced ages Ai ¼ iD as opposed to its computation by

integrating an ODE in case of continuous reproduction (see

Appendix 2 for details).

Figure 1 shows the population growth rate ~r for the DEB

model with pulsed reproduction at different values of the

food availability f and compares it with the growth rate in

case of continuous reproduction. The results with pulsed

reproduction were calculated following the procedure

outlined in detail in Appendix 2 with the MATLAB code

provided in Appendix S6. Clearly, pulsed reproduction leads

to a significantly lower population growth rate than

continuous reproduction. As a consequence, pulsed repro-

duction requires a roughly 10% higher food availability to

realize zero population growth. Pulsed reproduction affects

population growth in two ways: when individuals die some

reproductive investment goes to waste that does contribute

to population growth in case of continuous reproduction.

In addition, pulsed reproduction causes a delay between the
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Figure 1 Population growth rate ~r as a function of scaled food

intake rate f for the dynamic energy budget model with continuous

(solid line) and pulsed reproduction (dashed line).
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moment of reproductive investment and the subsequent

production of offspring, whereas offspring production

follows reproductive investment immediately in case of

continuous reproduction. These two factors are the only

differences between the DEB models with pulsed and

continuous reproduction and are hence jointly responsible

for the lower population growth rate in case of pulsed

reproduction.

Multiple types of individuals

A basic assumption in the models discussed above is that

there is no variability among newborn individuals, for

example, in the DEB model all individuals are born with the

same body size Vb. As a consequence, individuals in

the exponentially growing population that are born at the

same time will remain identical to each other throughout

their entire life. The computational approach can, however,

also be applied when there is variation among newborn

individuals in their size at birth or in their life-history

parameters. Such variation may induce that similarly aged

individuals diverge during their life history. Consider that

individuals can be born with one of a range of N potential

sizes at birth. Adult individuals will hence potentially

produce N different types of offspring. Let Lij(Am,r)

represent the cumulative number of offspring with size at

birth i produced by an individual that itself had size at birth

j, in which the offspring produced at each age is discounted

by the factor exp()ra). Apart from the discrimination on

the basis of the birth size of both mother and offspring, the

elements Lij(Am,r) are analogous to the integral L(Am,r) of

the basic DEB model (eqn 11). Together these elements

constitute a matrix:

LðAm; rÞ ¼
L11ðAm; rÞ . . . L1N ðAm; rÞ

..

. . .
. ..

.

LN 1ðAm; rÞ . . . LNN ðAm; rÞ

0
B@

1
CA ð12Þ

To compute the matrix entries a system of ODEs has to be

integrated numerically for each of the N different sizes at

birth describing the life-history development of an individ-

ual born with that particular size. These systems of ODEs

are analogous to the systems of ODEs in eqns 9 and 10, but

for the fact that they should keep track of how many

offspring are produced of each possible type (see Appendix

2 for details). The population growth rate ~r now corre-

sponds to the largest root of the equation:

detðLðAm; rÞ � IÞ ¼ 0; ð13Þ

as can be inferred from Diekmann et al. (2003), who discuss

the same generalization of a single to multiple states at birth

for the computation of steady-states in density-dependent

physiologically structured population models. Equation 13 is

a generalized version of eqn 5 that allows the population to

consist of finitely many different types of individuals. As

before, it is an equation in the single unknown variable r,

which can be computed using iterative root-finding meth-

ods, such as the secant or Newton-Raphson method (Press

et al. 1988). However, unlike the quantity L(Am,r) in the

DEB example the determinant det(L(Am,r) ) I) is not

necessarily a monotonously decreasing function of r and

may have multiple roots r, of which the largest, dominant

root is the required population growth rate.

Once the population growth rate ~r has been obtained the

right eigenvector of the matrix LðAm;~r ) corresponding to

the eigenvalue 1 represents the distribution of newborn

individuals over the different states at birth, while its left

eigenvector characterizes the reproductive value of newborn

individuals with different states at birth (see Appendix 2 for

more details). Finally, analogous to the expression in eqn 8

the sensitivity of the population growth rate ~r with respect

to a particular parameter p can be computed as:

@~r

@p
¼� @ detðLðAm;~rÞ � IÞ

@r

� ��1
@ detðLðAm;~rÞ � IÞ

@p
ð14Þ

while elasticities follow from them as before. The

differentials occurring in the above expression can in general

not be obtained analytically and hence have to be approxi-

mated numerically (refer to the discussion of eqn 8). In

practical applications Jacobi’s formula for the derivative of a

determinant, @det(A)/@x ¼ tr(adj(A)@A/@x), can be

exploited for computing these derivatives, in which adj(A) is

the adjugate of the matrix A.

