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Simple Summary: There exists limited knowledge about the underlying molecular processes control-
ling the expression of HLA class II APM components and their prognostic significance in melanoma.
Therefore, this study analyzed the basal and regulated expression of HLA class II antigens and
components in melanoma cell lines and patients’ lesions in conjunction to T-cell infiltration. The het-
erogeneous constitutive HLA class II APM expression was caused by distinct molecular mechanisms
and was partially linked to immune cell infiltration and clinical parameters. These results contribute
not only to a better understanding of the regulation of HLA class II expression in melanoma, but
might have an impact on the design of novel (immuno)therapies for the treatment of this disease.

Abstract: Background: The human leukocyte antigen (HLA) class II molecules are constitutively
expressed in some melanoma, but the underlying molecular mechanisms have not yet been character-
ized. Methods: The expression of HLA class II antigen processing machinery (APM) components was
determined in melanoma samples by qPCR, Western blot, flow cytometry and immunohistochemistry.
Immunohistochemical and TCGA datasets were used for correlation of HLA class II expression to
tumor grading, T-cell infiltration and patients’ survival. Results: The heterogeneous HLA class II
expression in melanoma samples allowed us to characterize four distinct phenotypes. Phenotype I
totally lacks constitutive HLA class II surface expression, which is inducible by interferon-gamma
(IFN-γ); phenotype II expresses low basal surface HLA class II that is further upregulated by IFN-γ;
phenotype III lacks constitutive and IFN-γ controlled HLA class II expression, but could be induced
by epigenetic drugs; and in phenotype IV, lack of HLA class II expression is not recovered by any drug
tested. High levels of HLA class II APM component expression were associated with an increased
intra-tumoral CD4+ T-cell density and increased patients’ survival. Conclusions: The heterogeneous
basal expression of HLA class II antigens and/or APM components in melanoma cells is caused by
distinct molecular mechanisms and has clinical relevance.

Keywords: HLA class II; CIITA; IFN; methylation; signal transduction

1. Introduction

The implementation of high-throughput technologies led to the identification of a
large series of mutations, which appeared to be involved in the development, maintenance
and progression of malignant melanoma (MM), but might also serve as suitable targets
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for T-cell-based immunotherapies, due to the creation of neo-antigens [1–3]. Despite that
tumor-associated antigens (TAA) can be recognized by CD8+ cytotoxic T lymphocytes
(CTL) in the context of HLA class I antigens, T-cell-based immunotherapies of melanoma
might exhibit a lower efficacy than expected [4], and patients often develop resistances
to these treatments [5]. This impaired response of MM patients is often associated with
a downregulation or loss of HLA class I antigens and/or components of the HLA class I
antigen-processing machinery (APM), leading to evasion from immune surveillance [6–8],
disease progression and/or poor patients’ outcome [9,10], but their expression could be
frequently upregulated by interferon (IFN)-α and IFN-γ [11,12]. There exists increasing
evidence that HLA class II molecules encoded by HLA-DP, -DQ and -DR are also important
for mounting an anti-tumoral immune responses, which can influence the prognosis of
patients with various solid tumors and the efficacy of immunotherapies [13–17]. Recently,
HLA class II surface expression has been shown to predict responses to anti-PD-1, but not
to anti-CTLA-4 immunotherapy [18], suggesting its use as a potential biomarker for the
responses prediction to specific immune checkpoint inhibitors (iCPIs) [14].

HLA class II surface molecules present foreign antigens to CD4+ T cells in order to
initiate, control and/or maintain adaptive immune responses [19,20]. The HLA class II
APM is complex and involves a number of components including the chaperones HLA-DM
and HLA-DO. The expression of HLA class II antigens is tightly controlled by various
transcription factors (TF), which are known to bind to highly conserved proximal promoter
sequences of the HLA class II molecules [20–22]. The non-DNA-binding class II transacti-
vator protein (CIITA) mediates the interaction between co-factors, chromatin remodeling
factors and the general transcription machinery [23–25] and is central, but not sufficient, for
the transcription of HLA class II antigens, which requires the presence of the enhanceosome
complex. CIITA expression is transcriptionally regulated in a cell-type-specific manner,
using different promoters [26]. Furthermore, promoter hypermethylation and histone
acetylation can control HLA-DRα and CIITA transcription [27–32]. The expression of
CIITA and selected HLA class II APM components could be reconstituted by the treatment
with demethylating agents, histone deacetylase inhibitors (HDACi) and IFN-γ [20,33].
Furthermore, gene transfer of CIITA into tumor cells resulted in a stimulation of tumor
specific CD4+ T cells in vivo associated with a long-lasting protective immunity [34], as
well as an increased repertoire of tumor-associated HLA class II antigens [35].

