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Metabolism, University of Lübeck, Lübeck, Germany
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Abstract

In multi-talker situations, individuals adapt behaviorally to this listening challenge mostly

with ease, but how do brain neural networks shape this adaptation? We here establish a

long-sought link between large-scale neural communications in electrophysiology and

behavioral success in the control of attention in difficult listening situations. In an age-varying

sample of N = 154 individuals, we find that connectivity between intrinsic neural oscillations

extracted from source-reconstructed electroencephalography is regulated according to the

listener’s goal during a challenging dual-talker task. These dynamics occur as spatially orga-

nized modulations in power-envelope correlations of alpha and low-beta neural oscillations

during approximately 2-s intervals most critical for listening behavior relative to resting-state

baseline. First, left frontoparietal low-beta connectivity (16 to 24 Hz) increased during antici-

pation and processing of a spatial-attention cue before speech presentation. Second, poste-

rior alpha connectivity (7 to 11 Hz) decreased during comprehension of competing speech,

particularly around target-word presentation. Connectivity dynamics of these networks were

predictive of individual differences in the speed and accuracy of target-word identification,

respectively, but proved unconfounded by changes in neural oscillatory activity strength.

Successful adaptation to a listening challenge thus latches onto two distinct yet complemen-

tary neural systems: a beta-tuned frontoparietal network enabling the flexible adaptation to

attentive listening state and an alpha-tuned posterior network supporting attention to

speech.

Introduction

Noisy, multi-talker listening situations make everyday communication challenging: how to

focus only on what we want to hear? Behavioral adaptation to a listening challenge is often

facilitated by listening cues (e.g., spatial location or semantic context) and requires individual

cognitive ability to control attention [1,2]. How do a listener’s brain networks shape this

behavioral adaptation? Addressing this question is essential to neurorehabilitation of the hear-

ing impaired or to the advancement of aided hearing [3,4].
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Our recent study provided a large-scale brain network account of successful listening [5].

Using functional magnetic resonance imaging (fMRI), we measured participants’ brain hemo-

dynamic activity during task-free resting state and a challenging speech comprehension task.

We were able to explain individual adaptation to the listening challenge by reconfiguration of

an auditory-control brain network toward increased modular segregation during attentive lis-

tening. Knowing the indirect relationship between brain hemodynamics and neural oscillatory

dynamics [6–8], our study posed an important underexplored question: whether and how net-

work interactions between intrinsic neural oscillations change to support behavioral adapta-

tion to a listening challenge?

Magneto-/electroencephalography (M/EEG) studies on attentive listening provide ample

evidence supporting the role of neural oscillatory activity within the alpha band (approxi-

mately 8 to 12 Hz) in top-down attentional control over incoming auditory streams [9]. Specif-

ically, attentional modulation of alpha-band power has been reported extensively when

listeners selectively attend to 1 of 2 (or more) concurrent sounds [10–16]. These findings have

been often interpreted in the light of the widely recognized inhibitory role of alpha oscillations

as top-down modulation of cortical excitability [17,18].

However, these studies have usually investigated how selective attention modulates the

power of neural activity and assume cortical alpha rhythms in temporal or parietal regions

to underlie these dynamics [19]. Neurophysiological studies on visuospatial attention pro-

vide substantial guiding evidence on how the functionally specialized coupling between dis-

tant cortical nodes involving prefrontal regions underlies the dynamics of attentional

selection and control ([20–22]; see [23] for review). Nevertheless, we do not know yet

whether and how attentive listening relies on coupling between neural oscillations across

distributed cortical nodes. We here address this question within the unifying framework of

intrinsic coupling modes by focusing on large-scale neural interactions that arise from

coherent aperiodic fluctuations in signal envelopes that unfold at slow time scales (<0.1 Hz)

[24].

Specifically, in M/EEG recordings, envelope fluctuations of ongoing alpha- and beta-

band oscillations (approximately 8 to 32 Hz) exhibit these dynamics, and their intrinsic

cofluctuations over time correlate with covariations in brain hemodynamic activity during

resting state [7,8,25,26]. Accordingly, these neural dynamics have been proposed as one net-

work mechanism whereby distant cortical regions functionally coordinate their activity to

support performance in sensorimotor or cognitive tasks [24,27,28]. In line with this pro-

posal, coherent neural activity during task states has been shown to subserve multisensory

perception, attention, and cognitive control [29,30]. How intrinsic neural oscillations regu-

late their envelope coupling to support behavioral adaptation to attentive listening is

unknown.

Moreover, it is not yet fully understood why listeners exhibit substantial interindividual var-

iability in successful adaptation to a listening challenge [31,32]. This variability seems to arise

from differences in sensory coding fidelity, from differences in the ability to use cognitive

resources, or from a combination of both [16,33]. To what degree this interindividual variabil-

ity relates to listeners’ ability to top-down regulate amplitude-coupling between neural oscilla-

tions is unknown.

The present large-sample EEG study regards the neocortical systems involved in attentive

listening as an assembly of dynamic large-scale networks of ongoing neural oscillations. Build-

ing on our previous work on brain hemodynamic networks during the same experimental par-

adigm [5], we treat the resting-state network makeup of intrinsic neural oscillations as their

putative task network at its “idling” baseline. We predict neural oscillations to regulate their

amplitude-coupling and/or reconfigure their network in adaptation to attentive listening. We
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expect these changes to manifest in the alpha–beta frequency range and leverage the degree of

these changes as a proxy of individuals’ successful adaptation to a listening challenge.

Results

We recorded 64-channel scalp EEG from a large, age-varying sample of healthy middle-aged

and older adults (N = 154; age range = 39 to 80 y, median age = 61 y; 62 males). This includes

30 individuals who have had participated in our previous fMRI study and performed the same

listening task [5]. All participants were recruited as part of an ongoing large-scale longitudinal

study (see Data collection for details). Each participant completed a 5-min eyes-open resting

state measurement and 1 h of the listening task. The listening task was identical to the one

used in [5] and can be viewed as a linguistic Posner paradigm (Fig 1).

In brief, participants were dichotically presented with two 5-word sentences spoken by the

same female talker and were instructed to identify the final word (i.e., target) of one of these 2

sentences. To probe individual use of auditory spatial attention and semantic prediction when

confronted with a listening challenge, sentence presentation was preceded by 2 visual cues.

First, a spatial-attention cue either indicated the to-be-attended side, thus invoking selective

attention, or it was uninformative, thus invoking divided attention. The second cue informed

Fig 1. Experimental procedure and the listening task. EEG of N = 154 participants was recorded during a 5-min eyes-open resting state and 6

blocks of a linguistic Posner task with concurrent speech [5]. Participants listened to 2 competing, dichotically presented sentences. Each trial started

with the visual presentation of a spatial cue. An informative cue provided information about the side (left ear vs. right ear) of the to-be-probed final

word. An uninformative cue did not provide information about the side of the to-be-probed final word. A semantic cue was visually presented

indicating a general or a specific semantic category for both final words. The 2 sentences were presented dichotically along with a visual fixation cross.

At the end of each trial, a visual response array appeared on the side of the probed ear with 4 word choices, asking participants to identify the final

word of the sentence presented to the respective ear. To capture amplitude-coupling between frequency-specific neural oscillations throughout the

listening task, power-envelope correlations between narrow-band EEG source signals were estimated for 1-s time windows of interest (colored

intervals) and compared with resting state connectivity at the same frequency. The stimulus materials can be found at https://osf.io/nfv9e/. EEG,

electroencephalography.

https://doi.org/10.1371/journal.pbio.3001410.g001
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about the semantic category of both final words either very generally or more specifically,

allowing for more-or-less precise semantic prediction of the upcoming target word.

We source-localized narrow-band EEG signals recorded during rest and task, and following

leakage correction, estimated power-envelope correlations between all pairs of cortical regions

defined according to a symmetric whole-brain parcellation template (S1 Fig). We asked

whether and how amplitude-coupling between intrinsic neural oscillations changes through-

out the listening task as compared to resting state. Importantly, using (generalized) linear

mixed-effects models, we examined the influence of listening cues and frequency-specific net-

work dynamics on single-trial listening performance, accounting for individuals’ age, hearing

thresholds, and neural oscillatory power.

Informative cues improve listening success

The analysis of listening performance using linear mixed-effects models revealed an overall

behavioral benefit from more informative cues. The behavioral effects reported below are in

good agreement with the results obtained before using the same task in fMRI [5]. Specifically,

listeners performed more accurately and faster under selective attention as compared to

divided attention (accuracy: odds ratio (OR) = 3.4, p< 0.001; response speed: β = 0.57,

p< 0.001; Fig 2A and 2B, top row of scatter plots). Moreover, listeners performed faster when

they were cued to the specific semantic category of the final word as compared to a general cat-

egory (β = 0.2, p< 0.001; Fig 2B, second scatter plot). We did not find evidence for any inter-

active effects of the 2 listening cues in predicting accuracy (OR = 1.3, p = 0.15) or response

speed (β = 0.09, p = 0.29).

Fig 2. Individual behavioral benefit from informative listening cues. (A) Proportion of correct final word identifications averaged over trials per cue

condition (B) The same as (A) but for average response speed. Box plots: Colored data points represent trial-averaged performance scores of N = 154

individuals per cue–cue combination. Black bars show mean ± bootstrapped 95% CI. Scatter plots: Individual cue benefits shown separately for each cue and

performance score. Black data points represent individuals’ trial-averaged scores under informative [+] and uninformative [−] cue conditions. Gray diagonal

corresponds to 45-degree line. Histograms show the distribution of the cue benefit (informative minus uninformative) across all participants. OR: odds ratio

parameter estimate resulting from generalized linear mixed-effects models; β: slope parameter estimate resulting from general linear mixed-effects models.

The data underlying this figure can be found at https://osf.io/ge2cq/.

https://doi.org/10.1371/journal.pbio.3001410.g002
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As expected, the older a listener the worse the performance (main effect of age; accuracy:

OR = 0.78, p< 0.01; response speed: β = −0.15, p< 0.001). Furthermore, as to be predicted

from the right-ear advantage for linguistic materials [34,35], listeners were more accurate and

faster when probed on the right compared to the left ear (main effect of probe on accuracy:

OR = 1.25, p< 0.01; response speed: β = 0.09, p< 0.001). In addition, the number of blocks

participants completed (6 in total) had a main effect on task performance (accuracy:

OR = 1.28, p< 0.001; response speed: β = 0.11, p< 0.001) indicating that individuals’ listening

performance improved over task blocks (see S1 and S2 Tables for all model terms and

estimates).

Spectral, spatial, and topological profile of power-envelope correlations

under rest and listening

Central to the present study, we asked whether and how amplitude-coupling between intrinsic

neural oscillations changes as individuals engage in attentive listening. To answer this ques-

tion, we first investigated the spectral and spatial profile of power-envelope correlations esti-

mated under rest and the listening task.

In line with previous studies (e.g., [8,25,36]), power-envelope correlations were strongest

within 7 to 24 Hz (Fig 3A) and proved reliable in this range under both rest and task condi-

tions (between-subject analysis; see S2 Fig for details). In addition, across 30 individuals who

had participated in both the present EEG study and our previous fMRI study [5], EEG mean

connectivity showed consistently positive correlations with fMRI mean connectivity within

the same frequency range (Fig 3B).

This frequency range overlaps with the broad-band alpha (7 to 14 Hz) and the lower end of

beta band (16 to 24 Hz). The dominant frequency of alpha-band oscillatory activity appears to

Fig 3. Spectral profile of source EEG power-envelope correlations and their relationship with fMRI connectivity.

(A) Frequency-specific whole-brain mean connectivity during rest and listening task. At each frequency and per

individual, mean connectivity was estimated as the upper-diagonal average of power-envelope correlation matrix

thresholded at 10% of network density. Each line graph represents mean ± SEM of mean connectivity across all N =
154 participants. (B) Thirty participants have had performed the same task in fMRI [5]. Across these participants, we

tested the correlation between whole-brain mean connectivity derived from brain hemodynamics (i.e., mean Pearson

correlation between fMRI band-passed filtered [0.06–0.12 Hz] BOLD signals) and whole-brain mean connectivity

derived from EEG oscillatory source activity (i.e., mean power-envelope correlation at frequencies ranging from 2–32

Hz). Power-envelope correlations between EEG oscillatory sources show strongest positive correlation with fMRI

connectivity within alpha and low-beta frequency range (gray frequency intervals). The data underlying this figure can

be found at https://osf.io/ge2cq/. EEG, electroencephalography; fMRI, functional magnetic resonance imaging.

https://doi.org/10.1371/journal.pbio.3001410.g003
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vary across cortex and task conditions [37,38]. Specifically, while alpha oscillations at the lower

end of the frequency range (7 to 11 Hz) have been recorded from occipitoparietal sources dur-

ing rest or visual tasks and temporal sources during auditory tasks, these oscillations appear

slightly faster over sensorimotor cortices [37,39–41]. Spectral modes as such have been shown

to be characteristic to individual cortical areas and organize—according to their similarity—

into large-scale networks [37]. Accordingly, we focused our main analysis on three frequency

bands within 7 to 24 Hz, namely α1 (7 to 11 Hz), α2 (11 to 14 Hz), and β1 (16 to 24 Hz). The

main analysis began by investigating group-average whole-brain connectivity per frequency

band under rest and listening task.

As shown in Fig 4, rest and task connectivity showed overall similar spatial profiles across

cortex. More precisely, power-envelope correlations in both α1 and α2 range were strongest

within and between bilateral occipital and temporal nodes, but also across occipitoparietal as

well as temporoparietal nodes under rest or listening task (Fig 4, first column; see S4 Fig for α2

connectivity). In contrast, frontal nodes displayed relatively sparse connectivity. Power-enve-

lope correlations in β1 frequency range displayed similar spatial pattern, but with the left-

hemispheric connections showing relatively stronger connectivity under listening task as com-

pared to rest (Fig 4, second column).