Periodic environments

The computational approach can deal with populations,

living in an environment that varies periodically in time, in

the same way as populations consisting of different types of

individuals are handled. Let the variable E denote the

condition of the environment. In periodic environments this

condition is a function of time with periodicity T, as

expressed by E(t + T ) ¼ E(t ) for all t. In the long run the

population will grow exponentially, but with a periodic

modulation that is enforced by the cyclic environmental

conditions. As a consequence, the state of an individual at

age a is not constant, but varies in time as well. In other

words, individuals follow different life histories depending

on the timing of their birth within the environmental cycle.

The phase in the environmental cycle, at which it is born,

can hence be considered as representing the individual’s

state at birth. Individuals are born continuously throughout

the environmental cycle and the phase at which they are

born hence varies continuously as well. Yet, the method can

8 A. M. De Roos Idea and Perspective
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only handle finitely many different states at birth, which

requires a discretization of the phase in the environmental

cycle. To handle the periodic environment I will assume that

the environmental cycle period T is discretized into N equal

time intervals of length D and denote the phases of

these discrete-time points within the cycle by /i, such that

/i ¼ (i ) 1)D ¼ (i ) 1)T/N (i ¼ 1, …, N ). Individuals

can only be born at these discrete-time points, such that

the continuous reproduction process is approximated by a

set of finely spaced reproduction pulses at the phases /i. For

all N phases /i a system of ODEs has to be solved, which

describes the life history of an individual born at that

particular phase in the environmental cycle and which keeps

track of the number of offspring produced by each

individual at the different phases in the environmental cycle.

I illustrate this case of periodic environments with a

variant of the Medfly model, in which juvenile medflies are

periodically exposed to a very high mortality rate that decays

exponentially within a short time period. Such a scenario

could, for example, reflect a periodic treatment of the

population with an insecticide that affects all juvenile

individuals equally, irrespective of their age. Hence,

the environmental condition E(t) in this example represents

the additional juvenile mortality rate at time t, defined as

EðtÞ ¼ v0 expð�v1ðt mod T )). Mathematical and compu-

tational details for this model are given in Appendix 2.

Figure 2 (left panel) shows the population growth rate of

the Medfly population as a function of the period between

two pulses of high juvenile mortality. The results were

calculated following the procedure outlined above (see also

Appendix 2) with the MATLAB code provided in Appendix

S7. Obviously, the population growth rate increases with

longer periods between mortality pulses. However, the

relationship is not monotonous and exhibits some distinct

peaks at particular periods. For example, a period of 15 days

between consecutive mortality peaks yields a significantly

higher population growth rate than periods that are

somewhat longer or shorter. The peaks and troughs in

the relationship between population growth rate and the

mortality periodicity come about because of an interplay

between the periodicity and the juvenile period of the

Medfly. The right panels of Fig. 2 show for the peak

population growth rate at a periodicity of 15 days the

changes in relative composition in the exponentially growing

population during the period between mortality pulses.

Recruitment to the adult stage is high around the time of a

pulse in juvenile mortality. These newly matured adults

immediately cause a strong increase in the population

reproduction rate and the density of juveniles. The first

wave of this offspring is exposed to the pulse of high

mortality and hence dies rapidly, killing roughly 90% of

them. However, the offspring that the newly matured adults

produce slightly later escape the high mortality levels and are

born sufficiently early that they make it to maturation

(11 days later) before the next pulse of juvenile mortality

occurs. Had the period between the pulses been slightly

shorter, they would have been hit by the subsequent

mortality pulse before maturation, had the period been

slightly longer most of their offspring would have been

produced already and would hence have suffered from the

subsequent mortality pulse. The peak in population growth

rate at a periodicity of 15 days hence results because a
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Figure 2 Left: Population growth rate of the Medfly life-history model when juveniles are exposed to strong, periodic pulses of mortality as a

function of the period between these mortality pulses. Right: Pulses of mortality (thin dashed line), changes in population birth rate (top) and

changes in relative density of juvenile (middle) and adult (bottom) medflies (all thick solid lines) in the exponentially growing population

during the cycles of additional juvenile mortality. Period of mortality pulses: 15 days. All results were obtained assuming a peak juvenile

mortality of v0 ¼ 20 day)1, which decays rapidly over time with a time constant of v1 ¼ 2 day)1, and a discretization of the phase in the

environmental cycle into intervals with length D ¼ 0.2 (halving or doubling the latter value does not noticeably change the results).
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complete juvenile period fits exactly between the moment

that mortality levels have dropped sufficiently after a pulse

and before the next mortality pulse occurs. In the long run

the exponentially growing population converges to this

timing of maturation and reproduction as it yields the

highest population growth rate.