Next to its physiologic expression on antigen presenting cells (APC), constitutive HLA
class II expression was also detected in malignant cells. In freshly isolated primary and
metastatic melanoma, 50–60% of tumor cells expressed HLA class II antigens [36]. In some
tumor entities, HLA class II expression was associated with a favorable prognosis [37–39],
while it correlated with a more aggressive phenotype and a higher risk of metastases in
other cancers [40–43]. Concerning MM, there exist conflicting results regarding the role of
HLA class II antigens in disease outcome and therapy response. Furthermore, a distinct
expression pattern of HLA class II antigens was found during melanoma progression,
suggesting a dynamic role of HLA class II function [44].

Based on these data, an increased knowledge concerning the underlying molecular
processes controlling the expression of HLA class II APM components and their prognostic
significance in MM is required. These might range from mutations in HLA class II regu-
latory genes [45] to transcriptional, posttranscriptional and epigenetic control [28,46–51].
Furthermore, the immune-cell repertoire might influence the HLA class II expression, since
HLA-class-II-pathway component expression has been shown to be associated with B and
T cell infiltration [52]. Therefore, this study analyzed the basal expression of HLA class II
antigens and selected components of the HLA class II APM in MM cell lines and lesions, its
regulation by IFN-γ and epigenetic drugs and its correlation to T-cell infiltration, in order
to delineate the processes leading to the heterogeneous HLA class II expression in this
disease. The clinical relevance of these results was demonstrated by correlation of the HLA
class II APM expression and immune cell infiltration to tumor grading and to the patients’
survival by analysis of a melanoma dataset from The Cancer Genome Atlas (TCGA).
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2. Materials and Methods
2.1. Melanoma Cell Lines, Cell Culture and Treatment

The melanoma cell lines used in this study were either provided by Dr. Soldano
Ferrone (Harvard University, Boston, MA, USA) or obtained from ESTDAB cell bank (now
transferred to the European Collection of authenticated cell cultures, https://www.phe-
culturecollections.org.uk/products/celllines/generalcell/browse.jsp, accessed on 12 May
2021, and their characteristics have been described elsewhere [53,54]. The melanocytes were
purchased from Lonza (Pharma&Biotech, Basel, Switzerland) and cultured in melanocytes
growth medium (MGM-4 Bullet Kit; Lonza Biosciences, Basel, Switzerland). All melanoma
cell lines (n = 47) were maintained in RPMI1640 medium supplemented with 1% 100 mM
L-glutamine, 10% fetal calf serum (FCS) and respective antibiotics.

For determination of the IFN inducibility of HLA class II expression, melanoma cell
lines were either left untreated or treated for 24 and/or 48 h with 400 U/mL recombinant
IFN-α (Prospec, Rehovot, Israel) or IFN-γ (PAN Chemicals, Sofia, Bulgaria) respectively.
For epigenetic studies, melanoma cell lines were daily treated with fresh medium contain-
ing the demethylating agent 5′-aza-2′-desoxycytidine (AZA; Sigma, Saint Louis, MO, USA;
1–10 µM) or the histone deacetylase inhibitors (HDACi) entinostat (ENT; Selleck Chemicals,
Munich, Germany; 1–5 µM) or trichostatin A (TSA; 200 ng/mL; Sigma, Taufkirchen, Ger-
many), respectively, for the indicated time points alone and/or in combination with IFN-γ.

