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Abstract

Primary cilia arebiophysically-sensitive organelles responsible for sensing fluid-flow and 

transducing this stimulus into intracellular responses. Previous studies have shown that the 

primary cilia mediate flow-induced calcium influx, and sensitivity of cilia function to flow is 

correlated to cilia length. Cells with abnormal cilia length or function can lead to a host of diseases 

that are collectively termed as ciliopathies. Rapamycin, a potent inhibitor of mTOR (mammalian 

target of rapamycin), has been demonstrated to be a potential pharmacological agent against the 

aberrant mTOR signaling seen in ciliopathies such as polycystic kidney disease (PKD) and 

tuberous sclerosis complex (TSC). Here we look at the effects of rapamycin on ciliary length and 

function for the first time. Compared to controls, primary cilia in rapamycin-treated porcine renal 

epithelial and mouse vascular endothelial cells showed a significant increase in length. Graded 

increases in fluid-shear stress further indicates that rapamycin enhances cilia sensitivity to fluid 

flow. Treatment with rapamycin led to G0 arrest in porcine epithelial cells while no significant 

change in cell cycle were observed in rapamycin-treated mouse epithelial or endothelial cells, 

indicating a species-specific effect of rapamycin. Given the previousin vitro and in vivo studies 

establishing rapamycin as a potential therapeutic agent for ciliopathies, such as PKD and TSC, our 

studies show that rapamycin enhances ciliary function and sensitivity to fluid flow. The results of 

our studies suggest a potential ciliotherapeutic effect of rapamycin.
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Introduction

The primary cilium is a solitary cellular organelle that protrudes from the apical cell 

membrane. Studies on cilia-dependent mechanosenstation have shown that the primary 

cilium acts as a transducer of fluid-shear stress into intracellular signaling (Masyuk et al., 
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2006, Nauli et al., 2003, Nauli et al., 2008). Along with its mechanosensory function, the 

primary cilium houses a variety of receptors, ion channels, transporter proteins, and other 

protein complexes involved in signal transductions, such as the Hedgehog(Huang and 

Schier, 2009),Wnt (Corbit et al., 2005), planar cell polarity(Ross et al., 2005) and platelet-

derived growth factor(Schneider et al., 2005)pathways.

Abnormalities in cilia structure or function lead to a spectrum of diseases called ciliopathies. 

Ciliopathies can affect a variety of organs due to the ubiquitous presence of primary cilia in 

different organ systems and their role as a signaling hub (Lancaster and Gleeson, 2009). The 

mechanosensory function of primary cilia occurs in various organs, such as renal nephron 

(Nauli et al., 2006, Siroky et al., 2006, Liu et al., 2005), hepatic biliary system (Masyuk et 

al., 2006), pancreatic duct(Cano et al., 2006) and vasculature(AbouAlaiwi et al., 2011, 

AbouAlaiwi et al., 2009). Shortened primary cilia have been shown to result in polycystic 

kidneys (Lin et al., 2003, Yoder et al., 1995), and a reduction in mechanosensory function of 

the cilia has also been reported to promote polycystic kidney phenotypes (Aboualaiwi et al., 

2014, Nauli et al., 2008, Nauli et al., 2003). The ability to sense and respond to extracellular 

simulation is thought to be the basis for homeostatic adaptation and critical for normal 

development of various organs. When the primary cilium is dysfunction, cells cannot 

respond properly to environmental cues leading to ciliopathy phenotypes.

The primary cilium responds to flow-induced bending with calcium entry through 

mechanically sensitive channels. Studies have shown that bending of the cilium in cultured 

cells results in an increase in intracellular calcium concentration (Jin et al., 2014, Praetorius 

and Spring, 2001). The large increase in cytosolic calcium may activate calcium dependent 

processes that range from cell proliferation to cell death(Berridge et al., 2000).For this 

reason, calcium fluorimetry has been used as a means of quantifying cilia function, i.e. 

response to fluid-shear stress (Liu et al., 2005, Siroky et al., 2006)and pharmacological 

agents(Kathem et al., 2014, Abdul-Majeed and Nauli, 2011).