D I S C U S S I O N

The approach presented in this paper complements the

development of matrix (Caswell 2001) and integral projec-

tion models (Easterling et al. 2000; Ellner & Rees 2006)

for discrete-time dynamics by providing a method for

demographic analyses of populations with continuous

reproduction and development – so-called birth-flow

populations. Previously, growth and demography of birth-

flow populations have been studied using age- or stage-

classified matrix models, which require an assumption about

the projection and age-classification interval and relation-

ships to express the matrix elements in terms of the

continuous life-history functions (Caswell 2001). The Medfly

example illustrates that the choice of the projection interval

may significantly influence the estimate of the population

growth rate and that taking a finer age classification does not

necessarily provide a better estimate. Consequently, even in

a relatively simple case, in which the individual life history is

described in terms of an age-dependent survival and

reproduction rate, the integration approach yields a more

reliable estimate of the population growth rate.

Further complications arise when dynamics of a birth-

flow population are represented with a stage-classified

matrix model and stage transitions depend on a dynamic

model of individual energetics (Klok & De Roos 1996; Klok

et al. 1997; Klanjscek et al. 2006). The study by Klanjscek

et al. (2006) provides an example, in which a stage-classified

matrix model based on the DEB model in Table 2 was

formulated to compute the population growth rate. To

derive the matrix elements these authors make a number of

simplifying assumptions: for example, the population is

classified in only a juvenile and adult stage, reproduction

is assumed to occur pulsed in time and individual fecundity

is an averaged value of the reproductive investment over a

time interval. Furthermore, the matrix elements depend on

the stable age distribution within the juvenile and adult

stage. Expressions for this stable age distribution are

difficult to derive, since the death rate itself is a dynamic

variable (eqn 10). The stable age distribution moreover

depends on the value of the population growth rate, such

that the formulation of the matrix and the computation of

its eigenvalue have to be iterated until the estimate of the

latter converges. In contrast, the integration approach allows

for the computation of the population growth rate of the

DEB model without making additional assumptions and

without deriving an explicit expression for the stable age

distribution.

For life-history models with continuous reproduction or

development that are couched in terms of a system of

ODEs, the integration approach thus appears to be a more

straightforward and more reliable method for population

growth rate analysis than an approach using matrix models.

In the form presented here, however, the method only

applies to demographic analysis of exponentially growing

populations in environments that are either constant or

fluctuate periodically in time. It does not allow for

demographic analysis of populations that grow unboundedly

in a stochastically fluctuating environment, nor does it allow

for the analysis of transient dynamics. For matrix models of

populations in stochastic environments techniques have

been developed to compute the population growth rate

(Tuljapurkar 1990) and to determine its sensitivity with

respect to changes in demographic parameters (Haridas &

Tuljapurkar 2005). Similarly, for discrete-time population

models methods exist to compute the sensitivity analysis of

transient dynamics (Caswell 2007). It is as of yet unclear

whether variants of the methods presented in this paper can

be developed to carry out these analysis for continuous-

time, structured population models. Transient dynamics of

such models can be studied, but require the formulation of

a model in terms of partial differential equations (Metz &

Diekmann 1986; De Roos 1997).

In density-dependent environments elasticity analysis of

discrete-time models has focused on the change in

population size in response to changes in demographic

parameters (Grant & Benton 2003; Benton et al. 2004). Such

analyses are also possible for density-dependent, physiolog-

ically structured population models in continuous time, as

long as the population is at equilibrium. Diekmann et al.

(2003, see also Kirkilionis et al. 2001; Claessen & De Roos

2003) derived methods to compute the steady-state of such

models that are similar to the computational approach

presented in this paper. These methods hence allow for

assessing the change in equilibrium abundance in response

to changes in life-history parameters. The computational

approach presented here differs from the methods devel-

oped by Diekmann et al. (2003) in that feedback of the

population on its environment and hence density depen-

dence is ignored. The lack of density dependence results in

exponential population growth and allows for an elasticity

analysis of the rate of this exponential increase.