2.2. qPCR Analysis

Total cellular RNA from melanoma cell lines and melanocytes was prepared and
reverse transcribed into cDNA, as recently described [54]. Then qPCR was performed on a
Rotorgene 6.000 system (Corbett Research, Sydney, Australia), employing the platinum
SYBR Green qPCR Supermix-UPG (Invitrogen, Carlsbad, CA, USA) and respective primers
listed in Table S1, using standard protocols, as recently described [55]. The mRNA lev-
els were normalized to the expression of glyceratealdehyde-3-phosphate dehydrogenase
(GAPDH). Data were analyzed with a comparative quantification mode of the Rotor gene
6.000 software version 1.7. The results were normalized to melanocytes. All qPCR anal-
yses were performed with RNA from at least 3 independent experiments. The scoring
of the mRNA expression levels was based on cycles and categorized as “1” (>26 cycles),
“2” (22–26 cycles), “3” (18–21 cycles), “4” (14–17 cycles) and “5” (10–13 cycles).

2.3. Monoclonal Antibodies

For flow cytometry and/or immunohistochemistry (IHC), following monoclonal
antibodies (mAb) for staining of HLA class II APM components, we used anti-pan-HLA
class II, anti-HLA-DR, anti-HLA-DP, anti-HLA-DQ, anti-CIITA, anti-HLA-DM, anti-HLA-
DO and anti-Ii (Table S2). Staining with an anti-HLA class I mAb (Table S2) was performed
to determine the IFN responsiveness.

2.4. Flow Cytometry

For flow cytometry, 5 × 105 cells either left untreated or treated for the indicated
time points with IFN-γ and/or DAC, TSA or ENT, respectively, were incubated with a
fluorescence-labeled anti-human pan-HLA class II; anti-human HLA-DR, -DP and -DQ
mAbs; or isotype controls for 1 h. After washing, HLA class II surface expression was
measured on a NAVIOS flow cytometer (Beckman Coulter, Brea, CA, USA) and analyzed by
using the Kaluza Software. The data were expressed as x-fold increase in mean fluorescence
intensity (MFI) of the total population over the isotype control. A representative gating
strategy is shown in Figure S1. The x-fold MFI of 1 was scored negative; MFI > 50 was
scored high; and MFI was between 10 and 50, was scored low (<20% positive cells) or was
medium (>20% positive cells).

https://www.phe-culturecollections.org.uk/products/celllines/generalcell/browse.jsp
https://www.phe-culturecollections.org.uk/products/celllines/generalcell/browse.jsp
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2.5. Analysis of CIITA Methylation Pattern

For determination of the methylation status of the CIITA promoter, combined bisulfite
restriction analysis (COBRA) and direct sequencing of bisulfite-treated DNA was per-
formed, as recently described [54]. For COBRA, a nested PCR was performed with primers
(Table S1B), and PCR products were digested with the restriction enzymes BstUI, Taq I,
RsaI or Hpy188I (New England Biolabs, Frankfurt, Germany), recognizing CpG-specific se-
quences. The PCR products were then separated on 3% agarose gels. For determination of
the methylation pattern, the degree of cleavage compared to the corresponding uncleaved
control was categorized into different groups, as previously described [54].

2.6. Immunohistochemistry of Tissue Microarrays (TMAs)

The expression of HLA class II APM pathway components was determined in a
melanoma-specific TMA consisting of 368 primary malignant melanoma lesions with
available pT status for 362 samples, 39 metastases and 62 benign nevi, using conven-
tional IHC [55–57]. Paraffin-embedded tissue blocks were stained with the respective
primary antibodies, overnight, at 4 ◦C, followed by immunostaining with the UltraView
Universal Alkaline Phosphatase Red Detection Kit (Ventana, Tucson, AZ, USA), as recently
described [56]. Slides were counterstained with hematoxylin, dehydrated and mounted.
The immune reactivity was defined according to the following scoring system: 0 = negative,
1 = 1–20%, 2 = 20–50%, 3 = 50–70% and 4 = 70–100%.

2.7. Statistical Analysis

Statistical analysis was performed with SigmaPlot Version 11 (Inpixon HQ, Palo Alto,
CA, USA) using the Student’s t-test; p-values of < 0.05 were considered as significant and
are indicated in the figures. Experiments were performed 2 or 3 times. For contingency
table analysis, two-sided chi-square and Fisher’s exact test were employed for statistical
correlation between clinicopathological and immunohistochemical parameters of the tumor
samples. The tumor stage was correlated to the expression of HLA class II APM pathway
components, CD4+ and CD8+ T cell infiltration, using the statistic software RV.4.0.2.
Kruskal–Wallis tests 11 were applied to compare the expression of individual components
between different pT stages. Bonferroni corrections were applied to adjust for multiple
testing, and adjusted values of < 0.05 were considered significant.