To evaluate connectivity strength of each cortical node, we used a simple graph-theoretical

measure—namely, nodal connectivity—defined as the sum of each node’s connection weights.

This analysis revealed a long-tailed distribution of nodal connectivity across cortex, such as

nodes with highest connectivity strength localized to occipital and temporal regions in both

the alpha and low-beta frequency range (Fig 4, cortical maps).

We next investigated the modular topology of these correlation structures. Modularity of a

large-scale network refers to its decomposability into smaller subnetworks. The notion stems

from contemporary graph theory, and it has been extensively applied to fMRI connectivity

data in recent years. Specifically, it has been shown that brain regions functionally organize

into clusters that are relatively densely intra-connected but sparsely inter-connected [42]. This

topological organization is thought to represent functional segregation across the human cor-

tex [43]. Modularity of a network can be estimated by the Newman optimization algorithm

using the so-called modularity index [44,45]: The more modular the network, the closer the

index to 1. To what degree the correlation structures of alpha or low-band neural oscillations

show similar organization is not known. In our previous fMRI study, brain networks had

clearly displayed this organization under both rest and the same listening task [5]. Accord-

ingly, we predicted EEG source connectivity to be topologically decomposable into network

modules.

However, we found that neither alpha nor low-beta connectivity displayed modular organi-

zation under rest or listening: The module detection algorithm revealed only unevenly dense

modules and relatively small modularity indices (S3 Fig). Collectively, these results illustrate

that power-envelope correlations in the alpha and low-beta frequency range were predomi-

nantly present across sensory and parietal association regions. However, envelope-coupling

between these regions did not topologically segregate to exhibit a modular organization.

Hyperconnectivity of frontoparietal β oscillations in anticipation of and

during spatial cueing

To investigate whether and how power-envelope correlations between neural oscillations

change throughout the listening task, we leveraged the high temporal resolution of EEG and

defined 1-s time windows of interest throughout the entire trial (Fig 1, colored intervals). This

allowed us to estimate connectivity for each frequency band and time window by
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Fig 4. Connectivity maps of α/β oscillations under rest and attentive listening. (A) For each frequency band,

power-envelope correlations between EEG oscillatory sources were estimated using 5-min eyes-open resting state data.

(B) The same procedure as in (A) was applied to task data after concatenating whole-trial signals across 30 random

trials of each block (5-min data in total as in rest), and then averaging the correlation matrices across all 6 blocks of

PLOS BIOLOGY Brain network adaptation for successful listening
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concatenating windowed narrow-band signals across all 240 trials (equivalently, 4-min data).

We then compared the results with 4-min resting state connectivity at the same frequency

band by subtracting task and rest connectivity matrices.

During anticipation of the spatial-attention cue (−1 to 0 s), β1 connectivity showed an

increase relative to resting state (Fig 5A, left panel, first connectivity matrix). This hypercon-

nectivity was observed most prominently within the left temporal cortex, as well as between

frontal, temporal, and parietal regions. Using permutation tests to compare nodal connectivity

between rest and task, we found that β1 connectivity of mainly left prefrontal and parietal

nodes was increased during anticipation of the spatial cue relative to rest (0.29< Cohen’s

d< 0.46, p< 0.01, false discovery rate (FDR)-corrected for multiple comparisons across

nodes; significant nodes are outlined in black in Fig 5A, first panel, first cortical maps). In con-

trast, alpha connectivity during this period was not significantly different from resting state

(S5 Fig).

Next, we focused on 1-s time windows capturing the presentation of each listening cue.

During the spatial cue presentation (0 to 1 s), β1 connectivity of left prefrontal and parietal

regions remained significantly higher than rest (0.29< d< 0.44, p< 0.01; Fig 5A, first panel,

second connectivity matrix; see S4 Fig for nondifferential connectivity matrices). During the

same period, alpha-band connectivity showed a relative decrease, which was only significant

in α1 range and over a few parietal nodes (S5 Fig). During the semantic cue period (1.5 to 2.5

s) power-envelope correlations were not significantly different from resting state in neither the

alpha nor in low-beta range (S5 Fig).

To assess the degree and direction to which each listener showed β1 hyperconnectivity dur-

ing presentation of the spatial cue, we averaged nodal connectivity across frontoparietal

regions per individual. We then statistically compared individuals’ mean connectivity values

between rest and task using a permutation test. In accordance with the results at the nodal

level, mean frontoparietal β1 connectivity was significantly higher than rest during presenta-

tion of the spatial cue (d = 0.6, p< 0.01; Fig 5B, first panel).

Hypoconnectivity of posterior cortical α oscillations during listening to

speech

During the listening task, participants were asked to identify the final word of one of two con-

current sentences. The sentences were presented after the two listening cues and, on average,

had a duration of around 2.5 s (Fig 1). Accordingly, we divided the sentence presentation

period (3.5 to 6.5 s) into three consecutive 1-s intervals and estimated connectivity for each fre-

quency band and time window. This analysis revealed a gradual decrease in alpha connectivity

across posterior parts of the brain during sentence presentation relative to resting state.

Specifically, α1 connectivity within and between bilateral occipital regions was decreased

relative to resting state, particularly so during the interval around the final-word presentation

(Fig 5A, second panel). This hypoconnectivity was also observable between occipital and tem-

poroparietal regions and in the α2 band (S6 Fig). In contrast, β1 connectivity during sentence

presentation was not significantly different from resting state (S6 Fig, third column).

task. Correlation matrices were averaged across N = 154 individuals and thresholded at 10% of network density. Nodes

having zero connectivity strength are masked in gray. Histograms illustrate distribution of nodal connectivity strength

with high-connectivity nodes overlapping with occipital and posterior temporal regions. Note that in this analysis, task

connectivity is not specific to a particular time window within trials or cue condition, and thus illustrate the overall

spatial profile of α/β connectivity under listening task. Nodes correspond to cortical parcels as in [46] and are grouped

according to their cortical lobes. The data underlying this figure can be found at https://osf.io/ge2cq/. EEG,

electroencephalography; LH, left hemisphere; RH, right hemisphere.

https://doi.org/10.1371/journal.pbio.3001410.g004
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Fig 5. Cortical connectivity dynamics of α/β oscillations during the listening task. (A) To assess whether and how intrinsic alpha and low-beta oscillations regulate

their cortical connectivity during attentive listening, connectivity difference maps (i.e., task minus rest) were derived per frequency band. Task connectivity was estimated

by concatenating 1-s windowed signals across all 240 trials (4-min data). In anticipation of and during the spatial cue presentation, β1 connectivity was increased relative

to its intrinsic connectivity mainly within the left hemisphere (first panel). This hyperconnectivity was significant across frontoparietal regions (brain surfaces; significant

nodes are outlined in black). The same analysis revealed a significant α1 hypoconnectivity during final-word presentation (second panel). Nodes correspond to cortical

PLOS BIOLOGY Brain network adaptation for successful listening
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When tested at the nodal level, the alpha-band hypoconnectivity overlapped with posterior

temporal cortices as well as occipital and parietal regions (−0.5 < d<−0.23, p< 0.01; nodes

outlined in black in Fig 5A, second panel, cortical maps). Notably, when averaged across the

posterior cortical nodes, individuals showed significantly lower mean connectivity during

final-word presentation relative to rest (Fig 5B, second panel).

Connectivity dynamics of intrinsic α/β oscillations predict individual

listening behavior

The results illustrated above can be outlined as spatiotemporal modulations in alpha and low-

beta connectivity throughout the listening task relative to resting state. As Fig 5B shows, listen-

ers clearly showed interindividual variability in the degree and direction of these connectivity

dynamics. Thus, we next investigated whether these variabilities could account for interindi-

vidual variability in listening performance (Fig 2).

To this end, we tested the direct and interactive effects of individual mean connectivity

during resting-state and during each listening task interval, i.e., spatial-cue or final-word

periods, on individuals’ accuracy or response speed. These brain-behavior relationships

were tested in separate models per low-beta and alpha band. In each model, brain regressors

were the mean connectivity of the frontoparietal low-beta or posterior alpha networks on

an individual level, respectively. These are the same linear mixed-effects models based on

which the beneficial effects of informative listening cues on behavioral performance was

reported earlier (Fig 2).

Fig 6 illustrates the main brain-behavior results. First, we found that frontoparietal β1 con-

nectivity during spatial cueing predicted listeners’ response speed in the ensuing final-word

identification, but only in those individuals whose resting-state β1 connectivity of the same

network was lower than average (by half-SD or more). Statistically, this surfaced as a signifi-

cant interaction between mean resting-state frontoparietal β1 connectivity and mean connec-

tivity of the same network during spatial-cue presentation in predicting listeners’ response

speed (β = 0.019, p< 0.01; Fig 6A; see S6 Table for details). This indicated that, among individ-

uals with lower-than-average resting-state frontoparietal β1 connectivity (N = 41), increased

connectivity during spatial cueing was associated with slower responses during final-word

identification (β = −0.034, p< 0.01; Fig 6A, first panel). The main effect of frontoparietal β1

connectivity on response speed was not significant (resting state: β = −0.017, p = 0.74; spatial

cue: β = −0.01, p = 0.18).

Second, mean posterior α1 resting-state connectivity and mean connectivity of the same

network during final-word presentation jointly predicted a listener’s accuracy (OR = .94,

p = 0.04; Fig 6B; see S1 Table for details). This interaction indicated that the behavioral rele-

vance of α1 hypoconnectivity during final-word identification was conditional on individuals’

resting-state α1 connectivity: for listeners with an intrinsic α1 connectivity higher than average

(by half-SD or more; N = 45), there was a significant negative correlation between α1 connec-

tivity during final-word presentation and overall word identification accuracy (OR = 0.88,

p = 0.04; Fig 6B, third panel). The main effect of posterior α1 connectivity on accuracy was not

significant (resting state: OR = 0.91, p = 0.2; spatial cue: OR = 0.98, p = 0.69).

parcels as in [46] and are grouped according to their cortical lobes. (B) To assess the degree and direction of change in connectivity per individual listener, nodal

connectivity was averaged across significant nodes and compared between rest and task using permutation tests. Data points represent individuals’ mean connectivity (N
= 154). Gray diagonal corresponds to 45-degree line. Histograms show the distribution of the connectivity change (task minus rest) across all participants. The data

underlying this figure can be found at https://osf.io/ge2cq/. dlPFC, dorsolateral prefrontal cortex; FEF, frontal eye field; IFG, inferior frontal gyrus; IPL, inferior parietal

lobule; LH, left hemisphere; PSL, perisylvian language area; RH, right hemisphere; STS, superior temporal sulcus.

https://doi.org/10.1371/journal.pbio.3001410.g005
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Additionally, in separate models, we tested the above interactions using connectivity during

anticipation of the spatial cue (−1- to 0-s fixation) as baseline (i.e., the classical contrast in

event-related paradigms) instead of resting state connectivity. Notably, the β1 interaction in

predicting listeners’ response speed was absent (β = 0.001, p = 0.89), as was the α1 interaction

in predicting listeners’ accuracy (OR = 0.98, p = 0.5).

We also investigated the reproducibility and robustness of the brain-behavior findings. To

this end, we randomly split the data into 5 nonoverlapping folds and examined the strength

and significance of the model’s parameter estimate when subsets of data were used. In addi-

tion, to assess the relative strength of evidence (rather than statistical significance) in support

of the hypothesis that the observed data are better explained by the model including the respec-

tive interaction terms, we calculated the Bayes factor (BF). By convention, a log-BF of 1 begins

to lend support to the H1 [47].

The results obtained for the model predicting response speed from frontoparietal β1 con-

nectivity dynamics were well in line with those obtained from the full sample (S10 Fig): For all

5 model iterations, the β estimate of the interaction term was significantly larger than 0, and

the log-BF estimate was larger than 1 in 3 model iterations. For the model predicting accuracy

from posterior α1 connectivity dynamics, for 4 model iterations, the OR was significantly

smaller than 1, indicating a negative correlation, and the log-BF estimate was larger than 1 in

one model iteration. Overall, these results document within-sample reproducibility and

robustness of the effects and support the more complex model that includes the interaction

term.

In support of the behavioral relevance of alpha and low-beta connectivity, we also found

their significant interactions with task-block number in predicting individuals’ accuracy (α1:

OR = 0.91, p< 0.01; α2: OR = 0.92, p< 0.01; β1: OR = 0.95, p = 0.02) or response speed (α1: β
= −0.021, p< 0.001; α2: β = −0.032, p< 0.001; see S1–S5 Tables for details). These interactions

indicated that (1) those listeners with lower posterior alpha connectivity during final-word

presentation showed improved behavioral performance over 6 blocks of task; and (2) listeners

with lower β1 connectivity during presentation of the spatial cue showed improved accuracy

over task blocks.

We did not find any evidence for the behavioral relevance of the α2 band connectivity

dynamics, i.e., its interaction with resting state connectivity (see S3 and S4 Tables for details).

The interactions between mean connectivity or neural oscillatory power with the listening

cues in predicting behavior were also not significant in neither of the frequency bands.