Polycystic kidney disease (PKD) has been associated to the inability of renal epithelia(Xu et 

al., 2007) or vascular endothelia(Nauli et al., 2008) to carry out a calcium influx in response 

to fluid-flow. Aberrant activation of mTOR (mammalian target of rapamycin) has also been 

reported in PKD(Shillingford et al., 2010, Shillingford et al., 2006, Pema et al., 2016). The 

loss of function in the TSC complex has been associated with development of renal cysts 

(Armour et al., 2012, Bonnet et al., 2009). In normal cells, the cilia regulate the mTOR 

pathway through polycystin-1 (PC1) mediated suppression. PC1 is localized to the cilia and 

is critical in the formation of the polycystin flow-sensing complex in the cilia. When PC1 is 

inactivated, cyst-lining epithelial cells show activation of mTOR as measured by 

phosphorylation of mTOR and S6 kinase, a downstream effector. This has led to the use of 

mTOR inhibitors, such as rapamycin, as potential drug candidate to target the aberrant 

mTOR activation in PKD.

Although the role of rapamycin on cilia length and function has never been studied, mTOR 

pathway may modulate cilia length and function, pointing to a potential effect of rapamycin 

on cilia length and function(Yuan et al., 2012). The relationship between mTOR and cilia 

also suggests that primary cilia are dynamic organelles that can be modulated through the 
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mTOR intracellular signaling pathways. Because in vivo evidence has shown that rapamycin 

can reduce cyst growth and preserve renal function (Stayner et al., 2012, Shillingford et al., 

2010, Tao et al., 2005), our present study aims to examine the effects of rapamycin-induced 

changes in cilia length and function. Our studies further evaluate if rapamycin would have 

an effect in vascular system in addition to the kidney. The use rapamycin also offers positive 

outcomes in different species, including mouse, rat, and pig(Annes et al., 2012). This 

indicates that them TOR pathway has a cross-species conserved element. To test this 

possibility of rapamycin effect on primary cilia, we use both pig and rodent cultured cells. 

Therefore, our hypothesis is that rapamycin will alter cilia length and function in porcine 

renal epithelial and mouse vascular endothelial cells.

Materials and Methods

Cell culture

Porcine renal epithelial cells from proximal tubule (LLCPK) and mouse vascular endothelial 

(ET) cells were cultured to a confluent monolayer in Dulbecco's Modified Eagle Medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS) at 37°C in 5% CO2. For our 

cell proliferation studies, mouse inner medullary collecting duct (mIMCD) cells were 

cultured using the same conditions as mentioned above. The generations of LLCLPK, ET 

and mIMCD cells have been previously described (Hull et al., 1976, Nauli et al., 2008, 

Rauchman et al., 1993).Once confluent, cultured cells were incubated with media containing 

2% FBS. We used less serum at this time to further induce cell differentiation. Fully 

differentiated cells tend to have optimal cilia length, and changes in cilia length can be 

measured more consistently. In some cases, the media contained different concentrations of 

rapamycin (0.01, 0.1, 1 and 10 μM) for 20 hours. For control experiments, vehicle alone was 

added to cells in the same manner and volume.

Cilia length analysis

Primary cilia consist of acetylated microtubule structures and were measured by direct 

immunofluorescence with anti-acetylated α-tubulin staining in the absence or presence of 

20-hour incubation with 1μM rapamycin. The cells were fixed for 10 minutes (4% 

paraformaldehyde/2% sucrose in PBS) and permeabilized for 5 minutes (10% triton X-100). 

Acetylated α-tubulin (1:10,000 dilution, Sigma Aldrich, St. Louis, MO) and fluorescein 

isothiocyanate (FITC)-conjugated (1:1000 dilution, Vector Labs Burlingame, CA) antibodies 

were each incubated with the cells for 1 hour at 37°C. Slides were then mounted with DAPI 

(Southern Biotech, Birmingham, AL) hard set mounting media. Nikon Eclipse Ti-E inverted 

microscope with NIS-Elements imaging software (version 4.30) was used to capture images 

of primary cilia. Automated image acquisition was conducted in 100X magnification fields 

and Z-stacks (0.1 μm slices) to create a large 3D image. This was done to select cilia from a 

confluent monolayer since it mimics the physiological structure of the epithelial and 

endothelial cells.

Cytosolic calcium analysis

Cells were grown on glass-bottom plates to enable live microscopy imaging. After 

incubation for 20-hour without or with 1μM rapamycin, cells were loaded with 5 μM Fura2-
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AM (TEFLabs, Austin, TX) at 37°C for 30 min. Cells were then washed with DPBS 

(Dulbecco's Phosphate-Buffered Saline) and observed under a 40× objective lens with a 

Nikon Eclipse Ti-E microscope controlled by Elements software. Cytosolic calcium was 

observed by recording calcium-bound Fura excitation fluorescence at 340/380 nm and 

emission at 510 nm. Baseline calcium was observed for 2 minutes prior to data acquisition. 