2.8. Bioinformatics Evaluation of Clinical Relevance

For the correlation of HLA class II APM component expression with overall survival
(OS) of melanoma patients, the r2 database (https://hgserver1.amc.nl, accessed on 20 April
2021 with the TCGA melanoma Tumor Skin Cutaneous Melanoma (SKCM) study was
used. A total of 470 samples from melanoma metastasis were separately included in the
analysis. A p-value of < 0.05 was considered as significant. The following settings were
chosen: Kaplan–Meyer by gene expression; cutoff modus, median; and follow-up time,
370 months. Inclusion criteria: number of samples in subset, n = 468; no subset selected.

3. Results
3.1. HLA Class II Expression in Melanoma Cells

Since the role of HLA class II antigens in melanoma is controversially discussed, a TMA
consisting of 368 melanoma lesions was stained with an anti-pan-HLA class II-specific mAb
antibody. Overall, 326/368 melanoma lesions gave informative IHC results, demonstrating
a heterogeneous intratumoral staining. Representative stainings of melanoma lesions with
a distinct HLA class II status (HLA class IIhigh, HLA class IImedium and HLA class IIlow) are
shown in Figure 1. Overall, 126/326 melanoma lesions were defined as negative, 95/326
as low expressors, 68/326 as medium expressors and 37/324 as high expressors, with a
staining mainly localized at the cell surface (Table 1). In contrast, no HLA class II expression
was found in all benign nevi analyzed.

https://hgserver1.amc.nl
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Figure 1. Representative immunohistochemical analysis of HLA class II antigens on melanoma lesions. IHC analysis was
performed as described in Materials and Methods. Tissues were stained with the anti-HLA class II antibody LGII-612.14.
Shown are representative stainings of a HLA class II negative (spot 150), HLA class II medium (spot 163) and HLA class II
high (spots 7 and 259) expressing lesions. Scale bar: 100 µm.

Table 1. Distinct protein expression pattern of HLA class II antigens and/or APM components in
melanoma lesions and melanoma cell lines.

Samples HLA-II APM n 1 High Medium Low Negative

Melanoma lesions HLA class II 326 37
(11.33%)

68
(20.86%)

95
(29.14%)

126
(38.65%)

HLA-DO 294 0 13
(4.42%)

26
(8.84%)

255
(86.73%)

CIITA tumor 314 0 1
(0.32%)

23
(7.32%)

284
(90.45%)

CIITA lymph. 314 12
(3.82%)

55
(17.52%)

139
(44.27%)

108
(34.39%)

Melanoma cell lines HLA class II 47 4
(8.51%)

13
(27.66%)

5
(10.64%)

25
(53.19%)

1 Number of samples analyzed.

The heterogeneous HLA class II antigen expression in situ was further confirmed in
melanoma cell lines (n = 47), using melanocytes as a control. Moreover, 45% of melanoma
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cell lines (22/47) constitutively expressed HLA class II surface antigens, which varied from
low/medium to high expression levels, while 25/47 melanoma cell lines lacked HLA class
II surface expression. This led to the categorization of melanoma cell lines into negative,
low/medium and high expressors (Tables 1 and 2).

Table 2. Characterization of the HLA class II APM component expression in melanoma cell lines.

Cell Line
qPCR 1 Flow Cytometry 2

CIITA HLA-DRa HLA
pan li Cathepsin HLA-

DMa
HLA-
DMb

HLA-
DOA

HLA-
DOB CLIP Classification % Positive

melanocytes 2 2 3 3 3 2 1 1 2 neg.
HaCAT 2 2 3 4 3 2 1 2 2 neg.
BUF836 1 2 3 3 2 2 1 1 3 neg.
Mel 624 1 1 1 2 3 2 1 1 1 neg.
BUF1495 1 1 2 3 3 3 1 1 1 neg.
BUF1286 1 1 2 3 3 3 2 1 1 neg.
BUF1182 1 1 2 1 3 2 1 1 1 neg.
BUF553b 1 1 1 3 3 2 1 1 1 neg.