As mentioned earlier, in our brain-behavior models, we controlled for participants’ chrono-

logical age and hearing thresholds. In additional analyses, we explored the possible correlations

Fig 6. Prediction of individual listening behavior from α/β connectivity dynamics. (A) Interaction between mean

frontoparietal β1 connectivity derived from resting state and connectivity of the same network during spatial cue

presentation predicted how fast listeners identified the final word in the ensuing sentence presentation (β = 0.019,

p< 0.01, log-BF = 2.32). For visualization purpose only, individuals were grouped according to their standardized mean

frontoparietal β1 resting state connectivity. Each scatter plot corresponds to one group of individuals. Distribution of

mean connectivity for each group is highlighted in black within the top histograms. Black data points represent the same

individuals’ trial-average response speed regressed on their standardized mean frontoparietal β1 connectivity during

spatial cueing. Solid blue lines indicate linear regression fit to the data when β1 resting state connectivity held constant at

the group mean (dashed blue line in histograms). (B) Interaction between mean posterior α1 connectivity derived from

resting state and connectivity of the same network during final word presentation predicted listeners’ word identification

accuracy (OR = 0.94, p< 0.05, log-BF = 1.17). Data visualization is the same as in (A), but, here, the grouping variable is

mean posterior α1 resting state connectivity and the predictor is the mean connectivity of the same network during final

word period. Individuals’ age and hearing thresholds have been accounted for in the models. Shaded area shows two-

sided parametric 95% CI. β: Slope parameter estimates from linear mixed-effects model. OR: odds ratio parameter

estimates from generalized linear mixed-effects models. The data underlying this figure can be found at https://osf.io/

ge2cq/. BF, Bayes factor; OR, odds ratio.

https://doi.org/10.1371/journal.pbio.3001410.g006
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between either of these two covariates with mean resting state or task connectivity per frequency

band. None of these correlations were significant (correlations with age; α1,rest: Spearman’s ρ =

0.01, p = 0.89; α1,task: ρ = −0.01, p = 0.99; β1,rest: ρ = 0.02, p = 0.8, β1,task: ρ = -0.1, p = 0.2).

Control analysis: Are α/β connectivity effects confounded by changes in

activation?

A recurring theme in studying neural interactions is to what extent connectivity estimates are

mere reflection of neural activation [48,49]. As an extreme scenario, power-envelope cofluctua-

tions between two regions could be purely driven by instantaneous changes in neural activity (or

signal-to-noise ratio) of each region and not their genuine functional connectivity. We therefore

conducted a set of control analyses to assess the degree to which the dynamics of power-envelope

correlations found here could be mere reflection of changes in alpha or low-beta power.

As illustrated in S7 Fig, grand-average power of narrow-band EEG signals during anticipa-

tion of the spatial cue was higher than whole-trial baseline within 7 to 24 Hz, and it was

decreased in response to both listening cues. This modulation was similarly observed during

sentence presentation and appeared stronger during final-word presentation. For the final-

word period, we also quantified hemispheric lateralization of alpha-band activity (7 to 14 Hz)

based on selective-attention trials and using the so-called attentional modulation index (AMI);

AMI = (α-powerattendL − α-powerattendR) / (α-powerattendL + α-powerattendR). As expected,

source alpha power was lower over the hemisphere contralateral to the side of attention (S7

Fig). At first glance, these changes in power appear similar to the power-envelope correlation

dynamics reported earlier. To directly investigate this, we conducted the following analyses.

First, for each cortical node and across participants, we tested the correlation between

nodal connectivity and mean nodal power (dB) during task. During the spatial cue period and

within β1 band, this correlation was mainly positive across cortex and was significant over a

few occipital nodes (ρ = 0.3, p< 0.01; S8 Fig). However, this relationship and the overall pat-

tern of nodal correlations did not resemble the mainly left-hemispheric frontoparietal β1

hyperconnectivity (Fig 5A, first panel). Moreover, during final-word presentation, the correla-

tion between mean alpha power (dB) and nodal connectivity showed both positive and nega-

tive trends across cortex, which did not reach significance level (−0.25 < ρ< 0.25, p> 0.1; S8

Fig, cf. Fig 5A, second panel). When these correlations were tested using mean connectivity

and power averaged across frontoparietal or posterior nodes, there was only a positive trend

for the correlation between mean frontoparietal β1 connectivity and power during spatial-cue

presentation (ρ = 0.15, p = 0.07; S8 Fig).

Second, on selective-attention trials and during final-word presentation, alpha activity

clearly showed a lateralized modulation depending on whether participants attended to left or

right ear (S7 Fig). We investigated whether connectivity showed a similar lateralization. Pre-

cluding the here observed neural connectivity from being confounded by neural activity level,

power-envelope correlations were not influenced by attentional-cue conditions (i.e., left versus

right or selective versus divided) in neither of the trial intervals or frequency bands (S9 Fig).

Third, in our mixed-effects models, we included mean neural oscillatory power as a sepa-

rate regressor and specifically tested the direct and interactive effects of power on individuals’

behavioral performance. We only found a significant main effect of β1 power during spatial-

cue presentation on listeners’ response speed (β = −0.029, p< 0.01). Notably, while posterior

α1 connectivity predicted listeners’ behavioral accuracy, the data held no evidence for any

effect of alpha power on behavior (see S1–S4 Tables for details). Additionally, while alpha and

low-beta mean connectivity showed significant interactions with task-block number in pre-

dicting individuals’ behavioral performance, this effect was absent for power.
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Lastly, to diminish common covariation in source power due to volume conduction, all

time-frequency source estimates in our analyses were orthogonalized across all pairs of cortical

nodes prior to estimating power-envelope correlations [25]. This approach eliminates (or at

least diminishes considerably), the instantaneous zero- or close to zero-lag correlations

between signals [50]. Thus, connectivity estimates derived from this procedure are less likely

to be contaminated by shared neural activity time-locked to task events.

Discussion

We have shown here how cortical connectivity of intrinsic neural oscillations is regulated in

adaptation to a listening challenge. These dynamics occur as spatially organized modulations

in power-envelope correlations of alpha and low-beta oscillations during approximately 2-s

intervals most critical for listening behavior relative to resting-state baseline. First, left fronto-

parietal low-beta connectivity increased during anticipation and processing of the spatial-

attention cue before speech presentation. Second, posterior alpha connectivity decreased dur-

ing comprehension of speech, particularly in the interval around target-word presentation.

Importantly, in subsets of participants, these connectivity dynamics predicted distinct aspects

of listening behavior, namely response speed and accuracy, respectively.

Frontoparietal β connectivity supports flexible adaptation to attentive

listening

The listening task required the individuals to process the spatial cue in order to update the

information about the relevance of each sentence on a trial-by-trial basis. Behaviorally, this

can be viewed as an adaptation to the current listening state. Neurocognitively, this requires

top-down allocation of resources responsible for attentional and task-set control.

In our representative sample, listeners with higher frontoparietal β1 power during process-

ing of the spatial cue showed slower word identification. Furthermore, among those listeners

with resting-state frontoparietal β1 connectivity lower than average, connectivity of the same

network during processing of the spatial cue was negatively correlated with response speed in

the ensuing final-word identification. Taken together, stronger frontoparietal β1 synchrony

during spatial-cue processing was associated with slower responses. Accordingly, the strength

of frontoparietal β1 connectivity likely reflects the neural cost that listeners incurred by flexibly

updating and restoring the relevance of each left and right sentence on a trial-by-trial basis.

These results extend and help functionally specify the growing consensus that beta syn-

chrony has a role in top-down control of goal-directed behaviors [51–53]. Evidence comes

from animal and human studies that demonstrate a functional role of prefrontal beta synchro-

nization in task-state transitions when content information—such as stimulus category, mem-

ory item, decision choice, or internalized task rule—need to be endogenously maintained or

updated [54–57]. Task states as such have been found to coincide with short-lived beta syn-

chrony in frontoparietal areas, e.g., during stimulus categorization [58,59], working memory

retention [60,61], or accumulation of sensory evidence [62,63].

Interestingly, these findings have been reported mainly in the lower-beta frequency range

(approximately 20 Hz) and often in the absence of stimulation, e.g., during delay periods of

memory tasks [64]. It is generally recognized that synchrony of low-beta oscillations is initi-

ated in higher-level control areas and propagates to lower-level sensory areas [65,66]. In addi-

tion, low-beta oscillations seem to have the optimal neurocomputational properties to prepare

and maintain neural assemblies in the absence of external input [67,68]. Accordingly, momen-

tary frontoparietal low-beta synchrony has been proposed to represent higher-level abstract

task content and goals, which “awakes” an endogenous cognitive set to control a range of goal-
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directed behaviors [53]. This proposal is in line with the view that frontoparietal neurons are

multifunctional and distributed across multiple ensembles, which can be selectively activated

by means of synchronous oscillations to flexibly enable adaptive behaviors [69,70].

Overall, our finding indicates that left-hemispheric frontoparietal β1 connectivity acts as a

top-down network mechanism to reactivate otherwise silent beta oscillations responsible for

preparing cortical circuits involved in attentive listening. The strength of this connectivity may

be a neural proxy of a listener’s flexibility in using spatial cues to cope with challenging listen-

ing situations.

Lower posterior cortical α connectivity supports attention to speech

When participants listened to concurrent sentences and particularly to the task-relevant final

word, power-envelope correlation between posterior alpha oscillations was diminished. This

finding very likely indicates a cohesive shutdown of the posterior alpha-tuned network to pro-

mote the spread of cortical information, thereby facilitating selection and comprehension of

speech. We note that, during spatial cue presentation, this hypoconnectivity was only weakly

observable, suggesting that posterior alpha connectivity is top-down down-regulated mainly

during overt listening behavior.

Over the last 20 years, alpha oscillations have been increasingly recognized as a signature of

cortical inhibition [17,71,72]. More precisely, one general view is that alpha oscillations priori-

tize stimulus processing by inhibiting task-irrelevant and disinhibiting task-relevant cortical

areas. More recently, this view has been modified and expanded in a more mechanistic way

[18]. Specifically, it has been suggested that during periods of low alpha-power cortical excit-

ability is sufficiently high to allow continuous processing regardless of alpha phase (“medium-

to-high” attentional state). In contrast, when alpha power is high, cortical processing is discon-

tinuous and depends on the phase of alpha rhythm (“rhythmic” attentional state) [73,74].

These mechanisms appear across sensory and motor cortices [20,41,75] and point to the criti-

cal role of both power and phase dynamics of alpha oscillations in attentional control [23,73].

For alpha dynamics as such to be under top-down control, a link with brain networks must

exist. Indeed, it has been previously suggested that three large-scale cortical networks differen-

tially top-down regulate alpha oscillations [76]. Specifically, while phase synchrony of alpha

oscillations has been associated with the frontoparietal network involved in adaptive control

[77–79], amplitude modulation of alpha oscillations has been proposed to be under control of

cingulo-opercular and dorsal attention networks involved in maintaining tonic alertness and

guiding selective attention, respectively [80–82].

Overall, hypoconnectivity of posterior alpha oscillations is likely a manifestation of a

broader attentional network process acting on excitability or engagement of sensory channels

through their coherent release of inhibition. Our finding thus extends the previously proposed

inhibitory role of alpha oscillatory activity in attention and suggests that individual attentive

listening behavior hinges on both intrinsic posterior alpha amplitude-coupling and its down-

regulation during selection and comprehension of speech.

Network dynamics of the attentive listening brain: Current state and future

directions

Our previous fMRI experiment [5] and the present study take a network neuroscience

approach to unravel cortical underpinning of successful adaptation to a listening challenge.

The fMRI study suggests that this adaptation is supported by topological reconfiguration of

auditory, ventral attention, and cingulo-opercular modules. Our main finding was that func-

tional segregation of this auditory-control network relative to its resting-state baseline
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predicted individuals’ listening behavior. In the present study, we found that this adaptation is

supported by modulation of connectivity between alpha and low-beta neural oscillations dur-

ing intervals most critical to listening behavior. Our key finding is that connectivity between

frontoparietal low-beta and posterior alpha oscillations relative to their resting-state baseline

allow predicting distinct aspects of individuals’ listening behavior. To our knowledge, empiri-

cal evidence in support of these large-scale neural coupling dynamics and their functional rele-

vance to adaptive behavior has not been provided yet. Thus, both studies share a common

thread: Dynamics of large-scale cortical networks retain the information that could predict

trait-like individual differences in attentive listening. In this way, our study also offers a novel

yet feasible network identification approach, which can be used to investigate where, when,

and how large-scale neural dynamics underlie adaptive behaviors.

We also realize one characteristic difference between cortical networks built upon hemody-

namic signals as compared to those derived from source-reconstructed narrow-band EEG sig-

nals. In the latter case, frequency-specific cortical networks did not exhibit modular

organization (S3 Fig). We additionally investigated whether measures of network centrality,

namely degree centrality and eigenvector centrality, were modulated during processing of the

spatial cue or final word relative to resting state. In contrast to nodal connectivity, neither of

these topological measures showed significant modulations during the listening task (S11 Fig).

Taken together, our data suggest that source-EEG power-envelope correlations within alpha

and low-beta frequency range have an intrinsic structure whose connectivity strength (but not

topology) is modulated by task context.

We note that cortical activities are organized across distributed neural processing streams

and frequency channels, which are superimposed and low-pass-filtered when imaged by fMRI

[83–85]. Accordingly, frequency-resolved connectivity estimation would map spectrally and

spatially distinct networks depending on the neurophysiological imaging technique, e.g., elec-

trocorticography [86–88] or M/EEG [36,89,90]. When estimation of connectivity as such is

solely based on power-envelope correlations between alpha/beta oscillations in source-recon-

structed M/EEG, the resulting network would be restricted to fewer cortical regions and func-

tional connections [6,8,25,91]. Moreover, the spatial resolution with which these regions can

be distinguished from one another is limited by the M/EEG sensor configuration [92]. Indeed,

in our data (source-reconstructed 64-channel EEG) anterior and medial-frontal cortical

regions showed sparse connectivity (Fig 4). Thus, studying topological organization of large-

scale neurophysiological networks would require investigation of neural source activity over a

broad frequency range with higher spatial resolution than EEG (see [93] for a recent

evidence).

Attentional modulation of neural responses within auditory cortex has been extensively

investigated along different lines of research in auditory neuroscience (cf. [94] for a study on

auditory alpha power and neural tracking of speech using the same data and cohort as here).