Fluid-shear stress was then applied to cells utilizing an Instech P720 peristaltic pump with 

an inlet and outlet setup. The fluid was perfused on the glass-bottom plates at shear stress of 

0.2, 0.6 or 1.0 dyne/cm2 for epithelial cells and 2.0, 5.0 or 8.0 dyne/cm2 for endothelial 

cells. After each experiment, the maximum calcium signal was obtained by perfusion of 

ATP (10μM) to confirm cell viability. Conditions for all experiments were maintained at 

37°C and 5% CO2 in a stage top cage incubator (okoLab, Burlingame, CA). Calcium 

analysis was then followed a standard calculation as previously described (Upadhyay et al., 

2014).

Cell cycle analysis

To investigate a possibility of rapamycin effect on cell growth, cells were harvested with and 

without 1 μM rapamycin treatment. Cells were then fixed using 70% ethanol and incubated 

with propidium iodide (PI, 50 μg/ml), a DNA- intercalating fluorescent molecule, for 30 min 

at 37°C. To investigate cell cycle more accurately, cells were synchronized by physical 

separations based on their size and density. Cells were then grow for 36 hours and incubated 

with 10 μMBrdU (Invitrogen, Eugene, OR) for 1 hour at 37°C and 5% CO2 . Cells were 

trypsinized and fixed with 70% ethanol overnight at −20°C. After fixation the cells were 

permeabilized with 0.5% triton X-100 in PBS for 10 minutes. To denature DNA, a solution 

of 4N HCl with 1.0 % triton X-100 in ddH2O was used to incubate the cells for 20 minutes 

at room temperature followed by a quick neutralization step using 0.1M sodium borate, pH 

8.5. The cells were then treated with Alexa 488 conjugated BrdU antibody (Invitrogen, 

Eugene, OR) at 1:25 dilution in PBS for 1 hour at at 37°C. Samples were stored in the dark 

for the antibody incubation and all steps afterwards. The cells were then stained with 50 

μg/ml PI for 30 min at 37°C. Cell analysis was carried out with flow cytometry BDFacsverse 

with BD FAC suite software.

Statistical analysis

Cilia length measurement consisted of n = 50–70 for each slide preparation, and a total of 4 

slides was used in each group. Cytosolic calcium measurements consisted of n = 50 for each 

plate, and a total of 4 plates were used in each group. Cell cycle analysis consisted of n = 4 

and a sample size of 10,000 for each individual experiment. All data are reported as mean ± 

standard error of mean with statistical power greater than 0.8 at p < 0.05. Data were 

analyzed utilizing ANOVA test followed by Tukey post-test for multiple groups. Analysis of 

data was performed with Prism GraphPad 5 software.

Results

To find concentration of rapamycin that might affect the length of primary cilia, we carried 

out initial screening of rapamycin at a range of 0 mM to 10 mM in renal epithelial cells. 

Cilia length analysis using immunoflorescent-staining of acetylated α-tubulin shows the 
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changes in cilia length distribution with different rapamycin concentrations (Figure 1). 

Treatment with rapamycin at a concentration of 1.0 μM gave an optimal and consistent 

percentage of cilia with longer lengths. Concentration of 1.0 μM was therefore selected for 

the rest of our experiments. We next confirmed the effect of rapamycin by acquiring the 

images three-dimensionally for a more precise measurement to account for cilia that appear 

at different focal planes (Supplemental Movie). In renal epithelial cells, average cilia length 

was 7.05 ± 0.15 μm. When treated with rapamycin (1.0 μM) for 20 hours, cilia length 

increased to 9.90 ± 0.33 μm showing an increase of almost 3.0 μm. In vascular endothelial 

cells the effect of rapamycin on cilia length was more pronounced. Compared to an average 

cilia length of 3.67 ± 0.04 μm in control endothelial cells rapamycin treatment increased 

cilia length to 6.94 ± 0.16 μm, almost twice the length of normal cilia. Statistical analysis 

showed significant differences in cilia length between the control vs. rapamycin-treatment in 

epithelial and endothelial cells (Figure 2).