FM6 2 1 3 3 3 2 1 2 3 neg.
BUF1330 1 1 2 3 3 3 1 1 1 neg.

BUF501 ATC 1 1 2 3 3 2 1 1 1 neg.
BUF1011 1 1 2 2 3 2 1 1 2 neg.
BUF1195 1 1 1 1 2 1 1 1 1 neg.
BUF1383 1 1 1 3 2 1 1 1 1 neg.

FM81 1 1 1 3 3 3 2 2 1 neg.
BUF1402 1 1 2 2 3 2 1 1 1 neg.
BUF1287 2 3 5 3 3 2 2 1 3 neg.

1727D 2 3 3 3 3 3 1 1 2 neg.
SK Mel29 1 2 2 2 2 3 2 1 2 1 neg.

BUF1280 1 1 1 1 2 1 1 1 1 neg.
Brooks 86 1 1 1 3 3 2 1 1 1 neg.

UKRV Mel14a 2 1 2 2 3 2 1 3 1 neg.
BUF1379 1 1 2 2 3 2 1 1 1 neg.

COLO 857 1 1 2 2 2 2 1 1 2 neg.
NA-8 1 1 2 2 3 1 1 1 1 neg.

BUF1520 1 1 3 2 2 2 1 1 3 neg.
BUF624 1 2 2 3 3 2 1 1 2 neg.

WM1862 1 2 3 3 3 2 1 2 2 low 11.9
MZ Mel3 2 4 3 2 3 3 1 1 3 low 13.3

M17 3 4 4 3 3 3 3 1 4 low 11.5
FM82 2 3 3 2 2 1 1 1 4 low 3.5

BUF1088 1 1 2 3 3 3 2 1 2 low 13.7
FM79 2 3 3 1 4 3 2 2 3 med. 23.3

BUF537 3 4 4 3 4 3 1 1 4 med. 27.4
FM28 3 4 4 3 4 3 2 2 3 med. 24.9
WM39 2 4 4 3 3 2 1 2 4 med. all
FM3 4 5 5 2 4 4 4 3 5 med. 35.8
MKR 3 4 4 2 4 2 2 1 4 med. 58.4

WM1552c 1 2 1 3 3 3 2 2 1 med. all
2058 Brooks 2 4 4 4 3 2 2 1 4 med. all

BUF526 2 3 4 2 3 2 1 2 5 med. all
BUF1317 2 3 4 2 3 2 1 2 4 med. all

GR-M 3 4 4 3 3 2 1 2 4 med. all
Mel1359 3 4 4 3 4 4 3 2 4 med. all

Mel JUSO 4 5 5 1 4 4 4 2 5 med. all
COLO794 3 4 5 3 4 4 2 2 4 high all
MZMel2 4 5 5 2 4 4 4 3 5 high all

ZKR 3 4 5 2 4 4 4 2 5 high all
BUF1102 3 5 5 1 4 3 4 2 5 high all

1 Heat map based on the takeoff: “1” is after 26 cycles, “2” between 22 and 26, “3” between 18 and 21, “4” between 14 and 17, and
“5” between 10 and 13; 2 antibody staining.
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3.2. Correlation of Heterogeneous HLA Class II Surface Antigen Expression with Altered APM
Component Expression

Since the heterogeneous basal HLA class II surface expression detected in melanoma
lesions and cell lines might be due to altered mRNA transcription, levels of the major HLA
class II APM components were determined by qPCR.

As shown in the heat map in Table 2 and summarized in Table 3, highly variable mRNA
levels were detected for CIITA, HLA-DR, -DM and -DO; CLIP; the invariant chain (li); and
cathepsin S in the melanoma cell lines analyzed, which were directly associated with HLA
class II surface expression levels determined by flow cytometry (Table 2). Melanoma cell
lines lacking HLA class II surface antigens expressed low-to-marginal transcript levels of
some major HLA class II APM component, while high HLA class II expressors exerted
high mRNA expression levels of most major HLA class II components analyzed (Table 2).
Interestingly, the frequency of HLA class II component expression highly varied between
the molecules (Table 3).

Table 3. Heterogeneous mRNA levels of HLA class II APM components in melanoma cell lines.

