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Abstract: In the past five years, pluripotent stem cell (PSC)-derived kidney organoids and adult
stem or progenitor cell (ASC)-based kidney tubuloids have emerged as advanced in vitro models
of kidney development, physiology, and disease. PSC-derived organoids mimic nephrogenesis.
After differentiation towards the kidney precursor tissues ureteric bud and metanephric mesenchyme,
their reciprocal interaction causes self-organization and patterning in vitro to generate nephron
structures that resemble the fetal kidney. ASC tubuloids on the other hand recapitulate renewal and
repair in the adult kidney tubule and give rise to long-term expandable and genetically stable cultures
that consist of adult proximal tubule, loop of Henle, distal tubule, and collecting duct epithelium.
Both organoid types hold great potential for: (1) studies of kidney physiology, (2) disease modeling,
(3) high-throughput screening for drug efficacy and toxicity, and (4) regenerative medicine. Currently,
organoids and tubuloids are successfully used to model hereditary, infectious, toxic, metabolic,
and malignant kidney diseases and to screen for effective therapies. Furthermore, a tumor tubuloid
biobank was established, which allows studies of pathogenic mutations and novel drug targets in a
large group of patients. In this review, we discuss the nature of kidney organoids and tubuloids and
their current and future applications in science and medicine.
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1. Introduction

Kidney disease affects around 15% of the population and is accompanied by a substantial increase
in morbidity and mortality [1]. New therapeutic approaches are urgently needed, but their development
is hampered by the high complexity of the kidney. Human primary and immortalized cell lines have
enabled detailed investigation of specific cell types, but lack histological characteristics of the kidney.
Furthermore, immortalization interferes with the assessment of the cell cycle and related diseases.
On the other hand, animal experiments provide a more physiological model, but are troubled by
ethical issues and translational constraints due to interspecies differences. To further advance our
understanding of renal pathophysiology and facilitate the development of novel and personalized
therapies, advanced in vitro models that use patient-derived renal tissue and better mimic the nephron
are required.
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In the past decade, organoid cultures have rapidly emerged as a powerful in vitro model for
many different organs. Organoids are three-dimensional (3D) multicellular cultures that resemble the
structure, physiology and diseases of their organ of origin. These cultures are generated from either
pluripotent stem cells (PSC) or adult stem or progenitor cells (ASC), two complementary techniques
with their own characteristics and specific fields of application. Organoids have been established
from organs within the digestive tract, airways, urogenital tract, reproductive system, and central
nervous system. Both organoid types have been used to study organ physiology and disease and
to test new interventions including drugs and gene therapy. Drug efficacy screenings have been
performed in biobanks containing organoids from large groups of patients to find a general treatment
for a heterogenic patient population, and in organoids from specific patients to provide personalized
medicine. Furthermore, the possibility to use organoid-based cells and tissues in regenerative medicine
is being explored [2,3].

In the past five years, the processes of nephrogenesis and homeostasis and regeneration in the
adult kidney have been recapitulated in the laboratory to generate PSC and ASC-derived kidney
organoids [4–9]. These organoids hold great potential to improve our understanding of kidney disease
and facilitate the discovery of new therapeutic options. In this review, we will first briefly summarize
the complex architecture and physiology of the kidney to stress the key advantages of organoids
in nephrology. Next, we will discuss renal development, homeostasis, and regeneration, as these
processes guide organoid culture. Finally, we will focus on the nature of PSC and ASC-derived kidney
organoids and their current and future applications in science and medicine.