As previous studies have shown, primary cilia responding to fluid flow can be observed 

through an influx of extracellular calcium (Siroky et al., 2006, Liu et al., 2005). For live-cell 

acquisition during flow experiments, cytosolic calcium level was measured with fura-2-AM 

a cell permeant calcium-specific indicator. After baseline measurement, cells were subjected 

to their optimal shear-stress and fura-2 fluorescence was captured at 510 nm. We observed 

an increase in the cytosolic calcium levels, which can be seen in representative 

pseudocolored images which correlate to cytosolic calcium levels (Figure 3). Our data show 

that rapamycin treatment enhances calcium influx after induction of shear stress in epithelial 

and endothelial cells (Figure 4A). Comparisons of peak calcium levels between control and 

rapamycin treated cells show significant increase in the maximum levels of calcium that is 

achieved upon exposure to shear stress (Figure 4B).

Previous studies in our laboratories have indicated a correlation between cilia length and its 

ability to sense shear stress (Abdul-Majeed et al., 2012, Upadhyay et al., 2014). To examine 

if increase in cilia length from the rapamycin-treated cells would result in a greater 

sensitivity to fluid shear-stress, we used lower levels of shear stress and measured 

intracellular calcium influx in response to the simulation. In our epithelial cells we chose a 

physiologically relevant range of shear stress from 0.2 to a maximum of 1.0 dyne/cm2 

(Figure 5A). In our control cells we observe a calcium response starting at shear-stress levels 

≥ 0.6 dyne/cm2 . At the same level of shear-stress, rapamycin treated epithelial cells show a 

much higher influx of calcium and the calcium response is even present in a low shear-stress 

of 0.2 dyne/cm2 which is not seen in control cells. However, the trend of increased shear-

stress inducing higher cytosolic calcium is seen in control cells, consistent with the idea that 

cells respond better to an optimal shear-stress level (Doerr et al., 2016, Nauli et al., 2008). 

This trend is also seen in endothelial cells, which line the vasculature and are exposed to 

higher levels of shear stress in vivo (Figure 5B). In our experiments with endothelial cells 

we chose to observe the effect of physiologically relevant range of shear stress starting from 

2 dyne/cm2 to a maximum of 8 dyne/cm2. Rapamycin treated cells were able to initiate a 

calcium response at shear stress ≥ 2.0 dyne/cm2 while control cells only responded at shear 

stress ≥ 6.0 dyne/cm2 . Even the cytosolic calcium increase was reduced in control cells at 

different shear stress compared to rapamycin treated cells. Significant differences were 
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observed between the shear stress-induced calcium influx in both epithelial and endothelial 

cells when compared to their respective control at varying levels of shear stress (Figure 5C).

Different models have been proposed for mTOR as a central regulator of cell metabolism, 

growth, proliferation and survival. Studies have shown that inhibition of the mTOR pathway 

using rapamycin leads to a G0/G1-phase arrest in yeast cells and mammalian 

lymphocytes(Fingar et al., 2004). It is widely known that cilia formation and elongation 

occurs during the resting phase. The same effect can be achieved by serum starvation, which 

results in cilia growing to their full extent(Nauli et al., 2013). With rapamycin known to be 

an anti-proliferative agent, we next examined the effect of rapamycin treatment on the cell 

growth distribution and whether growth arrest played a role in ciliary length increase. 

Significant differences were observed only in epithelial cells, where a higher percentage of 

cells were non-dividing compared to control (Figure 6). This same effect was not observed 

in endothelial cells and might be attributed to the different in species (pig vs. mouse) or cell 

types (renal epithelia vs. vascular endothelia).

To investigate the possibility of species or cell type contribution on the differential effect of 

rapamycin, we included mouse renal epithelial cells in our study. BrdU was used to more 

specifically label dividing cells, and it was coupled with propidium iodide to stain total DNA 

in each cell. Consistent with previous study, we observed significant effect of rapamycin in 

cell cycle. However, the effect of rapamycin was only seen in porcine renal epithelial cells 

(Figure 7A) and not in mouse renal epithelial cells (Figure 7B) or mouse vascular 

endothelial cells (Figure 7C). A previous study has shown that inhibition of discrete mTOR 

downstream effectors may also be dependent on rapamycin concentration. The report 

suggests that a higher dose in the micromolar range of rapamycin was needed to completely 

block G1 cell cycle progression and that too was dependent on the sensitivity of the cells to 

rapamycin (Chatterjee et al., 2015). Thus, a potential effect of rapamycin to reduce cell 

division in endothelial cells remains possible at a higher concentration.