The integration approach developed in this paper is

purely a numerical one and does not provide analytical

expressions for the population growth rate. Analytical

studies of the population growth rate in continuous-time

models have been carried out in specific cases (e.g.

Kooijman & Metz 1984; Takada & Caswell 1997), but are

not applicable generally. Similarly, for matrix models
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analytical investigations of the population growth rate are

possible (Caswell 2001), but the majority of studies deal

with numerical calculations of the population growth rate

and its associated statistics. I hence argue that the method

presented in this paper is not essentially different from the

methods for demographic analysis of matrix models. The

method may seem complicated, but computational meth-

ods to solve for the eigenvalues and especially the

eigenvectors of a matrix model are not very straightfor-

ward either. A major difference is that the latter methods

are standard part of software packages like MATLAB, while

for explanation and implementation of the computational

method presented in this paper we have to start from

scratch.
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A P P E N D I X 1 : A N A L Y T I C A L C A L C U L A T I O N S F O R

T H E M E D F L Y E X A M P L E

Given the exponentially increasing mortality rate with age

(see Table 1), Medfly survival follows a Gompertz survival

function (Carey 1993, p. 159):

F ðaÞ ¼ exp l0ð1� el1aÞ=l1ð Þ

Hence, the integral in Lotka’s integral equation takes the

form:

Z1
Aj

b0e�b1ða�Aj Þe�ra exp l0ð1� el1aÞ=l1ð Þ da

Changing integration variables by defining y ¼
exp(l1(a ) Aj)) the integral can be expressed as:

q

Z1
1

y�ðsþ1Þ exp �z yð Þ dy

In which q, s and z are defined as:

q¼b0 expð�rAjþl0=l1Þ
l1

; s¼ rþb1

l1

and z¼l0 expðl1AjÞ
l1

Using MAPLE the integral can now be solved and written

in terms of a Gamma function:

q

Z1
1

y�ðsþ1Þ exp �z yð Þdy ¼ qzsCð�s; zÞ

Substituting the expressions for q, s and z back into the

right-hand side of this equation, leads to the following form

of Lotka’s integral equation for the Medfly life-history

model:

b0 expð�rAj þ l0=l1Þ
l1

l0 expðl1AjÞ
l1

� �ðrþb1Þ=l1

� C � r þ b1

l1

;
l0 expðl1AjÞ

l1

� �
¼ 1

I numerically solved this last equation for the population

growth rate r after substituting the parameters values listed

in Table 1. Furthermore, again using MAPLE I symbolically

calculated derivatives of the left-hand side of the equation

with respect to r, b0, b1, Aj, l0 and l1. From these

derivatives the sensitivity of the population growth rate ~r
with respect to the five parameters was computed on the

basis of eqn 8 after substituting the parameters values listed

in Table 1. The results thus obtained were used for

comparison with the results obtained by solving eqn 5 after

integration of the system of ODEs in eqn 9.

I also constructed age-classified matrix models from the

explicit expressions for F(a) and b(a) using the projection

matrix:

M ¼
m11 � � � m1N

..

. . .
. ..

.

mN 1 � � � mNN

0
B@

1
CA

All matrix elements mij equal 0, except those in the

subdiagonal, representing survival, and those on the first row,

representing reproduction. The subdiagonal elements were

computed using the equation mi+1,i ¼ (F(iD) +

F((i + 1)D))/(F((i ) 1)D) + F(iD)) (Caswell 2001, eqn

2.24), while the elements in the first row were computed

using m1i ¼ F(D/2)(b(iD) + mi+1,ib((i + 1)D))/2 (Caswell

2001, eqn 2.34). I varied the discretization interval D between

0.5, 1.0, 2.0 and 4.0 days. The dimension of the matrix was

equal to N ¼ 50/D, as 50 days was approximately the

maximum age in the integration approach. The population

growth rate was computed using MATLAB as r ¼ log(k)/D
with k the dominant eigenvalue of the matrix M.
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A P P E N D I X 2 : M O R E C O M P L E X L I F E H I S T O R I E S :