HLA Component
Melanoma Cells

High Medium Negative

CIITA 3 21 23
CLIP 16 13 18
pan-li 16 23 8

HLA-DRa 15 11 21
HLA-DOA 5 12 30
HLA-DOB 0 19 28
cathepsin S 1 40 6
HLA-DMa 11 36 0
HLA-DMb 6 36 5

Furthermore, the immunohistochemical staining of the TMA demonstrated a heteroge-
neous expression pattern of HLA-DO and CIITA proteins in the melanoma lesions. Overall,
255/294 informative cases lacked HLA-DO expression, and 26/294 cases expressed low
HLA-DO levels, while 13/294 cases analyzed expressed medium HLA-DO levels. In
addition, a heterogeneous, but also a distinct expression pattern of CIITA was found
between lymphocytes and tumor cells. In tumor cells, 284/314 cases lacked CIITA expres-
sion, 23/314 expressed low and 1/314 lesions medium levels of CIITA. In contrast, only
108/314 cases were negative for CIITA staining in immune cells, 139/314 cases showed a
low, 55/314 cases a medium and 12/314 cases a high CIITA expression (Table 1).

3.3. Distinct Responsiveness of Melanoma Cells to IFN-γ

IFN-γ is a strong inducer of HLA class II APM expression in professional APC, but
also in non-APC, including tumor cells [58]. Therefore, HLA-class-II-negative (16/25) and
selected constitutively HLA-class-II-expressing (9/22) melanoma cell lines were treated
with IFN-γ for 24 and 48 h prior to the analyses of HLA class II surface expression, using
flow cytometry. Treatment of melanoma cells with IFN-α served as control. IFN-γ, but not
IFN-α, treatment (Figure S2A) significantly upregulated HLA class II surface expression in
5/11 HLA class II-negative melanoma cells, but to a distinct extend regarding its kinetics
and intensity (Figure 2a). As representatively shown for three selected melanoma cell lines
and HaCat as a control, the upregulation of HLA class II mRNA (Figure 3) and surface
expression (Figure 2a) by IFN-γ was associated with an increased expression of some HLA
class II APM components, e.g., HLA-DO, HLA-DM, CIITA, CLIP and cathepsin S (Figure 3).
It is noteworthy that both IFN-γ (Figure 2b) and IFN-α (Figure S2B) were able to upregulate
HLA class I surface expression in these melanoma cell lines, suggesting a functional IFN-γ
signaling pathway.
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3.4. Upregulation of HLA Class II Surface Expression upon Treatment of Melanoma Cells with
Epigenetic Drugs

The lack of basal and IFN-γ inducible HLA class II expression was detected in 11/16
melanoma cell lines, which might be due to epigenetic silencing mediated by methylation
or altered histone acetylation [47,59]. To study whether both processes are responsible for
the lack of HLA class II surface expression, different melanoma cell lines were treated with
AZA, HDACi or a combination of both for 5 days, followed by mRNA analysis of major
HLA class II APM components or flow cytometric analysis of HLA class II surface antigens.
Moreover, 2/11 HLA class-II-negative and IFN-γ resistant melanoma cell lines induced
HLA class II mRNA expression (Figure 4a), but not HLA class II surface expression (data
not shown), upon AZA treatment. In addition, AZA treatment had also no effect on HLA
class II surface expression of constitutive HLA class II expressing melanoma cell lines.
Treatment with TSA in combination with AZA had additive effects on the mRNA HLA
class II expression (Figure 4a), suggesting that both methylation and histone acetylation
are underlying molecular mechanisms impairing HLA class II mRNA expression in some
melanoma cells [60]. The AZA- and TSA-mediated upregulation of HLA class II mRNA
expression was accompanied by an increased expression of HLA class II APM components,
but this significantly differed between the HLA class II APM components, as well as
between the distinct cell lines analyzed. This is representatively shown for HLA-DR, CLIP
and CIITA in Figure 4a,b. Similar results were obtained by using ENT as HDACi.