Discussion

Primary cilia are critical sensory organelles that respond to flow in lumen-lining cells by 

initiating calcium influx into the cytoplasm. Using cytosolic calcium as a readout of ciliary 

function Upadhyay et. al. were able to show that cilia sensitivity to fluid-shear stress 

correlates with the length of cilia (Upadhyay et al., 2014). Our current studies indicate that 

rapamycin increases cilia length and enhances cilia sensitivity. We therefore hypothesize that 

rapamycin might increase cell sensitivity in response to fluid-shear stress through cytosolic 

calcium increase (as a readout) by enhancing cilia length and function. This, in turn, might 

have clinical relevant in preserving organ functions (Figure 8). In particular, many rodent 

models with no or short cilia length result in ciliopathy phenotypes, including cystic kidney, 

developmental delay, intellectual disability, and many others (Wallmeier et al., 2016, Ha et 

al., 2016, Lu et al., 2016, Zhang et al., 2011).Because cilia formation and function have been 

associated with cell-cycle(AbouAlaiwi et al., 2011, Plotnikova et al., 2009), we also 

investigated the roles of rapamycin in cell division. Our studies indicate that the effect of 

rapamycin on cell cycle may be species-dependent, although we cannot rule out that 

different species may have different sensitivity toward rapamycin.
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Novel insights provided by in vitro studies and animal models may be utilized into designing 

treatments that improve ciliary structure/function. In the case of PKD, treatment strategies 

have included drugs that target disrupted mechanisms such as intracellular calcium, cAMP, 

CFTR chloride channels, or mTOR signaling(Torres, 2010, Yang et al., 2008, Magenheimer 

et al., 2006). Previous studies show that the mTOR pathway is aberrantly activated in PKD 

cells (Pei, 2010, Shillingford et al., 2006, Shillingford et al., 2010).mTOR is a serine/

threonine kinase that provides the catalytic subunit for two distinct multi-protein complexes, 

mTORC1 and mTORC2. mTORC1 acts as metabolic sensor and is regulated by availability 

of amino acids, growth factors and energy stores. Activation of mTORC1 promotes both cell 

growth and proliferation. mTORC2 has been shown to function as an important regulator of 

the cytoskeleton organization, cell survival and polarity (Lieberthal and Levine, 2012, 

Loewith et al., 2002). Western blot analysis of orthologous animal models and humans with 

PKD show increased activation, i.e. phosphorylation of mTORC1 downstream targets and 

the 4E-BPs(Zafar et al., 2010). Rapamycin binds to FKBP12 and can inhibit both mTORC1 

and, to a lesser extent, mTORC2 signaling(Zeng et al., 2007, Sarbassov et al., 

2006).Rapamycin may induce glomerulonephritis and intratubular cast formation in protein 

overload nephropathy (Coombes et al., 2005, Marti and Frey, 2005). Nonetheless, treatment 

with rapamycin slows down cyst progression and improves renal function in animal models 

of PKD(Shillingford et al., 2006, Tao et al., 2005, Wahl et al., 2006, Zafar et al., 

2010).Although the effect of reducing cyst burden by rapamycin has not been consistent in 

all animal models or in trials with PKD patients, substantial evidence linking aberrant 

mTOR activity to cystogenesis suggests that mTOR might be one of complex intertwined 

pathways in the pathogenesis of PKD and other ciliopathies.

We use both porcine and mouse cells in the present studies. The porcine cells were generated 

previously and have been used because humans are more closely related to pigs than to 

rodents, particularly with regard to renal physiology (Heussner and Dietrich, 2013, Hull et 

al., 1976).These porcine cells also display inherent characteristics of structural organization 

and transepithelial transport functions similar to those renal epithelia observed under in vivo 
conditions within the proximal tubules. Thus, it is thought that these porcine cells might 

represent an alternative to human primary cells. The mouse cells were generated previously 

from aorta and retain its vascular properties and endothelial markers (AbouAlaiwi et al., 

2011, Brookes et al., 2013, Nauli et al., 2008). The functional studies of these cells have also 

shown that these cells retain cellular responses to various mechanical forces and 

pharmacological agents. In addition, these cells have normal directional migration, 

monolayer permeability and cytoskeletal organization(Jones et al., 2012).