Nevertheless, large-scale network dynamics of the listening brain has remained underexplored,

particularly on the neurophysiological level. This is mainly due to the methodological chal-

lenges inherent to connectivity analysis [95–97]. Here, we carefully took these considerations

into account. This eventually allowed us to map and functionally characterize large-scale neu-

ral connectivity within alpha and low-beta frequency channels whereby distant cortical nodes

tuned into attentive listening according to the listener’s goal. Importantly, our brain-behavior

findings further the hitherto limited understanding of behavioral differences in how individu-

als cope with difficult listening situations. Nonetheless, these results should be interpreted

carefully as they illustrate the behavioral relevance of cortical connectivity dynamics on a

between-subjects trait-like level and in subsets of participants only, depending on individual’s

resting-state baseline connectivity and its modulation during listening. Future studies will be
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important to investigate the state-dependency of cortical connectivity dynamics, in particular

their trial-by-trial variability within individuals, to further pinpoint their link to listening

behavior. Looking ahead, this study opens new opportunities for brain network-based assess-

ment of the hearing impaired as well as design of neurocognitive training strategies or assistive

devices to rehabilitate or aid hearing.

Conclusions

In sum, the present study suggests that successful adaptation to a listening challenge latches

onto two distinct yet complementary neural systems: beta-tuned frontoparietal network

enabling the adaptation to the attentive listening state per se, and alpha-tuned posterior corti-

cal network supporting attention to speech. Critically, connectivity dynamics of both networks

appear under top-down control, and they predict individual differences in listening behavior.

To conclude, we suggest that large-scale connectivity dynamics of intrinsic alpha and low-beta

neural oscillations are closely linked to the control of auditory attention.

Materials and methods

Data collection

This experiment was conducted as part of an ongoing large-scale study on the neural and cog-

nitive mechanisms supporting adaptive listening behavior in healthy middle-aged and older

adults (“The listening challenge: How ageing brains adapt (AUDADAPT)” https://cordis.

europa.eu/project/id/646696). This project encompasses the collection of different demo-

graphic, behavioral, and neurophysiological measures across 2 time points. The analyses car-

ried out on the data aim at relating adaptive listening behavior to changes in different facets of

neural dynamics [5,94] (see also https://osf.io/28r57/).

Participants and procedure

Reported results are from N = 154 participants (right-handed German native speakers, age

range = 39 to 80 y, median age = 61 y, 62 males). All participants had normal or corrected-to-

normal vision, did not report any neurological, psychiatric, or other disorders, and were

screened for mild cognitive impairment using the German version of the 6-Item Cognitive

Impairment Test (6CIT; [98]). During EEG sessions, participants first completed 5-min eyes-

open and 5-min eyes-closed resting-state measurements. The participants were asked not to

think about anything specific and to avoid movement during the measurements. Next, follow-

ing task instruction, participants performed 6 blocks of a demanding dichotic listening task

(Fig 1). They were probed on the sentence-final noun in one of the two competing five-word

sentences. As part of our large-scale study, prior to the EEG session, participants also under-

went a session consisting of a general screening procedure, detailed audiometric measure-

ments, and a battery of cognitive tests and personality profiling (see [11] for details). Only

participants with normal hearing or age-adequate mild-to-moderate hearing loss were

included in the present study. As part of this screening procedure, an additional 17 partici-

pants were excluded prior to EEG recording due to non-age-related hearing loss or a medical

history. Three participants dropped out of the study prior to EEG recording, and an additional

10 participants were excluded from analyses after EEG recording: 3 due to incidental findings

after structural MR acquisition, 6 due to technical problems during EEG recording or overall

poor EEG data quality, and 1 with four task-blocks only. Participants gave written informed

consent and received financial compensation (8€ per hour). Procedures were approved by the
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ethics committee of the University of Lübeck (identification no. 16–107) and were in accor-

dance with the Declaration of Helsinki.

Dichotic listening task

All sentences had the same structure and had an average length of 2,512 ms (range: 2,183 to 2,963

ms). Root mean square intensity (−26 dB full scale (FS)) was equalized across all individual sen-

tences, and they were masked by continuous speech-shaped noise at a signal-to-noise ratio of 0

dB. Noise onset was presented with a 50-ms linear onset ramp and preceded sentence onset by

200 ms. Each sentence pair was temporally aligned by the onset of the two task-related sentence-

final nouns, which led to slightly asynchronous sentence onsets. All participants listened to the

same 240 sentence pairs but in subject-specific randomized order. In addition, across participants,

we balanced the assignment of sentences to the right and left ear, respectively. Each trial started

with the presentation of a fixation cross in the middle of the screen (jittered duration: mean 1.5 s,

range 0.5 to 3.5 s; Fig 1). Next, a blank screen was shown for 500 ms followed by the presentation

of the spatial cue in the form of a circle segmented equally into two lateral halves. In selective-

attention trials, one half was black, indicating the to-be-attended side, while the other half was

white, indicating the to-be-ignored side. In divided-attention trials, both halves appeared in gray.

After a blank screen of 500 ms duration, the semantic cue was presented in the form of a single

word that specified the semantic category of both final words. The semantic category could either

be given at a general (natural versus man-made) or specific level (e.g., instruments, fruits, furni-

ture) and thus provided different degrees of semantic predictability. Each cue was presented for

1,000 ms. After a 500-ms blank-screen period, the two sentences were presented dichotically

along with a fixation cross displayed in the middle of the screen. Finally, after a jittered retention

period, a visual response array appeared on the left or right side of the screen, presenting 4 word-

choices. The location of the response array indicated which ear (left or right) was probed. Partici-

pants were instructed to select the final word presented on the to-be-attended side using the

touch screen. Among the four alternatives were the two actually presented nouns as well as two

distractor nouns from the same cued semantic category. Note that because the semantic cue

applied to all four alternative verbs, it could not be used to post hoc infer the to-be-attended final

word. Stimulus presentation was controlled by PsychoPy. The visual scene was displayed using a

24@ touch screen (ViewSonic TD2420) positioned within an arm’s length. Auditory stimulation

was delivered using in-ear headphones (EARTONE 3A) at sampling rate of 44.1 kHz. Following

instructions, participants performed a few practice trials to familiarize themselves with the listen-

ing task. To account for differences in hearing acuity within our group of participants, individual

hearing thresholds for a 500-ms fragment of the dichotic stimuli were measured using the method

of limits. All stimuli were presented 50 dB above the individual sensation level. During the experi-

ment, each participant completed 60 trials per cue–cue condition, resulting in 240 trials in total.

The cue conditions were equally distributed across 6 blocks of 40 trials each (approximately 10

min) and were presented in random order. Participants took short breaks between blocks.

EEG data analysis

Data acquisition. Participants were seated comfortably in a dimly lit, sound-attenuated

recording booth where we recorded their EEG from 64 active electrodes mounted to an elastic

cap (Ag/AgCl; ActiCap/ActiChamp, Brain Products, Gilching, Germany). Electrode imped-

ances were kept below 30 kO. The signals were digitized at a sampling rate of 1,000 Hz and ref-

erenced online to the left mastoid electrode (TP9, ground: AFz). For subsequent offline EEG

data analyses, we used the EEGlab [99] (version 14-1-1b) and Fieldtrip [100] (version 2016-06-

13) toolboxes for Matlab and other customized scripts.
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Artifact rejection. First, rest and task continuous data were concatenated, band-pass fil-

tered (1 to 100 Hz), down-sampled (300 Hz), and cut into 1-s epochs. The resulting time-

domain data were then subjected to visual inspection by trained assistants to discard nonster-

eotypical epochs (i.e., short-lived high-variance artifacts) and to identify and remove noisy

channels. Subsequently, the data were re-referenced to the average of all EEG channels (aver-

age reference). Next, using EEGlab’s default runica implementation of independent compo-

nent analysis (ICA), the data were decomposed into 63 components (or less if noisy channels

were removed). The results were then carefully inspected by trained assistants to classify non-

brain components including eye blinks and lateral eye movements, muscle activity, heart

beats, and single-channel noise. This classification was based on components’ topographies,

time courses, spectra, and source dipole locations in EEGlab. Finally, only brain components

were back-projected separately per rest and task data, and noisy channels (if removed previ-

ously) were interpolated using the nearest neighbor approach.

Preprocessing. The artifact-clean continuous EEG data were high-pass-filtered at 0.3 Hz

(finite impulse response (FIR) filter, zero-phase lag, order 5,574, Hann window) and low-pass-

filtered at 180 Hz (FIR filter, zero-phase lag, order 100, Hamming window). Task data were

cut into 10-s trials within −2 to 8 s relative to the onset of the spatial-attention cue to capture

cue presentation as well as the entire auditory stimulation interval. Resting-state data were

similarly cut into 10-s epochs. Data were downsampled to fs = 250 Hz. These procedures were

implemented in Fieldtrip. Trials during which the amplitude of any individual channel

exceeded a range of 200 microvolts were removed before main analyses.

Time-frequency analysis. Spectro-temporal estimates of single-trial task data were

obtained for a time window of −1 to 7.5 s (relative to the onset of the spatial-attention cue) at

50-ms resolution and frequencies ranging from 2 to 32 Hz on a logarithmic scale (Morlet

wavelets; number of cycles = 6, Fieldtrip implementation). The results were used for analyzing

power modulation of brain oscillatory responses on a sensor and source level (S7 Fig). As a

measure of nodal power, we used the mean of trial-average baseline-corrected source power

within each time-frequency window of interest. The same time-frequency analysis was used

for estimating power-envelope correlations during rest and task (see below).

EEG source and forward model construction. Thirty participants had completed func-

tional and structural magnetic resonance imaging (MRI) performing the same experiment on

a separate session. For these participants, individual EEG source and forward models were cre-

ated based on each participant’s T1-weighted MRI image. The T1 image of 1 female and 1

male participant was used as a template for the remaining participants. First, anatomical

images were resliced (256 × 256 × 256 voxels, 1-mm resolution), and the CTF convention was

imposed as their coordinate system. Next, cortical surface of individual (or template) T1 image

was constructed using Freesurfer function recons-all (S1 Fig). The result was used to generate

a cortical mesh in accordance with Human Connectome Project (HCP) standard atlas tem-

plate available under https://github.com/Washington-University/HCPpipelines by means of

HCP Workbench (version 1.5; wb_command using Fieldtrip script ft_postfreesurferscript.sh).

This gave individual cortical mesh encompassing 4,000 grid points per hemisphere, which was

then used as the individual EEG source model geometry. This ensured that we have the same

number of grid points per individual cortical mesh and that the location of these points is com-

parable across participants. This is particularly relevant when adopting the HCP functional

parcellation template during source projection of sensor data as described in Power-envelope

correlation analysis section. To generate individual head and forward model, first T1 images

were segmented into 3 tissue types (brain, skull, and scalp) using FieldTrip function ft_volu-

mesegment (S1 Fig). Subsequently, the forward model (volume conduction) was estimated

using boundary element method in Fieldtrip (“dipoli” implementation). Next, the fit of
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digitized EEG channel locations (xensor digitizer, ANT Neuro) to individuals’ head models

were optimized in CTF coordinate system using rigid-body transformation and additional

interactive alignment. Finally, the lead-field matrix at each channel × source location was com-

puted using the source and forward model per individual (S1 Fig).

Beamforming. Source reconstruction (inverse solution) was achieved using a frequency-

domain beamforming approach, namely partial canonical coherence (PCC) [95]. To this end,

first 5-min eyes-open resting state and a random 5-min split of task data were concatneted.

This procedure prevented a potential bias in estimation of the spatial filter due to difference in

the duration of data between rest and task. Next, cross-spectral density of the data was calcu-

lated using a broad-band filter centered at 15 Hz (bandwidth = 14 Hz). The result together

with the source and forward model (see above) was used in Fieldtrip to obtain a common spa-

tial filter per individual (regularization parameter: 5%, dipole orientation: axis of most variance

using singular value decomposition; see S1 Fig).

Source projection of sensor data. Sensor-level single-trial (epoch) complex-value time-

frequency estimates were projected to source space by matrix-multiplication of the common

spatial filter weights (S1 Fig). To increase signal-to-noise ratio, reduce redundancy in source-

projected data, and computationally facilitate connectivity analyses, individual source-pro-

jected data were averaged across cortical surface grid-points per cortical patch defined accord-

ing to the HCP functional parcellation template ([46]; similar to [37]). This parcellation

provides a symmetrical delineation of each hemisphere into 180 parcels. This gave single-trial

(or single-epoch) time-frequency source estimates at each cortical node. We note that a corti-

cal parcellation with 360 nodes over-sample the realistic spatial resolution of 64-channel EEG.

However, an optimal EEG-based cortical parcellation is currently not available, although stud-

ies have begun to fill this gap [92]. Therefore, we used an established fMRI-based parcellation

to approximate spatial boundaries of frequency-specific EEG source connectivity and its mod-

ulation throughout the listening task. This also allowed us to investigate the similarities and

differences between fMRI and EEG whole-brain connectivity during rest and the same listen-

ing task in a subgroup of participants.

Connectivity analysis

Frequency-resolved connectivity analysis was done in the following steps per individual (see

S1 Fig). First, single-trial time-frequency source estimates were concatenated across time per

frequency. For estimating resting-state connectivity, this was done based on 5-min epoched

data. For estimating overall connectivity during listening task irrespective of trial intervals (Fig

4), this was done by selecting 30 random trials per task block (equivalently, 5-min data as in

rest). Then, connectivity matrices were averaged across 6 task blocks. This procedure assured

that rest and task connectivity did not artificially differ due to differences in the duration of

data used for estimating connectivity [101]. For estimating task connectivity during each 1-s

time window (e.g., spatial-cue or final-word period; Fig 1, colored intervals), windowed signals

were concatenated across all 240 trials (equivalently, 4-min data). Event-related task connec-

tivity obtained from this procedure was then compared with 4-min resting state connectivity.

To investigate the effect of block on connectivity (see Statistical analysis below), the same pro-

cedure was repeated based on all 40 trials per block. For this latter analysis, resting state con-

nectivity was estimated based on 40 s of data. Thus, in all analyses, data were matched in

duration across rest, task, and all participants before estimation of connectivity.