M A T H E M A T I C A L D E T A I L S

Pulsed reproduction

In the DEB model with pulsed reproduction let B(a) denote

the cumulative investment in offspring by an individual that

has survived up to age a. Mathematically, B(a) equals the

integral of b( f,V ) from age 0 to age a (see Table 2) and can

be computed by numerical integration of an ODE,

analogous to the computation of L(a,r) in case of

continuous reproduction. The entire life history of the

individuals is determined by the following system of

equations:

dS
da
¼ �ðhðaÞ þ rÞS ; Sð0Þ ¼ 1

dB
da
¼ bðf ;V Þ; Bð0Þ ¼ 0

dV
da
¼ Gðf ;V Þ; V ð0Þ ¼ Vb

dQ
da
¼ Dðf ;V Þ; Qð0Þ ¼ 0

dh
da
¼ H ðQ;V Þ; hð0Þ ¼ 0

8>>>>>>>>><
>>>>>>>>>:
This system of ODEs does not include an ODE for L(a,r),

as L(Am,r) is now computed as LðAm; rÞ ¼Pm
i¼1

ðBðAiÞ � BðAi�1ÞÞS ðAi ). In this sum the difference

B(Ai) ) B(Ai)1) represents the number of offspring that is

produced at age Ai on the basis of the reproductive allo-

cation between Ai)1 and age Ai. However, only individuals

that survive until age Ai can reproduce, which explains the

multiplication with S(Ai). L(Am,r) has to be computed by

integration of the life-history ODEs in a stepwise manner

from age Ai)1 to age Ai and summation of the appropriate

contributions (B(Ai) ) B(Ai)1))S(Ai). As before, the popu-

lation growth rate r is determined by the equation

L(Am,r) ¼ 1.

Multiple types of individuals

I will discuss technical details regarding how to apply the

integration approach to a case with multiple types of

individuals using a variant of the DEB model, in which

individuals are either born with size 0.7·Vb or alternatively

with size 1.3·Vb. These will be referred to as �type 1�
individuals and �type 2� individuals, respectively. Further-

more, both types of individuals are assumed to spend 2/3 of

their reproductive investment on producing offspring with

their own birth size and 1/3 of their effort into offspring

with the alternative type. MATLAB code for this particular

example model is provided in Appendix S8.

Because their states at birth differ individuals born with a

small or a large size both follow their own, unique life

history, even though they experience the same constant

food conditions. The life history of individuals of type 1 is

determined by six variables: S1(a), L11(a,r), L21(a,r), V1(a),

Q1(a) and h1(a), which follow dynamics similar to the system

of ODEs in eqn 10 except that V1(0) ¼ 0.7·Vb:

dS1
da
¼ �ðh1ðaÞ þ rÞS1; S1ð0Þ ¼ 1

dL11
da
¼ b11ðf ;V1ÞS1; L11ð0; rÞ ¼ 0

dL21
da
¼ b21ðf ;V1ÞS1; L21ð0; rÞ ¼ 0

dV1
da
¼ Gðf ;V1Þ; V1ð0Þ ¼ 0:7�Vb

dQ1

da
¼ Dðf ;V1Þ; Q1ð0Þ ¼ 0

dh1
da
¼ H ðQ1;V1Þ; h1ð0Þ ¼ 0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð15Þ

In these equations L11(a,r) and L21(a,r) represent the

cumulative number of small and large offspring, respec-

tively, produced by an individual that itself had a small size

at birth and weighted at every age by exp()ra). The

functions b11( f,V1) and b21( f,V1) represent the per capita rate

at which the individual produces these two types of

offspring and are defined as

b11ð f ;V1Þ ¼ jR max ðERð f ;V1Þ � Em; 0Þ
=ð0:7� ½Em�ðjg þ f ÞVbÞ and

b21ð f ;V1Þ ¼ jR max ðERð f ;V1Þ � Em; 0Þ
=ð1:3� ½Em�ðjg þ f ÞVbÞ;

respectively [compare the corresponding expression for

b( f,V ) in Table 2]. The division by 0.7·Vb and 1.3·Vb

accounts for the fact that with the same amount of invest-

ment more individuals with a small size at birth can be

produced. A comparable set of quantities that follow the

same dynamics as specified above describe the life history of

the individuals that are born with a large size at birth. The

only difference is that for these individuals V2(0) ¼ 1.3·Vb.