3.5. CIITA Expression as a Major Regulator of the HLA Class II Surface Expression

Since the HLA class II transactivator CIITA has been shown to be involved in chro-
matin remodeling [61] and the HLA class II surface antigens could be induced in some
melanoma cell lines, it was analyzed whether the lack of HLA class II surface antigen is
due to the methylation of the CIITA promoter, as already shown for gastric and colorectal
cancer, for example [62]. Therefore, the CIITA methylation status of melanoma cells (19/47)
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was investigated by COBRA analysis [63], demonstrating a total or partial methylation
(25–75%) of the CpG islands in the CIITA promoter. CIITA was frequently methylated in
HLA class IIlow/neg. melanoma cells, which did not respond to IFN-γ despite a functional
IFN-γ pathway (Figure 4c), but could be reverted by the AZA treatment.
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3.6. Correlation of HLA Class II APM Components and Immune Cell Infiltration with
Clinical Relevance

In order to determine the clinical relevance of HLA class II expression, the basal HLA
class II and/or CIITA expression of melanoma lesions, as well as the level of immune
cell infiltration, was correlated to tumor staging. As shown in Figure 5, the distinct HLA
class II expression was not correlated to tumor grading (p = 0.2975). In contrast, CIITA
expression in lymphocytes, but not in tumor cells, correlated to tumor staging (p = 0.0029
and p = 1, respectively). The tumor stage was further associated with the frequency of
CD4+ T-cell infiltration, which was the highest in pT1 melanoma and the lowest in pT4
tumors (p = 0.0027). However, no statistically significant correlation exists between tumor
stage, IFN-γ and HLA-DO (Figure S3). In summary, tumor grading is correlated with CD4+
T-cell infiltration and CIITA expression.
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Figure 5. Correlation of HLA class II APM expression and immune cell infiltration with tumor
staging. The staining of the TMA was performed as described in Materials and Methods. Expression
of CIITA in lymphocytes and CD4+ T-cell infiltration correlated to pT stages of tumor samples.
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Furthermore, for comparison of the prognostic relevance of HLA class II APM compo-
nent expression, in silico analyses of TCGA data were performed by using datasets from
234high and 234low HLA class II APM component expressors. As shown in Figure 6, the
HLA class II APMhigh patient group has a significantly increased overall survival (OS)
compared to patients with HLA class II APM low expression.
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4. Discussion

Despite the fact that HLA class II expression is mainly found on APC, basal expression
of HLA class II antigens has been also detected on distinct tumor types—particularly in
hematopoietic malignancies, but also solid tumors—while others totally lack HLA class
II expression. The constitutive HLA class II expression on tumor cells results in their
recognition by tumor-antigen-specific CD4+ T cells, generating a Th1 response [64]. Since
the role of HLA class II molecules in MM has not yet been characterized in detail, this study
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determined the frequency of basal HLA class II surface expression in a large cohort of
melanoma lesions by staining different TMAs. These data were correlated to the immune
cell infiltration and to tumor staging. In addition, a large number of melanoma cell lines
(n = 47) were analyzed regarding their constitutive and inducible HLA class II surface
antigen expression in order to determine the underlying molecular mechanisms of deficient
HLA class II expression in MM. A distinct HLA class II surface expression pattern was
found on both melanoma cell lines and melanoma lesions, with a relatively high frequency
when compared to other solid tumors entities [15,65,66]. Low levels of HLA class II surface
antigens in melanoma samples were associated with a high tumor grading, while high
levels of HLA class II antigens were found in pT1 melanoma. These data suggested a
clinical relevance of HLA class II antigen expression. In order to get further insights into
the clinical impact of HLA class II expression the HLA class II staining pattern should have
been correlated to the OS of patients. Unfortunately, survival data were not available for
our TMA cohort. Therefore, we used TCGA data as surrogate analysis data, confirming
the association of HLA class II and tumor staging and further extended these results to
patients’ survival.