Power-envelope correlation analysis. To assess frequency-specific neural interactions,

we computed Pearson’s correlations between the log-transformed power of all pairs of nodes

(all-to-all connectivity). To eliminate the trivial common covariation in power measured from
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the same sources, we used the orthogonalization approach proposed by [25] prior to comput-

ing the power correlations (Fieldtrip implementation). This approach has been suggested and

used to circumvent overestimation of instantaneous short-distance correlations, which can

otherwise occur due to field propagation [36,50,102]. The above procedure yielded frequency-

specific 360-by-360 functional connectivity matrices per participant and carrier frequency

(and trial interval). The between-subject reliability analysis (see S2 Fig for details) suggested

that power-envelope correlations were strongest and showed highest reliability within 7 to 24

Hz. Within this range, 3 frequency bands were defined. Connectivity matrices in each fre-

quency band was derived by averaging corresponding frequency-specific connectivity matri-

ces. Change in connectivity was evaluated by first calculating task-connectivity matrix minus

rest-connectivity matrix per frequency, and then averaging the results within each frequency

band. Finally, connectivity matrices were thresholded at 10% of network density (proportional

thresholding) [101]. This procedure ensured that networks were matched in density across

rest, task, and all participants. Subsequently, nodal connectivity was obtained by calculating

the sum of each node’s connection weights (i.e., correlations values). Mean connectivity of a

network (e.g., the frontoparietal network) was obtained by averaging nodal connectivity values

across the network.

Statistical analysis

Behavioral data. Participants’ behavioral performance in the listening task was evaluated

with respect to accuracy and response speed. Trials in which participants failed to answer

within the given 4-s response window (“timeouts”) were excluded from the analysis. Spatial

stream confusions, i.e., trials in which the final word of the to-be-ignored speech stream were

selected, and random errors were jointly classified as incorrect answers. The analysis of

response speed, defined as the inverse of reaction time, was based on correct trials only.

Connectivity data. Statistical comparisons of nodal and mean connectivity between rest

and task were based on permutation tests for paired samples (randomly permuting the rest

and task labels 10,000 times). We used Cohen’s d for paired samples as the corresponding

effect size. For nodal connectivity analysis, and to correct for multiple comparisons entailed by

the number of cortical nodes, we used FDR procedure at significance level of 0.01 (two-sided).

Knowing the skewed distribution of mean connectivity, these valuse were logit-transformed

before submitting to (generalized) linear mixed-effects models (see below).

Brain-behavior models. Brain-behavior relationship was investigated within a linear

mixed-effects analysis framework. To this end, either of the single-trial behavioral measures

(accuracy or response speed) across all participants were treated as the dependent variable.

The main experimental predictors in the model were the single-trial spatial and semantic cue

conditions, each at 2 levels (divided versus selective and general versus specific, respectively).

Neural predictors entered as between-subject regressors. These include mean resting state con-

nectivity, mean event-related task connectivity per block, and mean event-related neural oscil-

latory power (dB) per block. The linear mixed-effects analysis framework allowed us to

account for other variables, which entered as regressors of no-interest in the model. These

include age, mean pure-tone audiometry (PTA) averaged across left and right ear, side probed

(left or right), and task-block number. Mixed-effects analyses were implemented in R using

the packages lme4 [103], effects [104], and sjPlot (https://strengejacke.github.io/sjPlot/).

Model estimation. The regressors in each brain-behavior model included the main effects

of all predictors introduced above, plus the interaction between the two listening cues and the

interaction between rest and task connectivity. Additional interaction terms were also

included to explore their possible effects on listening behavior. The influence of listening cues
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and of neural measures were tested in same brain-behavior model. The models also included

random intercepts by subject. In a data-driven manner, we then tested whether model fit (per-

formed using maximum-likelihood estimation) could be further improved by the inclusion of

subject-specific random slopes for the effects of the spatial-attention cue, semantic cue, or

probed ear. The change in model fit was assessed using likelihood ratio tests on nested models.

Deviation coding was used for categorical predictors. All continuous variables were z-scored.

For the dependent measure of accuracy, we used generalized linear mixed-effects model (bino-

mial distribution, logit link function). For response speed, we used general linear mixed-effects

model (gaussian distribution, identity link function). Given the large sample size, p-values for

individual model terms are based on Wald t-as z-values for linear models [105] and on z-val-

ues and asymptotic Wald tests in generalized linear models. All reported p-values are corrected

to control for the FDR. As a measure of effects size, for the model predicting accuracy, we

report ORs, and for response speed, we report the regression coefficient (β).

Bayes factor. To facilitate the interpretability of significant and nonsignificant effects, we

calculated the BF based on the comparison of Bayesian information criterion (BIC) values as

proposed in [106]: BF = exp([BIC(H0)−BIC(H1)]/2). To calculate the BF for a given term, we

compared the BIC values of the full model to that of a reduced model in which only the rest-

connectivity × task-connectivity interaction term was removed. By convention, log-BFs larger

than 1 provide evidence for the presence of an effect (i.e., the observed data are more likely

under the more complex model), whereas log-BFs smaller than −1 provide evidence for the

absence of an effect (i.e., the observed data are more likely under the simpler model) [47].

Data visualization

Brain surfaces were visualized using the Connectome Workbench. Brain-behavior interaction

plots were visualized using R package effects [104].

Supporting information

S1 Fig. Hypothetical and methodological framework. (A) Toy graphs illustrate connectivity

between 3 exemplary EEG cortical sources as measured by power-envelope correlation. Dur-

ing attentive listening, intrinsic α/β neural oscillations reconfigure their putative baseline net-

work (resting state) depending on the current task state to support listening behavior. These

dynamics could manifest as change in connectivity strength (here depicted as edge thickness)

or network segregation [5]. (B) EEG source analysis pipeline. Source reconstruction of EEG

oscillatory responses and estimation of connectivity per individual (N = 154) were imple-

mented in four steps: (1) construction of source geometry using MRI T1-derived cortical mesh

and head boundary-element model (2) estimation of lead-field matrix and a spatial filter com-

mon across rest, task, and a broad frequency band (fc = 15 Hz; BW = 14 Hz) (3) source projec-

tion of time-frequency sensor data and averaging the source estimates per cortical parcel or

node (4) pair-wise orthogonalization of complex-value time-frequency source estimates across

all nodes to diminish spurious correlations due to volume conduction [25]. These steps at the

end gave individual cortical connectivity maps per time-window of interest and frequency

band. These analyses were performed using Fieldtrip toolbox for Matlab and HCP functional

parcellation template [46]. BW, band-width; EEG, electroencephalography; fc, center fre-

quency; fs, sampling frequency; HCP, Human Connectome Project; ICA, independent compo-

nent analysis; MRI, magnetic resonance imaging; PCC, partial canonical coherence.

(TIF)
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S2 Fig. Between-subject reliability of power-envelope correlation. A serious but often

neglected potential confounding factor in assessments of neuronal interactions is SNR [48,49].

This is an important issue in the present study as we compare connectivity of frequency-spe-

cific neural oscillations between resting state and listening task, each of which is potentially

measured at different levels of SNR. Thus, we first investigated at which frequencies connectiv-

ity can be reliably measured under both rest and task conditions. As a measure of reliability,

we used between-subject correlation of rest and task nodal connectivity values, i.e., columns of

raw connectivity matrices. The reliability analysis was done in two steps. (A, B) First, per corti-

cal node, correlations between nodal connectivity values were calculated across all pairs of

N = 154 participants, separately for rest or task condition. This procedure per node gives one

symmetric N × N correlation matrix for each rest or task condition. The upper-diagonal aver-

age of this matrix is mean between-subject correlation in nodal connectivity for each rest or

task condition (within-condition reliability). The plots in (A) and (B) illustrate mean ± SEM of

these between-subject correlations averaged across all 360 cortical nodes per frequency. (C)

Next, the same analysis was done across rest and task. In this case, the result per node is one

asymmetric N × N correlation matrix. The off-diagonal average of this matrix is mean

between-subject correlation in nodal connectivity across rest and task (between-condition reli-

ability). The black line graph in (C) illustrates mean ± SEM of these between-subject correla-

tions averaged across all 360 cortical nodes per frequency. These correlations are

underestimated in the presence of noise. Thus, they were submitted to Spearman’s correction

for attenuation to account for differences in SNR between rest and task (blue line graph). Esti-

mation of connectivity at a given frequency and node was considered reliable if the attenua-

tion-corrected correlation was consistently positive across all participants. Plots in second row

illustrate percentage of cortical nodes showing significantly positive between-subject correla-

tion (p< 0.05, uncorrected). As illustrated by both blue line graphs, between-subject correla-

tions were consistently positive across all nodes within the frequency range 7–32 Hz (0.1 <

r< 0.4). These results illustrate that power-envelope correlations between EEG oscillatory

sources can be reliably measured within alpha and low-beta frequency range (gray frequency

intervals). The data underlying this figure can be found at https://osf.io/ge2cq/. SNR, signal-

to-noise ratio.

(TIF)

S3 Fig. Network modularity of α/β oscillations under rest and attentive listening. In each

group-average connectivity matrix, diagonal squares represent functional modules. Off-diago-

nal correlations represent the strength of between-module connections. In (A), functional

modules correspond to canonical resting state networks (left) and their makeup during the lis-

tening task (right; see [5]). In contrast, EEG source power-envelope correlations within alpha

and low-beta bands did not exhibit a modular organization. Connectivity matrices are aver-

aged across individuals and thresholded at 10% of network density. Modularity index (Q)

quantifies the degree to which a network is clustered into densely intra-connected groups of

nodes, which are sparsely inter-connected and is estimated based on Newman optimization

algorithm [44,45] (the more modular the network, the closer the Q to 1). Percentage of partici-

pating nodes is calculated as the number of nodes having at least one connection in the net-

work divided by the total number of nodes defined according to the cortical parcellation

template [46]. The data underlying this figure can be found at https://osf.io/ge2cq/. EEG,

electroencephalography; fMRI, functional magnetic resonance imaging.

(TIF)

S4 Fig. Frequency-specific connectivity matrices. (A) For each frequency band, power-enve-

lope correlations between EEG oscillatory sources were estimated using 4-min eyes-open
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resting state data. (B) Whole-brain connectivity during task time intervals most critical to lis-

tening behavior. Power-envelope correlations were estimated by concatenating 1-s windowed

signals across all 240 trials (4-min data). Note the stronger beta-band connectivity during pro-

cessing of spatial cue and weaker alpha-band connectivity during final word presentation in

(B) relative to resting state (A). Connectivity maps were averaged across N = 154 individuals

and thresholded at 10% of network density. Nodes correspond to cortical parcels as in [46]

and are grouped according to their cortical lobes. The data underlying this figure can be found

at https://osf.io/ge2cq/. EEG, electroencephalography; LH, left hemisphere; RH, right hemi-

sphere.

(TIF)

S5 Fig. Cortical connectivity dynamics of α/β oscillations during anticipation and cueing.

For each time interval (A-C) and frequency band, power-envelope correlations between EEG

oscillatory sources were estimated by concatenating 1-s windowed signals across all 240 trials

(4-min data) and compared with 4-min resting state connectivity at the same frequency band

(i.e., task minus rest). In anticipation of and during the spatial cue presentation, β1 connectiv-

ity was significantly increased mainly across frontoparietal regions (A and B, third column;

paired-sample permutation tests; significant nodes are outlined in black). Alpha-band connec-

tivity was not significantly different than rest. Connectivity difference maps were averaged

across N = 154 individuals and thresholded at 10% of network density. Nodes correspond to

cortical parcels as in [46] and are grouped according to their cortical lobes. The data underly-

ing this figure can be found at https://osf.io/ge2cq/. EEG, electroencephalography; LH, left

hemisphere; RH, right hemisphere.

(TIF)

S6 Fig. Cortical connectivity dynamics of α/β oscillations during sentence presentation.

For each time interval of sentence presentation (A-C) and frequency band, power-envelope

correlations between EEG oscillatory sources were estimated by concatenating 1-s windowed

signals across all 240 trials (4-min data) and compared with 4-min resting state connectivity at

the same frequency band (i.e., task minus rest). Toward the end of sentence and particularly

during final word presentation, alpha-band connectivity was significantly decreased across

posterior cortical regions (A-C, first column; paired-sample permutation tests; significant

nodes are outlined in black). Beta-band connectivity was not significantly different than rest

during sentence presentation. Connectivity difference maps were averaged across N = 154

individuals and thresholded at 10% of network density. Nodes correspond to cortical parcels

as in [46] and are grouped according to their cortical lobes. The data underlying this figure can

be found at https://osf.io/ge2cq/. EEG, electroencephalography; LH, left hemisphere; RH: right

hemisphere.

(TIF)

S7 Fig. Modulation of neural oscillatory activity during attentive listening. (A) Time-fre-

quency representation in EEG sensor space. Power estimates were averaged across all sensors,

trials, and N = 154 participants. (B) The same as in (A) but based on power of EEG source esti-

mates and averaged across all cortical nodes. Power changes are calculated as dB change rela-

tive to the whole-trial baseline interval (−1–7.5 s). (C) Attentional modulation of alpha source

power during selective attention to final word. The modulation index is calculated as AMI =

(α-powerattendL − α-powerattendR) / (α-powerattendL + α-powerattendR). The data underlying this

figure can be found at https://osf.io/ge2cq/. AMI, attentional modulation index; EEG, electro-

encephalography; LH, left hemisphere; RH, right hemisphere.

(TIF)
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S8 Fig. Correlation between neural activity power and connectivity during intervals of lis-

tening task. (A) For each frequency band and time interval, correlation between nodal con-

nectivity and mean nodal power (dB) was tested across all N = 154 participants and per

cortical node. (B) The same analysis as in (A) but using measures averaged across frontoparie-

tal or posterior cortical nodes involved in beta-band hyperconnectivity or alpha-band hypo-

connectivity, respectively. The data underlying this figure can be found at https://osf.io/ge2cq/.

n.s., not significant.