Endothelial cells, which line the inner lumen of blood vessels, depend on cilia to sense the 

shear stress. Observations of vascular endothelial cells lacking cilia show that without 

functional cilia, there is no calcium influx in response to fluid flow (Nauli et al., 2008). This 

prevents the vasculature to adapt with variable blood flow levels since the bending of 

primary cilia also regulates the production of nitric oxide (NO), an important 

vasodilator(Nauli et al., 2008). Abnormalities in cilia function have been associated with 

defective NO production resulting in hypertension (Rahbari-Oskoui et al., 2014), vascular 

aneurysm (Aboualaiwi et al., 2014) in addition to cyst formation in the kidneys(Ecder and 

Schrier, 2009).
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In our study, we observed that rapamycin has an effect in the cilia of porcine epithelial and 

mouse endothelial cells. The results show that in addition to increasing cilia length, 

rapamycin-treated cells showed a higher cytosolic calcium response when challenged to 

fluid flow. This is in agreement with previous studies done with dopaminergic agents that 

enhanced cilia length and function(Upadhyay et al., 2014).Typically, ciliogenesis occurs 

during the G0/G1 phase when the centriole becomes the basal body that serves as a 

foundation for attachment of ciliary subunits. With the help of interflagellar transport (IFT) 

proteins the cilia keeps elongating till it reaches its determined length. This induction of 

optimum ciliary length can be observed in cilia of cells subjected to serum deprivation to 

induce a G0/G1 arrest. Because rapamycin is an antiproliferative agent, we did cell cycle 

analysis to determine if our concentration of 1 μM rapamycin caused any changes to the cell 

cycle distribution, which could have affected our ciliary length observations. Our FACS 

results show than only porcine epithelial cells show a slight increase population of cells in 

the G0/G1 phase. To examine whether this was a cell line specific or species-specific 

response we used mouse renal epithelia and observed no significant changes in cell cycle 

distribution.

In healthy renal epithelia or vascular endothelia, primary cilia bend when exposed to 

physiological flow and initiate an increase in cytosolic calcium in addition to initiating 

modulation of other signaling pathways important for normal tissue homeostasis. Using 

influx of extracellular calcium as a marker of cilia function in response to fluid flow, we 

were able to observe an increase in ciliary function with rapamycin treatment.

Rapamycin has been effective in decreasing cyst progression but its effect on the cilia 

structure/function has not received much attention. Primary cilia have been established as 

important flow sensing organelles and shortened cilia fail to translate the mechanical 

stimulation to downstream intracellular responses. Recently studies showed that primary 

cilia can regulate mTOR activity(Aznar and Billaud, 2010, Boehlke et al., 2010). MDCK 

cells grown under permanent fluid flow for several days showed decreased mTOR activity 

compared to cilia-less Kif3a knockdown cells. This in vitro study demonstrated that flow-

induced bending of the cilium activates Lkb1-mediated phosphorylation of AMPK at the 

basal body of the cilia, inhibiting mTORC1 activity and regulating cell size (Boehlke et al., 

2010). The ability of cilia to silence mTOR and the reciprocal increase in cilia length by 

mTOR inhibition indicate that the cilia-mTOR pathway may have much more in common 

than previously thought. Although the rationale of rapamycin treatment for PKD or TSC 

hinges on the aberrant mTOR pathway, our study shows that rapamycin plays a role in cilia 

length/function providing tentative evidence that rapamycin could potentially be used as a 

ciliotherapy. In healthy cells there is a defined range of cilia length and it is dependent on the 

shear stress experienced by the system. In places with high levels of shear stress, such as the 

vasculature, cilia are usually shorter. In the renal nephron where the filtrate flows 

comparatively slowly, the epithelial cells have longer cilia that can extend outward into the 

lumen to sense flow, which is unhindered by the drag forces near the wall.

Our studies offer a fundamental idea that rapamycin has an effect on primary cilia. Whether 

effect of rapamycin on cilia is direct or indirect, future studies are warranted for a better in-

depth understanding to extrapolate the results from animal cells into clinical practice. 
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Importantly, our results require further research to understand the pathways connecting the 

primary cilium, mTOR signaling and cystogenesis in ciliopathies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Aninitial screening indicates that rapamycin might increase the length primary cilia 
length in renal epithelial cells
Cells were treated with various concentrations of rapamycin (0 to 10 mM). Length 

measurements were made from images taken at one single plane in triplicate. Cilia length 

was grouped in a discrete range, and percent distribution was tabulated for each rapamycin 

concentration.
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Figure 2. Treatment with rapamycin (1μM) increases primary cilia length in epithelial and 
endothelial cells
(A) Cells were stained with ciliary marker acetylated-α-tubulin (green) and a nuclear marker 