After integrating the systems of ODEs for both types of

individuals the following matrix:

LðAm; rÞ ¼
L11ðAm; rÞ L12ðAm; rÞ
L21ðAm; rÞ L22ðAm; rÞ

� �

is constructed, which allows computation of the population

growth rate ~r as the root of the condition

det(L(Am,r) ) I) ¼ 0. Denote the right and left eigenvector

of the matrix LðAm;~r ) as u and v, respectively, such that

LðAm;~rÞu ¼ u and vTLðAm;~rÞ ¼ vT. If u is normalized

such that its elements sum to unity, i.e. 1Tu ¼ 1, this right

Idea and Perspective Demographic analysis in continuous time 13
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eigenvector represents the distribution of the stable birth

flow in the exponentially growing population over the var-

ious states at birth. In the current example the elements u1

and u2 of the right eigenvector, representing the fraction of

all individuals born at a specific time with a small and large

size at birth, respectively, are given by:

u1 ¼
L12ðAm;~rÞ

1� L11ðAm;~rÞ þ L12ðAm;~rÞ
and

u2 ¼ 1� u1 ¼
1� L11ðAm;~rÞ

1� L11ðAm;~rÞ þ L12ðAm;~rÞ
:

These expressions can be derived from the equation

LðAm;~rÞu ¼ u, assuming that u1 + u2 ¼ 1. Given these

fractions the stable age distribution of the population is

given by:

S ðaÞ ¼ u1S1ðaÞ þ u2S2ðaÞ ¼
S1ðaÞ
S2ðaÞ

� �T

u

in which S1(a) and S2(a) are obtained as results of the

integration of the system of ODEs. The expression makes

clear that individuals with age a are a mixture of individuals

that were born with a small and large size at birth, respec-

tively, and therefore differ in body size at this age as well.

The elements v1 and v2 of the left eigenvector v of the

matrix LðAm;~r ) are given by:

v1 ¼
L21ðAm;~rÞ

1� L11ðAm;~rÞ þ L21ðAm;~rÞ
and

v2 ¼ 1� v1 ¼
1� L11ðAm;~rÞ

1� L11ðAm;~rÞ þ L21ðAm;~rÞ
;

as can be deduced from the equation vTLðAm;~rÞ ¼ vT,

assuming v1 + v2 ¼ 1. With this latter normalization each

component vj can be interpreted as follows: suppose that at

time t ¼ 0 every possible state at birth is represented in

the initial population by a single newborn individual. In the

long run a fraction vj of the total population will be

descended from the newborn individual with state at birth

j. The particular normalization of the left eigenvector v

determines which type of newborn individual has the

reference reproductive value of 1. More commonly, the left

eigenvector is normalized such that vTu ¼ 1 (Caswell

2001), which assigns this unit reproductive value to the

�average� newborn individual in the exponentially growing

population. As v1 and v2 represent reproductive values at

age 0, they are more appropriately denoted as v1(0) and

v2(0), respectively. At a later age the reproductive value vj(a)

of an individual with state at birth j can be calculated as

the exponentially discounted, expected number of different

types of offspring that the individual will still produce

during its remaining life time. The different types of

offspring have to be weighted, however, by the contribu-

tion these offspring make themselves to future population

growth (compare eqn 7):

vjðaÞ ¼ e�~raFjðaÞ
� ��1

X
i

við0Þ
ZAm

a

e�~rabijðaÞFjðaÞda

¼ SjðaÞ
� ��1

X
i

við0Þ

�
ZAm

0

bij ðaÞSjðaÞda�
Za

0

bijðaÞSjðaÞ da

0
@

1
A

¼ SjðaÞ
� ��1

X
i

við0Þ LijðAm; rÞ � Lij ða; rÞ
� �

¼ SjðaÞ
� ��1

vjð0Þ �
X

i

við0ÞLij ða;~rÞ
 !

ð16Þ

Notice that vj(0) ¼
P

i vi(0)Lij(Am,r) because v is the left

eigenvector of the matrix LðAm;~r ) and that bij(a) represents

the rate at which an individual of age a, which itself was

born with state j, produces offspring with state at birth i.

The expressions above indicate that the reproductive value

can be computed from the quantities Sj(a) and Lijða;~r ) after

integrating the appropriate set of life-history ODEs (cf. eqn

15) for the individual with state at birth j up to age a.