It has been reported by various groups that the underlying mechanisms responsible for
the highly variable HLA class II expression in tumors are broad, but they have been mainly
characterized in hematological disorders [67]. These include different genomic alterations
of HLA class II molecules, which have been identified in Non-Hodgkin lymphoma, such as
deletions, mutations and chromosomal rearrangements, leading to an impaired HLA class
II expression and resistance to IFN-γ treatment [68,69]. Loss of HLA class II expression
and transcriptional silencing of HLA class II molecules frequently occur in leukemia
relapses after human-stem-cell transplantation [70]. The deficient HLA class II expression
could be reverted in some cases by IFN-γ treatment due to IFN-responsive elements in
the promoters of some HLA class II APM components. In addition, epigenetic control
including methylation and histone deacetylation is often involved in the lack of basal, as
well as IFN-γ-induced expression of HLA class II surface antigens, and could be reverted
by demethylating agents and HDAC [47,71]. Using melanoma cell lines as models, a
classification of MM into four distinct phenotypes was established: phenotype I exhibits
basal, but heterogeneous HLA class II expression. The phenotype II in MM lacks HLA class
II surface expression, which is IFN-γ inducible and also accompanied by an upregulation
of some major HLA class II APM components. Furthermore, IFN-γ not only influences
HLA class II expression directly through the EnhA, ISRE and CRE elements, but also by
upregulation of CIITA [72]. This appears to be associated with the level of T-cell infiltration
due to IFN- γ secretion by immune cells. However, some melanoma cells lack not only basal,
but also an IFN-γ mediated upregulation of HLA class II antigens despite a functional IFN-
γ signaling pathway [73]. In phenotype III, the reduced or missing HLA class II expression
is due to the epigenetic control, since treatment of melanoma cells with the demethylation
agent AZA and/or the HDACi TSA results in an upregulation of HLA class II expression.
Thus, DNA methylation or altered histone acetylation of HLA class II antigens plays an
important role in the modulation of HLA class II APM component expression, which is also
of clinical relevance. Combination of AZA and ENT significantly reduced tumor growth
and increased patient-derived HLA class II expression in xenografts [74].

One key molecule involved in the regulation of basal HLA class II expression is CIITA,
which is of pathologic relevance in rare, but severe immune disorders [75]. Furthermore,
loss-of-function mutations in CIITA resulted in the lack of HLA class II expression, which
was found in various tumor types [76], while a substitution of A to G in the 5′ flanking
region of the CIITA promoter was associated with a higher expression [73]. Our data
suggested that the methylation of the CIITA promoter in HLA class II negative, IFN-γ-
resistant MM cell lines frequently occurred, but the methylation status between the MM cell
lines analyzed was highly variable from total methylation to partial (25–75%) methylation.
This is in line with reports demonstrating a frequent promoter methylation of CIITA in
different cancer types that was associated with an impaired HLA class II expression and
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could not be reverted by IFN-γ, but by demethylating agents [77], as shown for ovarian
cancer [78], diffuse large B-cell lymphoma [79] and breast cancer [80]. However, the lack of
basal or downregulated CIITA expression might be due to other mechanisms, such as an
upregulation of microRNAs (miRNAs) targeting the 3′UTR of CIITA [51].

The highly variable expression of HLA class II antigens and APM components is in
line with TCGA RNA sequencing data, demonstrating an association of higher expression
levels of HLA class II genes—in particular, of HLA-DP and -DR—with a better survival of
melanoma patients [81]. The HLA class II expression of human tumor cells may contribute
to an enhanced tumor immunity, since it can induce HLA class II-restricted CD4+ T-cell
responses. Pathway analyses of melanoma cell lines expressing HLA class II antigens under
basal or IFN-γ stimulated conditions demonstrated signatures for PD-L1 signaling, allograft
rejection and T-cell-receptor signaling. Furthermore, HLA class II antigen expression was
associated with an increased therapeutic response and improved patients’ outcome [14].

In previous publications, highly variable basal HLA class II expression levels were de-
scribed in primary melanoma lesions and melanoma cell lines. These were also associated
with an altered frequency of tumor infiltrating CD4+ and CD8+ T cells. However, contro-
versial results regarding the role of HLA class II antigen expression for prognosis and OS of
MM patients, and in particular for those treated with immunotherapies, exist [14,16,65–67].
Thus, there is an urgent need to further characterize the role of HLA class II antigens in
the context of immune cell infiltration and determine the HLA class II expression in large
cohorts of melanoma patients responding and non-responding to immunotherapy.

5. Conclusions

In this study, the expression of HLA class II antigen and APM component was evalu-
ated on multiple melanoma cell lines, as well as in patients’ specimen. Different patterns of
constitutive and inducible expression of HLA class II molecules were found, which also
correlated with the patients´ clinical outcome. These results contribute not only to a better
understanding of the regulation of HLA class II expression in melanoma, but might have
an impact on the design of novel (immuno)therapies for the treatment of this disease.
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