(TIF)

S9 Fig. EEG source connectivity was not influenced by spatial cue conditions. We investi-

gated whether alpha- or beta-band connectivity showed a similar hemispheric lateralization in

response to the spatial cue as in alpha power. For each spatial-cue (A, B) or final-word (C, D)

time interval and frequency band, power-envelope correlations between EEG oscillatory

sources were estimated by concatenating 1-s windowed signals across trials per spatial-cue

condition: selective attention (i.e., attend left or right), divided attention, attend left, or attend

right. The results were then compared by first calculating connectivity difference maps per

participant (e.g., selective minus divided) and then averaging the difference maps across

N = 154 individuals. If connectivity is confounded by activity level, these maps should reveal

differences in power-envelope correlations between conditions. In contrast, power-envelope

correlations were not influenced by attentional-cue conditions in neither of the trial intervals

nor frequency bands. None of the connectivity contrasts revealed significant differences in

nodal connectivity when tested across all cortical nodes using paired-sample permutation

tests. Nodes correspond to cortical parcels as in [46] and are grouped according to their corti-

cal lobes. The data underlying this figure can be found at https://osf.io/ge2cq/. EEG, electroen-

cephalography; LH, left hemisphere; RH, right hemisphere.

(TIF)

S10 Fig. Within-sample reproducibility and likelihood assessment of the brain-behavior

interaction effects. The reliability and robustness of the brain-behavior interaction effects

(main text, Fig 6) were investigated by randomly splitting the data into k = 5 nonoverlapping

folds. The strength and uncertainty (i.e., confidence interval) of the model’s parameter esti-

mate was then examined when each fold of data was used. Since this analysis does not take the

number of observations and model complexity into account, it could be that the model has a

relatively high goodness of fit as a too complex model is fitted to the data. We thus examined

the relative strength of evidence (rather than statistical significance) in support of the alterna-

tive hypothesis (i.e., model with the interaction term) as compared to the null hypothesis (i.e.,

model without the interaction term). This was done by calculating the BIC approximation of

the BF, i.e., exp([BIC(H0)−BIC(H1)]/2). In this calculation, BIC imposes penalty on each

model log-likelihood based on both number of observations and parameters. Following Har-

rold Jeffery’s scale for interpretation of BF, 0< log-BF < 1 suggests weak evidence for H1,

1< log-BF < 3 is positive, and 3< log-BF < 5 is strong [104]. β: Slope parameter estimates

from linear mixed-effects model. OR: odds ratio parameter estimates from generalized linear

mixed-effects models. The data underlying this figure can be found at https://osf.io/ge2cq/. BF,

Bayes factor; BIC, Bayesian information criterion; OR, odds ratio.

(TIF)

S11 Fig. Network topology and centrality of α/β oscillations under rest and attentive listen-

ing. (A) Network topology per frequency band and condition. Each connectogram corre-

sponds to its connectivity matrix counterpart and is obtained by setting the connection

weights to 1 for correlations higher than 95th percentile, and to 0 otherwise (i.e., a sparse
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binary graph thresholded at 5% of density). Nodes correspond to cortical parcels as in [46] and

are grouped according to their cortical lobes. The frontoparietal and posterior cortical nodes

showing significant modulation of β1 and α1 connectivity strength, respectively (main text, Fig

5), are depicted in black. (B) Comparison of nodal degree centrality between each task interval

and rest using permutation tests. Degree centrality is defined as each node’s number of con-

nections (also referred to as node’s degree [44]). This measure quantifies relative importance

of nodes: Nodes having large number of connections, hence high degree centrality, can be con-

sidered as central coordinators in the functional network. In contrast to nodal connectivity

strength, nodal degree was not significantly modulated when tested across all cortical nodes

(brain surfaces; significance level: pFDR < 0.01). (C) Comparison of eigenvector centrality.

This metric is more specific than degree centrality as it also takes the relative importance of a

node’s neighbors into account. Eigenvector centrality of node i is equivalent to the ith element

in the eigenvector corresponding to the largest eigenvalue of the adjacency matrix. Nodes hav-

ing high eigenvector centrality are high-degree nodes whose neighbors also have relatively

large number of connections. Eigenvector centrality was not significantly modulated when

tested across all cortical nodes. The data underlying this figure can be found at https://osf.io/

ge2cq/. dlPFC, dorsolateral prefrontal cortex; FEF, frontal eye field; IFG, inferior frontal gyrus;

IPL, inferior parietal lobule; LH, left hemisphere; n.s., not significant; PSL, perisylvian language

area; RH, right hemisphere; STS, superior temporal sulcus.

(TIF)

S1 Table. Summary table of the generalized linear mixed-effects model predicting individ-

uals’ listening accuracy. In this model, brain regressors were based on the data during final

word period and within α1 band. Significant effects after FDR-correction for multiple compar-

isons across model terms are shown in blue. The main effects of and interactions between lis-

tening cues are visualized in Fig 2 (main text). The interaction between rest and task

connectivity is visualized in Fig 6. OR: odds ratio; σ2: within-group variance; τ00: between-

group variance; ρ01: random-slope-intercept-correlation. FDR, false discovery rate; OR, odds

ratio.

(TIF)

S2 Table. Summary table of the linear mixed-effects model predicting individuals’

response speed. In this model, brain regressors were based on the data during final word

period and within α1 band. Significant effects after FDR-correction for multiple comparisons

across model terms are shown in blue. The main effects of and interactions between listening

cues are visualized in Fig 2 (main text). β: slope parameter estimate; σ2: within-group variance;

τ00: between-group variance; ρ01: random-slope-intercept-correlation. FDR, false discovery

rate.

(TIF)

S3 Table. Summary table of the generalized linear mixed-effects model predicting individ-

uals’ listening accuracy. In this model, brain regressors were based on the data during final

word period and within α2 band. Significant effects after FDR-correction for multiple compar-

isons across model terms are shown in blue. OR: odds ratio; σ2: within-group variance; τ00:

between-group variance; ρ01: random-slope-intercept-correlation. FDR, false discovery rate;

OR, odds ratio.

(TIF)

S4 Table. Summary table of the linear mixed-effects model predicting individuals’

response speed. In this model, brain regressors were based on the data during final word

period and within α2 band. Significant effects after FDR-correction for multiple comparisons
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across model terms are shown in blue. β: slope parameter estimate; σ2: within-group variance;

τ00: between-group variance; ρ01: random-slope-intercept-correlation. FDR, false discovery

rate.

(TIF)

S5 Table. Summary table of the generalized linear mixed-effects model predicting individ-

uals’ listening accuracy. In this model, brain regressors were based on the data during spatial

cue and within β1 band. Significant effects after FDR-correction for multiple comparisons

across model terms are shown in blue. OR: odds ratio; σ2: within-group variance; τ00: between-

group variance; ρ01: random-slope-intercept-correlation. FDR, false discovery rate; OR, odds

ratio.

(TIF)

S6 Table. Summary table of the linear mixed-effects model predicting individuals’

response speed. In this model, brain regressors were based on the data during spatial cue

period and within β1 band. Significant effects after FDR-correction for multiple comparisons

across model terms are shown in blue. The main effects of and interactions between listening

cues are visualized in Fig 2 (main text). The interaction between rest and task connectivity is

visualized in Fig 6. β: slope parameter estimate; σ2: within-group variance; τ00: between-group

variance; ρ01: random-slope-intercept-correlation. FDR, false discovery rate.

(TIF)
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13. Wöstmann M, Alavash M, Obleser J. Alpha Oscillations in the Human Brain Implement Distractor Sup-

pression Independent of Target Selection. J Neurosci. 2019; 39(49):9797–805. https://doi.org/10.

1523/JNEUROSCI.1954-19.2019 PMID: 31641052

14. Weisz N, Muller N, Jatzev S, Bertrand O. Oscillatory alpha modulations in right auditory regions reflect

the validity of acoustic cues in an auditory spatial attention task. Cereb Cortex. 2014; 24(10):2579–90.

https://doi.org/10.1093/cercor/bht113 PMID: 23645711

15. Banerjee S, Snyder AC, Molholm S, Foxe JJ. Oscillatory alpha-band mechanisms and the deployment

of spatial attention to anticipated auditory and visual target locations: supramodal or sensory-specific

control mechanisms? J Neurosci. 2011; 31(27):9923–32. https://doi.org/10.1523/JNEUROSCI.4660-

10.2011 PMID: 21734284

16. Dai L, Best V, Shinn-Cunningham BG. Sensorineural hearing loss degrades behavioral and physiolog-

ical measures of human spatial selective auditory attention. Proc Natl Acad Sci U S A. 2018; 115(14):

E3286–95. https://doi.org/10.1073/pnas.1721226115 PMID: 29555752

17. Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: gating by inhibi-

tion. Front Hum Neurosci. 2010; 4:186. https://doi.org/10.3389/fnhum.2010.00186 PMID: 21119777

18. Van Diepen RM, Foxe JJ, Mazaheri A. The functional role of alpha-band activity in attentional process-

ing: the current zeitgeist and future outlook. Curr Opin Psychol. 2019; 29:229–38. https://doi.org/10.

1016/j.copsyc.2019.03.015 PMID: 31100655

19. Billig AJ, Billig AJ, Herrmann B, Rhone AE, Gander PE, Nourski KV, et al. A Sound-Sensitive Source

of Alpha Oscillations in Human Non-Primary Auditory Cortex. J Neurosci. 2019; 39(44):8679–89.

https://doi.org/10.1523/JNEUROSCI.0696-19.2019 PMID: 31533976

20. Popov T, Kastner S, Jensen O. FEF-Controlled Alpha Delay Activity Precedes Stimulus-Induced

Gamma-Band Activity in Visual Cortex. J Neurosci. 2017; 37(15):4117–27. https://doi.org/10.1523/

JNEUROSCI.3015-16.2017 PMID: 28314817

21. Marshall TR, Bergmann TO, Jensen O. Frontoparietal Structural Connectivity Mediates the Top-Down

Control of Neuronal Synchronization Associated with Selective Attention. PLoS Biol. 2015; 13(10):

e1002272. https://doi.org/10.1371/journal.pbio.1002272 PMID: 26441286

22. Bonnefond M, Kastner S, Jensen O. Communication between Brain Areas Based on Nested Oscilla-

tions. eNeuro. 2017; 4(2). https://doi.org/10.1523/ENEURO.0153-16.2017 PMID: 28374013

PLOS BIOLOGY Brain network adaptation for successful listening

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001410 October 11, 2021 28 / 32

https://doi.org/10.1001/jamainternmed.2013.1868
https://doi.org/10.1001/jamainternmed.2013.1868
http://www.ncbi.nlm.nih.gov/pubmed/23337978
https://doi.org/10.1093/gerona/glw069
http://www.ncbi.nlm.nih.gov/pubmed/27071780
https://doi.org/10.1073/pnas.1815321116
https://doi.org/10.1073/pnas.1815321116
http://www.ncbi.nlm.nih.gov/pubmed/30587584
https://doi.org/10.1073/pnas.1831638100
http://www.ncbi.nlm.nih.gov/pubmed/12958209
https://doi.org/10.1073/pnas.0700668104
https://doi.org/10.1073/pnas.0700668104
http://www.ncbi.nlm.nih.gov/pubmed/17670949
https://doi.org/10.1016/j.cub.2015.03.049
http://www.ncbi.nlm.nih.gov/pubmed/25936551
https://doi.org/10.3389/fpsyg.2011.00154
https://doi.org/10.3389/fpsyg.2011.00154
http://www.ncbi.nlm.nih.gov/pubmed/21779269
https://doi.org/10.1073/pnas.1523357113
https://doi.org/10.1073/pnas.1523357113
http://www.ncbi.nlm.nih.gov/pubmed/27001861
https://doi.org/10.1111/ejn.13862
https://doi.org/10.1111/ejn.13862
http://www.ncbi.nlm.nih.gov/pubmed/29430736
https://doi.org/10.1093/cercor/bhr232
https://doi.org/10.1093/cercor/bhr232
http://www.ncbi.nlm.nih.gov/pubmed/21893682
https://doi.org/10.1523/JNEUROSCI.1954-19.2019
https://doi.org/10.1523/JNEUROSCI.1954-19.2019
http://www.ncbi.nlm.nih.gov/pubmed/31641052
https://doi.org/10.1093/cercor/bht113
http://www.ncbi.nlm.nih.gov/pubmed/23645711
https://doi.org/10.1523/JNEUROSCI.4660-10.2011
https://doi.org/10.1523/JNEUROSCI.4660-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21734284
https://doi.org/10.1073/pnas.1721226115
http://www.ncbi.nlm.nih.gov/pubmed/29555752
https://doi.org/10.3389/fnhum.2010.00186
http://www.ncbi.nlm.nih.gov/pubmed/21119777
https://doi.org/10.1016/j.copsyc.2019.03.015
https://doi.org/10.1016/j.copsyc.2019.03.015
http://www.ncbi.nlm.nih.gov/pubmed/31100655
https://doi.org/10.1523/JNEUROSCI.0696-19.2019
http://www.ncbi.nlm.nih.gov/pubmed/31533976
https://doi.org/10.1523/JNEUROSCI.3015-16.2017
https://doi.org/10.1523/JNEUROSCI.3015-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28314817
https://doi.org/10.1371/journal.pbio.1002272
http://www.ncbi.nlm.nih.gov/pubmed/26441286
https://doi.org/10.1523/ENEURO.0153-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28374013
https://doi.org/10.1371/journal.pbio.3001410


23. Fiebelkorn IC, Kastner S. Functional specialization in the attention network. Annu Rev Psychol. 2020;

71:221–49. https://doi.org/10.1146/annurev-psych-010418-103429 PMID: 31514578

24. Engel AK, Gerloff C, Hilgetag CC, Nolte G. Intrinsic coupling modes: multiscale interactions in ongoing

brain activity. Neuron. 2013; 80(4):867–86. https://doi.org/10.1016/j.neuron.2013.09.038 PMID:

24267648

25. Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. Large-scale cortical correlation structure of

spontaneous oscillatory activity. Nat Neurosci. 2012; 15(6):884–90. https://doi.org/10.1038/nn.3101

PMID: 22561454

26. Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, et al. Investigating the

electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad

Sci U S A. 2011; 108(40):16783–8. https://doi.org/10.1073/pnas.1112685108 PMID: 21930901

27. Palva S, Palva JM. Discovering oscillatory interaction networks with M/EEG: challenges and break-

throughs. Trends Cogn Sci. 2012; 16(4):219–30. https://doi.org/10.1016/j.tics.2012.02.004 PMID:

22440830

28. Siegel M, Donner TH, Engel AK. Spectral fingerprints of large-scale neuronal interactions. Nat Rev

Neurosci. 2012; 13(2):121–34. https://doi.org/10.1038/nrn3137 PMID: 22233726

29. Hipp JF, Engel AK, Siegel M. Oscillatory synchronization in large-scale cortical networks predicts per-

ception. Neuron. 2011; 69(2):387–96. https://doi.org/10.1016/j.neuron.2010.12.027 PMID: 21262474

30. Friese U, Daume J, Goschl F, Konig P, Wang P, Engel AK. Oscillatory brain activity during multisen-

sory attention reflects activation, disinhibition, and cognitive control. Sci Rep. 2016; 6:32775. https://

doi.org/10.1038/srep32775 PMID: 27604647

31. Tamati TN, Gilbert JL, Pisoni DB. Some factors underlying individual differences in speech recognition

on PRESTO: a first report. J Am Acad Audiol. 2013; 24(7):616–34. https://doi.org/10.3766/jaaa.24.7.