(DAPI; blue). Rapamycin treatment increased cilia length in both cell lines. Each image was 

compiled from different z-stack captures. (B) Cilia length was significantly longer in 

rapamycin-treated cells, with a two-fold increase observed in endothelial cells. N=50–70 for 

each slide preparation, and a total of 4 slides was used in each group. * = p<0.05 compared 

to corresponding controls.
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Figure 3. Fluid-shear stress induces calcium influx
Representative Fura images at different time points from each group are shown, and the 

arrow indicates the start of fluid flow. Color bars indicate cytosolic calcium levels from low 

(green) to high (high).
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Figure 4. Flow-induced calcium influx into the cytoplasm is increased in cells treated with 
rapamycin
(A) Intracellular calcium was measured in response to fluid-shear stress. The arrows indicate 

start of fluid flow. N=50 cells for each preparation, and a total of 4 preparations was used in 

each group. (B) Cilia function is assessed as peak of calcium influx in response to fluid-

shear stress. Average peak calcium levels in control and rapamycin-treated cells are shown. 

Calcium peak is used to determine cilia function in response to fluid-shear stress. Cilia 

function is significantly greater inrapamycin-treated than in control cells. N=50 cells for 

each preparation, and a total of 4 preparations was used in each group. * = p<0.05 compared 

to corresponding controls.
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Figure 5. Rapamycin-treated cells show higher calcium influx in response to increasing various 
shear-stress forces
In the time-lapse graph, baseline calcium levels were measured, and shear stress was applied 

at ~10 seconds (arrows). For epithelial cells a physiologically relevant range of 0–1.0 

dyne/cm2 was used and for endothelial cells which experience higher ranges maximum shear 

stress used was 8 dyne/cm2 . (A) In renal epithelial cells, rapamycin treated cells showed 

higher levels of peak calcium in response to shear stress of varying magnitude. A shear 

stress of 0.2 dyne/cm2 was enough to cause calcium influx in rapamycin-treated cells. (B) 

Same effect was observed in vascular endothelial cells where rapamycin treatment increased 

the shear stress-induced calcium influx compared to control cells. (C) Peak calcium levels 

are shown on the graph at different levels of shear stress. In epithelial cells, significant 

increase in calcium influx was observed at shear stress levels ≥0.6 dyne/cm2 in rapamycin-

treated vs. control cells. Endothelial cells also show significant increase in calcium influx 

when exposed to different levels of shear stress. For each calcium measurement, and a total 

of 4 experiments with N=50 for each was used. * = p<0.05 compared to corresponding 

controls.
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Figure 6. Treatment with rapamycin shows a minimal effect on the cell growth
Cells were stained with propidium iodide (PI), a DNA intercalating agent, for flow 

cytometry analysis. (A) Epithelial cells showed a slight but significant increase in cells at the 

resting (G0) stage and lower percentage of cells undergoing mitosis when treated with 

rapamycin. (B) For endothelial cells, no significant variation in cell cycle was seen in 

rapamycin-treated cells compared to control. *= p<0.05 compared to corresponding 

controls.
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Figure 7. Treatment with rapamycin causes G1 phase arrest in porcine cells but not in mouse-
derived cells
In our cell cycle assay, BrdU incorporation was used to resolve cell cycle phases. (A) In 

epithelial cells treated with rapamycin the cell population was shifted more towards a G0/G1 

phase by a significant amount. The rapamycin treated cells also had lower levels of BrdU 

incorporation indicating a G1 phase arrest. The population of cells in S-phase were found to 

be significantly reduced after rapamycin treatment. For mice epithelial (B) and endothelial 

(C) cells, no significant variation in cell cycle was seen in rapamycin-treated cells compared 

to control. * = p<0.05 compared to corresponding controls.
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Figure 8. Hypothetical working model of rapamycin on cilia length and function
Rapamycin increases cell sensitivity in response to fluid-shear stress. A greater sensitivity or 

response to shear stress is postulated to be a result of longer primary cilia. This, in turn, 

increases cilia function as denoted by an increase in shear-induced cytosolic calcium flux. 

Optimal length and function of primary cilia are thought to be required for proper 

architecture of tissue maintainane.
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