Periodic environments

In the variant of the Medfly example model with high,

periodic pulses of juvenile mortality the environmental

condition E(t), representing the additional juvenile mortality

rate at time t, is defined as EðtÞ ¼ v0 exp �v1ðt mod T Þð Þ.
Let Si(a) denote the stable age distribution at age a of

individuals born at phase /i ¼ (i ) 1)D ¼ (i ) 1)T/N

(i ¼ 1,…,N). Furthermore, let Li(a,r) denote the cumulative

offspring production, weighted with the factor exp()ra) at

every age, produced by this individual up to age a. The

dynamics of Si(a) and Li(a,r) are described by the following

system of ODEs:

dSi
da
¼�ðmðaÞþEðaþ/iÞþ rÞSiðaÞ; Sið0Þ¼ 1

dLi
da
¼ bðaÞSiðaÞ; Lið0; rÞ¼ 0

8<
: ð17Þ

This system is analogous to the system of equations for

the Medfly example in constant environments (eqn 9) except

that the death rate is increased with E(a + /i), which

reflects that the death rate at age a is a function of the phase

in the environmental cycle at which individuals reach this

particular age. For all N phases /i an analogous system of

ODEs has to be solved, which only differ in their value of

E(a + /i), i.e. the level of mortality they experience at a

particular age a. Handling the periodic environment in case
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of the Medfly example therefore requires the simultaneous

integration of 2N differential equations as opposed to the

two ODEs that are needed in constant environments.

Let Lij(a,r) now denote the number of offspring, weighted

by exp()ra) at every age, produced at phase /i in the

environmental cycle by an individual that was itself born at

phase /j. To compute these quantities Lij(a,r) the numerical

integration of the system of 2N ODEs has to be carried out

in a stepwise manner from Al)1 ¼ (l ) 1)D to Al ¼ lD(l ¼
1, 2, 3,…). At age Al ¼ lD an individual that is born at

phase /j in the environmental cycle produces a number of

offspring equal to the cumulative number of offspring

produced within the just elapsed interval D. Given its own

phase at birth and its age this offspring is produced at

phase /i with i ¼ 1þ ðj þ l � 1Þmod Nð Þ. At Al ¼ lD
the following operation hence has to be carried out for all

j ¼1, …, N:

LijðAl ; rÞ ¼ LijðAl ; rÞ þ LjðAl ; rÞ � LjðAl�1; rÞ
� �

with i ¼ 1þ ðj þ l � 1Þmod Nð Þ:
ð18Þ

The integration of the ODEs (eqn 17) and the recurring

summations (eqn 18) have to be carried out until reaching

a ¼ Am, as was also the case for the constant environment

model. The final results of the integration are the elements

Lij(Am,r) of the matrix L(Am,r) (eqn 12). All computations

with this matrix can subsequently be carried out as described

in detail in the section on multiple types of individuals. In

particular, the population growth rate ~r can be obtained

from solving eqn 13. Furthermore, the right eigenvector

belonging to the unit eigenvalue of the matrix LðAm;~r )

constructed with the correct value of the population growth

rate ~r represents the relative densities of individuals with

different states at birth. In periodic environments this

eigenvector is hence proportional to the rate at which

individuals in the exponentially growing population are born

at the different phases /i within the environmental cycle.

S U P P L E M E N T A R Y M A T E R I A L

The following supplementary material is available for this

article:

Appendix S1 MATLAB code to compute the population

growth rate.

Appendix S2 MATLAB code to compute the sensitivity of the

population growth rate to all model parameters.

Appendix S3 MATLAB code to compute the entire life history

as a function of individual age for computation of the stable

age distribution and the reproductive value as a function of

age.

Appendix S4 Problem-specific MATLAB code for the Medfly

example.

Appendix S5 Problem-specific MATLAB code for the dynamic

energy budget example with the population made up by a

single type of individual (a single state at birth).

Appendix S6 Problem-specific MATLAB code for the dynamic

energy budget example with the population made up by a

single type of individual (a single state at birth) and pulsed

reproduction.

Appendix S7 Problem-specific MATLAB code for the Medfly

example with a periodically fluctuating juvenile mortality.

Appendix S8 Problem-specific MATLAB code for the dynamic

energy budget example with the population consisting of

two different types of individuals (two states at birth).

The code in Appendix S1–S3 is designed to be problem

independent. For specific problems and parameter combi-

nations the code might nonetheless fail to yield results and

should therefore be considered a starting point for further

development.

This material is available as part of the online article from:

http://www.blackwell-synergy.com/doi/full/10.1111/j.1461-

0248.2007.01121.x

Please note: Blackwell Publishing are not responsible for the

content or functionality of any supplementary materials

supplied by the authors. Any queries (other than missing

material) should be directed to the corresponding author for

the article.
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