10 PMID: 24047949

32. Mattys SL, Davis MH, Bradlow AR, Scott SK. Speech recognition in adverse conditions: A review.

Lang Cogn Neurosci. 2012; 27(7–8):953–78.

33. Shinn-Cunningham B. Cortical and Sensory Causes of Individual Differences in Selective Attention

Ability Among Listeners With Normal Hearing Thresholds. J Speech Lang Hear Res. 2017; 60

(10):2976–88. https://doi.org/10.1044/2017_JSLHR-H-17-0080 PMID: 29049598

34. Kimura D. Cerebral dominance and the perception of verbal stimuli. Can J Psychol. 1961; 15:166–71.

35. Broadbent DE, Gregory M. Accuracy of recognition for speech presented to the right and left ears. Q J

Exp Psychol. 1964; 16:359–60.

36. Siems M, Pape AA, Hipp JF, Siegel M. Measuring the cortical correlation structure of spontaneous

oscillatory activity with EEG and MEG. NeuroImage. 2016; 129:345–55. https://doi.org/10.1016/j.

neuroimage.2016.01.055 PMID: 26827813

37. Keitel A, Gross J. Individual human brain areas can be identified from their characteristic spectral acti-

vation fingerprints. PLoS Biol. 2016; 14(6):e1002498. https://doi.org/10.1371/journal.pbio.1002498

PMID: 27355236

38. Haegens S, Cousijn H, Wallis G, Harrison PJ, Nobre AC. Inter- and intra-individual variability in alpha

peak frequency. NeuroImage. 2014; 92:46–55. https://doi.org/10.1016/j.neuroimage.2014.01.049

PMID: 24508648

39. Clayton MS, Yeung N, Cohen Kadosh R. The many characters of visual alpha oscillations. Eur J Neu-

rosci. 2018; 48(7):2498–508. https://doi.org/10.1111/ejn.13747 PMID: 29044823

40. Obleser J, Weisz N. Suppressed alpha oscillations predict intelligibility of speech and its acoustic

details. Cereb Cortex. 2012; 22(11):2466–77. https://doi.org/10.1093/cercor/bhr325 PMID: 22100354

41. Haegens S, Nacher V, Luna R, Romo R, Jensen O. alpha-Oscillations in the monkey sensorimotor

network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc Natl

Acad Sci U S A. 2011; 108(48):19377–82. https://doi.org/10.1073/pnas.1117190108 PMID: 22084106

42. Sporns O, Betzel RF. Modular Brain Networks. Annu Rev Psychol. 2016; 67:613–40. https://doi.org/

10.1146/annurev-psych-122414-033634 PMID: 26393868

43. Sporns O. Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol.

2013; 23(2):162–71. https://doi.org/10.1016/j.conb.2012.11.015 PMID: 23294553

44. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations.

NeuroImage. 2010; 52(3):1059–69. https://doi.org/10.1016/j.neuroimage.2009.10.003 PMID:

19819337

45. Blondel S, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J

Stat Mech. 2008;P10008:6.

PLOS BIOLOGY Brain network adaptation for successful listening

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001410 October 11, 2021 29 / 32

https://doi.org/10.1146/annurev-psych-010418-103429
http://www.ncbi.nlm.nih.gov/pubmed/31514578
https://doi.org/10.1016/j.neuron.2013.09.038
http://www.ncbi.nlm.nih.gov/pubmed/24267648
https://doi.org/10.1038/nn.3101
http://www.ncbi.nlm.nih.gov/pubmed/22561454
https://doi.org/10.1073/pnas.1112685108
http://www.ncbi.nlm.nih.gov/pubmed/21930901
https://doi.org/10.1016/j.tics.2012.02.004
http://www.ncbi.nlm.nih.gov/pubmed/22440830
https://doi.org/10.1038/nrn3137
http://www.ncbi.nlm.nih.gov/pubmed/22233726
https://doi.org/10.1016/j.neuron.2010.12.027
http://www.ncbi.nlm.nih.gov/pubmed/21262474
https://doi.org/10.1038/srep32775
https://doi.org/10.1038/srep32775
http://www.ncbi.nlm.nih.gov/pubmed/27604647
https://doi.org/10.3766/jaaa.24.7.10
https://doi.org/10.3766/jaaa.24.7.10
http://www.ncbi.nlm.nih.gov/pubmed/24047949
https://doi.org/10.1044/2017%5FJSLHR-H-17-0080
http://www.ncbi.nlm.nih.gov/pubmed/29049598
https://doi.org/10.1016/j.neuroimage.2016.01.055
https://doi.org/10.1016/j.neuroimage.2016.01.055
http://www.ncbi.nlm.nih.gov/pubmed/26827813
https://doi.org/10.1371/journal.pbio.1002498
http://www.ncbi.nlm.nih.gov/pubmed/27355236
https://doi.org/10.1016/j.neuroimage.2014.01.049
http://www.ncbi.nlm.nih.gov/pubmed/24508648
https://doi.org/10.1111/ejn.13747
http://www.ncbi.nlm.nih.gov/pubmed/29044823
https://doi.org/10.1093/cercor/bhr325
http://www.ncbi.nlm.nih.gov/pubmed/22100354
https://doi.org/10.1073/pnas.1117190108
http://www.ncbi.nlm.nih.gov/pubmed/22084106
https://doi.org/10.1146/annurev-psych-122414-033634
https://doi.org/10.1146/annurev-psych-122414-033634
http://www.ncbi.nlm.nih.gov/pubmed/26393868
https://doi.org/10.1016/j.conb.2012.11.015
http://www.ncbi.nlm.nih.gov/pubmed/23294553
https://doi.org/10.1016/j.neuroimage.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19819337
https://doi.org/10.1371/journal.pbio.3001410


46. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E. A multi-modal parcellation

of human cerebral cortex. Nature. 2016; 536(7615):171–8. https://doi.org/10.1038/nature18933

PMID: 27437579

47. Dienes Z. Using Bayes to get the most out of non-significant results. Front Psychol. 2014; 5:781.

https://doi.org/10.3389/fpsyg.2014.00781 PMID: 25120503

48. Tewarie P, Hunt BAE, O’Neill GC, Byrne A, Aquino K, Bauer M, et al. Relationships Between Neuronal

Oscillatory Amplitude and Dynamic Functional Connectivity. Cereb Cortex. 2018.

49. Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M. Investigating large-scale brain dynamics

using field potential recordings: analysis and interpretation. Nat Neurosci. 2018; 21(7):903–19. https://

doi.org/10.1038/s41593-018-0171-8 PMID: 29942039

50. Colclough GL, Brookes MJ, Smith SM, Woolrich MW. A symmetric multivariate leakage correction for

MEG connectomes. NeuroImage. 2015; 117:439–48. https://doi.org/10.1016/j.neuroimage.2015.03.

071 PMID: 25862259

51. Miller EK, Buschman TJ. Cortical circuits for the control of attention. Curr Opin Neurobiol. 2013; 23

(2):216–22. https://doi.org/10.1016/j.conb.2012.11.011 PMID: 23265963

52. Engel AK, Fries P. Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol. 2010; 20

(2):156–65. https://doi.org/10.1016/j.conb.2010.02.015 PMID: 20359884

53. Spitzer B, Haegens S. Beyond the Status Quo: A Role for Beta Oscillations in Endogenous Content

(Re-) Activation. eNeuro. 2017: ENEURO.0170-17.2017. https://doi.org/10.1523/ENEURO.0170-17.

2017 PMID: 28785729

54. Siegel M, Buschman TJ, Miller EK. Cortical information flow during flexible sensorimotor decisions.

2015; 348. https://doi.org/10.1126/science.aab0551 PMID: 26089513

55. Buschman TJ, Denovellis EL, Diogo C, Bullock D, Miller EK. Synchronous oscillatory neural ensem-

bles for rules in the prefrontal cortex. Neuron. 2012; 76(4):838–46. https://doi.org/10.1016/j.neuron.

2012.09.029 PMID: 23177967

56. Salazar R, Dotson NM, Bressler SL, Gray CM. Contentspecific fronto-parietal synchronization during

visual working memory. Science. 2012; 338:1097–100. https://doi.org/10.1126/science.1224000

PMID: 23118014

57. Miller EK, Lundqvist M, Bastos AM. Working Memory 2.0. Neuron. 2018; 100(2):463–75. https://doi.

org/10.1016/j.neuron.2018.09.023 PMID: 30359609

58. Stanley DA, Roy JE, Aoi MC, Kopell NJ, Miller EK. Low-Beta oscillations turn up the gain during cate-

gory judgments. Cereb Cortex. 2016:1–15. https://doi.org/10.1093/cercor/bhu160 PMID: 25139941

59. Antzoulatos EG, Miller EK. Synchronous beta rhythms of frontoparietal networks support only behav-

iorally relevant representations. elife. 2016; 5. https://doi.org/10.7554/eLife.17822 PMID: 27841747

60. Spitzer B, Blankenburg F. Stimulus-dependent EEG activity reflects internal updating of tactile working

memory in humans. Proc Natl Acad Sci U S A. 2011; 108:8444–9. https://doi.org/10.1073/pnas.

1104189108 PMID: 21536865

61. Spitzer B, Fleck S, Blankenburg F. Parametric alpha- and beta-band signatures of supramodal numer-

osity information in human working memory. J Neurosci. 2014; 34(12):4293–302. https://doi.org/10.

1523/JNEUROSCI.4580-13.2014 PMID: 24647949

62. Kelly SP O’Connell RG. The neural processes underlying perceptual decision making in humans:

recent progress and future directions. J Physiol Paris. 2015; 109(1–3):27–37. https://doi.org/10.1016/

j.jphysparis.2014.08.003 PMID: 25204272

63. Siegel M, Engel AK, Donner TH. Cortical network dynamics of perceptual decision-making in the

human brain. Front Hum Neurosci. 2011; 5:21. https://doi.org/10.3389/fnhum.2011.00021 PMID:

21427777

64. Wimmer K, Ramon M, Pasternak T, Compte A. Transitions between Multiband Oscillatory Patterns

Characterize Memory-Guided Perceptual Decisions in Prefrontal Circuits. J Neurosci. 2016; 36

(2):489–505. https://doi.org/10.1523/JNEUROSCI.3678-15.2016 PMID: 26758840

65. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical microcircuits for pre-

dictive coding. Neuron. 2012; 76(4):695–711. https://doi.org/10.1016/j.neuron.2012.10.038 PMID:

23177956

66. Bastos AM, Vezoli J, Bosman CA, Schoffelen JM, Oostenveld R, Dowdall JR, et al. Visual areas exert

feedforward and feedback influences through distinct frequency channels. Neuron. 2015; 85(2):390–

401. https://doi.org/10.1016/j.neuron.2014.12.018 PMID: 25556836

67. Kopell N, Whittington MA, Kramer MA. Neuronal assembly dynamics in the beta1 frequency range

permits short-term memory. Proc Natl Acad Sci U S A. 2011; 108(9):3779–84. https://doi.org/10.1073/

pnas.1019676108 PMID: 21321198

PLOS BIOLOGY Brain network adaptation for successful listening

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001410 October 11, 2021 30 / 32

https://doi.org/10.1038/nature18933
http://www.ncbi.nlm.nih.gov/pubmed/27437579
https://doi.org/10.3389/fpsyg.2014.00781
http://www.ncbi.nlm.nih.gov/pubmed/25120503
https://doi.org/10.1038/s41593-018-0171-8
https://doi.org/10.1038/s41593-018-0171-8
http://www.ncbi.nlm.nih.gov/pubmed/29942039
https://doi.org/10.1016/j.neuroimage.2015.03.071
https://doi.org/10.1016/j.neuroimage.2015.03.071
http://www.ncbi.nlm.nih.gov/pubmed/25862259
https://doi.org/10.1016/j.conb.2012.11.011
http://www.ncbi.nlm.nih.gov/pubmed/23265963
https://doi.org/10.1016/j.conb.2010.02.015
http://www.ncbi.nlm.nih.gov/pubmed/20359884
https://doi.org/10.1523/ENEURO.0170-17.2017
https://doi.org/10.1523/ENEURO.0170-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/28785729
https://doi.org/10.1126/science.aab0551
http://www.ncbi.nlm.nih.gov/pubmed/26089513
https://doi.org/10.1016/j.neuron.2012.09.029
https://doi.org/10.1016/j.neuron.2012.09.029
http://www.ncbi.nlm.nih.gov/pubmed/23177967
https://doi.org/10.1126/science.1224000
http://www.ncbi.nlm.nih.gov/pubmed/23118014
https://doi.org/10.1016/j.neuron.2018.09.023
https://doi.org/10.1016/j.neuron.2018.09.023
http://www.ncbi.nlm.nih.gov/pubmed/30359609
https://doi.org/10.1093/cercor/bhu160
http://www.ncbi.nlm.nih.gov/pubmed/25139941
https://doi.org/10.7554/eLife.17822
http://www.ncbi.nlm.nih.gov/pubmed/27841747
https://doi.org/10.1073/pnas.1104189108
https://doi.org/10.1073/pnas.1104189108
http://www.ncbi.nlm.nih.gov/pubmed/21536865
https://doi.org/10.1523/JNEUROSCI.4580-13.2014
https://doi.org/10.1523/JNEUROSCI.4580-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24647949
https://doi.org/10.1016/j.jphysparis.2014.08.003
https://doi.org/10.1016/j.jphysparis.2014.08.003
http://www.ncbi.nlm.nih.gov/pubmed/25204272
https://doi.org/10.3389/fnhum.2011.00021
http://www.ncbi.nlm.nih.gov/pubmed/21427777
https://doi.org/10.1523/JNEUROSCI.3678-15.2016
http://www.ncbi.nlm.nih.gov/pubmed/26758840
https://doi.org/10.1016/j.neuron.2012.10.038
http://www.ncbi.nlm.nih.gov/pubmed/23177956
https://doi.org/10.1016/j.neuron.2014.12.018
http://www.ncbi.nlm.nih.gov/pubmed/25556836
https://doi.org/10.1073/pnas.1019676108
https://doi.org/10.1073/pnas.1019676108
http://www.ncbi.nlm.nih.gov/pubmed/21321198
https://doi.org/10.1371/journal.pbio.3001410


68. Lee JH, Whittington MA, Kopell NJ. Top-down beta rhythms support selective attention via interlami-

nar interaction: a model. PLoS Comput Biol. 2013; 9(8):e1003164. https://doi.org/10.1371/journal.

pcbi.1003164 PMID: 23950699

69. Fusi S, Miller EK, Rigotti M. Why neurons mix: high dimensionality for higher cognition. Curr Opin Neu-

robiol. 2016; 37:66–74. https://doi.org/10.1016/j.conb.2016.01.010 PMID: 26851755

70. Rigotti M, Barak O, Warden MR, Wang XJ, Daw ND, Miller EK, et al. The importance of mixed selectiv-

ity in complex cognitive tasks. Nature. 2013; 497(7451):585–90. https://doi.org/10.1038/nature12160

PMID: 23685452

71. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain

Res Rev. 2007; 53(1):63–88. https://doi.org/10.1016/j.brainresrev.2006.06.003 PMID: 16887192

72. Mathewson KE, Lleras A, Beck DM, Fabiani M, Ro T, Gratton G. Pulsed out of awareness: EEG alpha

oscillations represent a pulsed-inhibition of ongoing cortical processing. Front Psychol. 2011; 2:99.

https://doi.org/10.3389/fpsyg.2011.00099 PMID: 21779257

73. Palva S, Palva JM. Functional roles of alpha-band phase synchronization in local and large-scale corti-

cal networks. Front Psychol. 2011; 2:204. https://doi.org/10.3389/fpsyg.2011.00204 PMID: 21922012

74. Jensen O, Gips B, Bergmann TO, Bonnefond M. Temporal coding organized by coupled alpha and

gamma oscillations prioritize visual processing. Trends Neurosci. 2014; 37(7):357–69. https://doi.org/

10.1016/j.tins.2014.04.001 PMID: 24836381

75. de Pesters A, Coon WG, Brunner P, Gunduz A, Ritaccio AL, Brunet NM, et al. Alpha power indexes

task-related networks on large and small scales: A multimodal ECoG study in humans and a non-

human primate. NeuroImage. 2016; 134:122–31. https://doi.org/10.1016/j.neuroimage.2016.03.074

PMID: 27057960

76. Sadaghiani S, Kleinschmidt A. Brain Networks and alpha-Oscillations: Structural and Functional Foun-

dations of Cognitive Control. Trends Cogn Sci. 2016; 20:805–17. https://doi.org/10.1016/j.tics.2016.

09.004 PMID: 27707588

77. Palva S, Palva JM. New vistas for alpha-frequency band oscillations. Trends Neurosci. 2007; 30

(4):150–8. https://doi.org/10.1016/j.tins.2007.02.001 PMID: 17307258

78. Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud AL, D’Esposito M, et al. alpha-band

phase synchrony is related to activity in the fronto-parietal adaptive control network. J Neurosci. 2012;

32(41):14305–10. https://doi.org/10.1523/JNEUROSCI.1358-12.2012 PMID: 23055501

79. Sadaghiani S, Dombert PL, Lovstad M, Funderud I, Meling TR, Endestad T, et al. Lesions to the

Fronto-Parietal Network Impact Alpha-Band Phase Synchrony and Cognitive Control. Cereb Cortex.

2018.

80. Marshall TR, O’Shea J, Jensen O, Bergmann TO, et al. Frontal eye fields control attentional modula-

tion of alpha and gamma oscillations in contralateral occipitoparietal cortex. J Neurosci. 2015; 35

(4):1638–47. https://doi.org/10.1523/JNEUROSCI.3116-14.2015 PMID: 25632139

81. Capotosto P, Babiloni C, Romani GL, Corbetta M. Frontoparietal cortex controls spatial attention

through modulation of anticipatory alpha rhythms. J Neurosci. 2009; 29(18):5863–72. https://doi.org/

10.1523/JNEUROSCI.0539-09.2009 PMID: 19420253

82. Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud AL, Kleinschmidt A. Intrinsic connectivity

networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional

magnetic resonance imaging study. J Neurosci. 2010; 30(30):10243–50. https://doi.org/10.1523/

JNEUROSCI.1004-10.2010 PMID: 20668207

83. Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci. 2002; 3

(2):142–51. https://doi.org/10.1038/nrn730 PMID: 11836522

84. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the

basis of the fMRI signal. Nature. 2001; 412(6843):150–7. https://doi.org/10.1038/35084005 PMID:

11449264

85. Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008; 453(7197):869–78.

https://doi.org/10.1038/nature06976 PMID: 18548064

86. Kucyi A, Schrouff J, Bickel S, Foster BL, Shine JM, Parvizi J. Intracranial Electrophysiology Reveals

Reproducible Intrinsic Functional Connectivity within Human Brain Networks. J Neurosci. 2018; 38

(17):4230–42. https://doi.org/10.1523/JNEUROSCI.0217-18.2018 PMID: 29626167

87. Schölvinck M, Maier A, Ye FQ, Duyn JH, Leopold DA. Neural basis of global resting-state fMRI activity.

Proc Natl Acad Sci U S A. 2010; 107(22):10238–43. https://doi.org/10.1073/pnas.0913110107 PMID:

20439733

88. He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME. Electrophysiological correlates of the brain’s

intrinsic large-scale functional architecture. Proc Natl Acad Sci U S A. 2008; 105(41):16039–44.

https://doi.org/10.1073/pnas.0807010105 PMID: 18843113

PLOS BIOLOGY Brain network adaptation for successful listening

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001410 October 11, 2021 31 / 32

https://doi.org/10.1371/journal.pcbi.1003164
https://doi.org/10.1371/journal.pcbi.1003164
http://www.ncbi.nlm.nih.gov/pubmed/23950699
https://doi.org/10.1016/j.conb.2016.01.010
http://www.ncbi.nlm.nih.gov/pubmed/26851755
https://doi.org/10.1038/nature12160
http://www.ncbi.nlm.nih.gov/pubmed/23685452
https://doi.org/10.1016/j.brainresrev.2006.06.003
http://www.ncbi.nlm.nih.gov/pubmed/16887192
https://doi.org/10.3389/fpsyg.2011.00099
http://www.ncbi.nlm.nih.gov/pubmed/21779257
https://doi.org/10.3389/fpsyg.2011.00204
http://www.ncbi.nlm.nih.gov/pubmed/21922012
https://doi.org/10.1016/j.tins.2014.04.001
https://doi.org/10.1016/j.tins.2014.04.001
http://www.ncbi.nlm.nih.gov/pubmed/24836381
https://doi.org/10.1016/j.neuroimage.2016.03.074
http://www.ncbi.nlm.nih.gov/pubmed/27057960
https://doi.org/10.1016/j.tics.2016.09.004
https://doi.org/10.1016/j.tics.2016.09.004
http://www.ncbi.nlm.nih.gov/pubmed/27707588
https://doi.org/10.1016/j.tins.2007.02.001
http://www.ncbi.nlm.nih.gov/pubmed/17307258
https://doi.org/10.1523/JNEUROSCI.1358-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23055501
https://doi.org/10.1523/JNEUROSCI.3116-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25632139
https://doi.org/10.1523/JNEUROSCI.0539-09.2009
https://doi.org/10.1523/JNEUROSCI.0539-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19420253
https://doi.org/10.1523/JNEUROSCI.1004-10.2010
https://doi.org/10.1523/JNEUROSCI.1004-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20668207
https://doi.org/10.1038/nrn730
http://www.ncbi.nlm.nih.gov/pubmed/11836522
https://doi.org/10.1038/35084005
http://www.ncbi.nlm.nih.gov/pubmed/11449264
https://doi.org/10.1038/nature06976
http://www.ncbi.nlm.nih.gov/pubmed/18548064
https://doi.org/10.1523/JNEUROSCI.0217-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/29626167
https://doi.org/10.1073/pnas.0913110107
http://www.ncbi.nlm.nih.gov/pubmed/20439733
https://doi.org/10.1073/pnas.0807010105
http://www.ncbi.nlm.nih.gov/pubmed/18843113
https://doi.org/10.1371/journal.pbio.3001410


89. Scheeringa R, Fries P, Petersson KM, Oostenveld R, Grothe I, Norris DG, et al. Neuronal dynamics

underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD sig-

nal. Neuron. 2011; 69(3):572–83. https://doi.org/10.1016/j.neuron.2010.11.044 PMID: 21315266

90. Liu Z, de Zwart JA, Chang C, Duan Q, van Gelderen P, Duyn JH, et al. Neuroelectrical decomposition

of spontaneous brain activity measured with functional magnetic resonance imaging. Cereb Cortex.

2014; 24(11):3080–9. https://doi.org/10.1093/cercor/bht164 PMID: 23796947

91. Tewarie P, Bright MG, Hillebrand A, Robson SE, Gascoyne LE, Morris PG, et al. Predicting haemody-

namic networks using electrophysiology: The role of non-linear and cross-frequency interactions. Neu-

roImage. 2016; 130:273–92. https://doi.org/10.1016/j.neuroimage.2016.01.053 PMID: 26827811

92. Farahibozorg SR, Henson RN, Hauk O. Adaptive cortical parcellations for source reconstructed EEG/

MEG connectomes. NeuroImage. 2018; 169:23–45. https://doi.org/10.1016/j.neuroimage.2017.09.

009 PMID: 28893608

93. Arnulfo G, Wang SH, Myrov V, Toselli B, Hirvonen J, Fato MM, et al. Long-range phase synchroniza-

tion of high-frequency oscillations in human cortex. Nat Commun. 2020; 11(1):5363. https://doi.org/10.

1038/s41467-020-18975-8 PMID: 33097714

94. Tune S, Alavash M, Fiedler L, Obleser J. Neural attentional-filter mechanisms of listening success in

middle-aged and older individuals. Nat Commun. 2021; 12(1):4533. https://doi.org/10.1038/s41467-

021-24771-9 PMID: 34312388

95. Schoffelen JM, Gross J. Source connectivity analysis with MEG and EEG. Hum Brain Mapp. 2009; 30

(6):1857–65. https://doi.org/10.1002/hbm.20745 PMID: 19235884

96. O’Neill GC, Tewarie PK, Colclough GL, Gascoyne LE, Hunt BA, Morris PG, et al. Measuring

electrophysiological connectivity by power envelope correlation: a technical review on MEG methods.

Phys Med Biol. 2015; 60(21):R271–95. https://doi.org/10.1088/0031-9155/60/21/R271 PMID:

26447925

97. Palva JM, Wang SH, Palva S, Zhigalov A, Monto S, Brookes MJ, et al. Ghost interactions in MEG/

EEG source space: A note of caution on inter-areal coupling measures. NeuroImage. 2018; 173:632–

43. https://doi.org/10.1016/j.neuroimage.2018.02.032 PMID: 29477441

98. Jefferies K, Gale TM. Six-Item Cognitive Impairment Test (6CIT). Cognitive Screening Instruments.

London: Springer. 2013: p. 209–218.

99. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics

including independent component analysis. J Neurosci Methods. 2004; 134(1):9–21. https://doi.org/

10.1016/j.jneumeth.2003.10.009 PMID: 15102499

100. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis

of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011; 2011:156869.

https://doi.org/10.1155/2011/156869 PMID: 21253357

101. van Diessen E, Numan T, van Dellen E, van der Kooi AW, Boersma M, Hofman D. Opportunities and

methodological challenges in EEG and MEG resting state functional brain network research. Clin Neu-

rophysiol. 2015; 126(8):1468–81. https://doi.org/10.1016/j.clinph.2014.11.018 PMID: 25511636

102. Mehrkanoon S, Breakspear M, Britz J, Boonstra TW. Intrinsic coupling modes in source-reconstructed

electroencephalography. Brain Connect. 2014; 4(10):812–25. https://doi.org/10.1089/brain.2014.

0280 PMID: 25230358
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