2. Kidney Physiology, Development and Regeneration

2.1. Renal Anatomy and Physiology

A human kidney consists of intricate functional units named nephrons that originate in the renal
cortex and stretch out into the renal medulla. Nephrons are responsible for most functions of the
kidney, including (1) regulation of electrolyte, acid-base, and volume homeostasis, (2) filtration and
excretion of toxins, metabolic waste products, and xenobiotics, whilst reabsorbing nutrients, water and
electrolytes from the filtrate, (3) endocrine activity, and (4) interaction with the sympathetic nervous
system. The nephron consists of over 20 different cell types that cluster in five major segments, each
with their specialized functions (Figure 1). The first segment is the glomerulus, a size and electric
charge-specific barrier that filtrates plasma to create pro-urine. The glomerular filtration barrier is
formed by fenestrated endothelial cells, a basement membrane and the foot processes of podocytes.
The parietal epithelial cells in Bowman’s capsule are continuous with the epithelium of the proximal
tubule. The proximal tubule has a leaky epithelium and employs a wide array of specialized transporters
to reabsorb the bulk of the filtered water, electrolytes, bicarbonate, and nutrients. This segment also
excretes toxins and xenobiotics. In addition, vitamin D is activated in the proximal tubule. The next
segment is the loop of Henle, which descends into the renal medulla and then ascends back into the
cortex. The descending limb mostly reabsorbs water, whereas the ascending limb and the following
distal tubule are mainly involved in electrolyte reabsorption. The final part of the nephron is the
collecting duct, which consists of principal cells and intercalated cells. Principal cells reabsorb water
and sodium (in exchange for potassium) under regulation of vasopressin and aldosterone, respectively.
Intercalated cells subdivide in α- and β-intercalated cells, which specialize in respectively proton and
bicarbonate excretion to maintain acid-base homeostasis. Although nephron epithelium is responsible
for the majority of functions, stromal cells also have important roles. For example, pericytes support
peritubular capillaries and mesangial cells organize glomerular capillary loops and remove debris.
Furthermore, smooth muscle cells regulate vascular tone in the arterioles. These cells are required
to sustain the renal vasculature, which is indispensable for filtration, excretion, and reabsorption.
The complex architecture of the renal epithelium and vasculature are reinforced by the fibroblast-rich
renal interstitium, which also hosts immune cells. Two particularly intriguing stromal populations are
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specialized peritubular fibroblasts that produce the hormone erythropoietin and juxtaglomerular cells
around the afferent arteriole that secrete renin.
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Figure 1. Summary of the main filtration, reabsorption, excretion and endocrine processes across the 
nephron. Important hormones and mechanisms that regulate these functions are depicted in grey. 
ANP = atrial natriuretic peptide. BNP = brain natriuretic peptide. PTH = parathyroid hormone. 
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million nephrons per kidney, with large variations between individuals. The kidney is derived from 
the mesoderm germ layer, more specifically from the anterior mesoderm-derived ureteric bud (UB) 
and posterior mesoderm-derived metanephric mesenchyme (MM) precursor tissues. The UB and 
MM exchange reciprocal signals to induce, maintain, and complete nephrogenesis (Figure 2). This 
process starts with budding outgrowth from the nephric duct (or Wolffian duct) under the influence 
of signals (mainly glial cell line-derived neurotrophic factor, GDNF) from the surrounding MM. The 
budding forms the UB, which starts to sprout into the MM. The surrounding MM condenses around 
the sprouting UB tips to form the SIX2+ cap mesenchyme (CM). A positive feedback loop between 
CM secreted GDNF and Wnt11 from the UB tip ensures further dichotomous sprouting of the UB to 
eventually form the collecting ducts and ureters. In the meantime, the UB also secretes Wnt9b, which 
causes CM cells to differentiate to the pretubular aggregate (PA). In the PA, fibroblast growth factor 
(FGF) 8 and Wnt4 signals induce LIM homeobox 1, which in turn initiates mesenchymal-to-epithelial 
transition. This results in formation of a lumen: the renal vesicle (RV) stage. The RV subsequently 
starts to bend, elongate, and pattern to generate the comma-shaped body and subsequently the S-
shaped body. Various signals are involved in the patterning process, including Wnt4, FGF and Notch 
signaling. In the S-shaped body, production of vascular endothelial growth factor isoforms attracts 
endothelial cells to the proximal part to ultimately form the glomerulus. Endothelial cells in turn 
produce platelet-derived growth factor subunit B to attract mesangial progenitor cells that organize 
endothelial cells in glomerular capillary loops. The S-shaped body continues to differentiate and 
transforms into the mature nephron [10–12]. The stromal part of the kidney derives from forkhead 
box D1 (FOXD1)+ stromal progenitors that emerge in the periphery of the metanephric mesenchyme 
and to a lesser extent invading TBX18+ progenitors. These FOXD1+ and TBX18+ cells give rise to 
fibroblasts, smooth muscle, pericytes, and mesangial cells. Furthermore, during kidney development, 

Figure 1. Summary of the main filtration, reabsorption, excretion and endocrine processes across the
nephron. Important hormones and mechanisms that regulate these functions are depicted in grey.
ANP = atrial natriuretic peptide. BNP = brain natriuretic peptide. PTH = parathyroid hormone.

2.2. Nephrogenesis

Nephron formation takes place during gestation and results in the generation of on average
1 million nephrons per kidney, with large variations between individuals. The kidney is derived from
the mesoderm germ layer, more specifically from the anterior mesoderm-derived ureteric bud (UB)
and posterior mesoderm-derived metanephric mesenchyme (MM) precursor tissues. The UB and MM
exchange reciprocal signals to induce, maintain, and complete nephrogenesis (Figure 2). This process
starts with budding outgrowth from the nephric duct (or Wolffian duct) under the influence of signals
(mainly glial cell line-derived neurotrophic factor, GDNF) from the surrounding MM. The budding
forms the UB, which starts to sprout into the MM. The surrounding MM condenses around the sprouting
UB tips to form the SIX2+ cap mesenchyme (CM). A positive feedback loop between CM secreted
GDNF and Wnt11 from the UB tip ensures further dichotomous sprouting of the UB to eventually
form the collecting ducts and ureters. In the meantime, the UB also secretes Wnt9b, which causes
CM cells to differentiate to the pretubular aggregate (PA). In the PA, fibroblast growth factor (FGF)
8 and Wnt4 signals induce LIM homeobox 1, which in turn initiates mesenchymal-to-epithelial
transition. This results in formation of a lumen: the renal vesicle (RV) stage. The RV subsequently
starts to bend, elongate, and pattern to generate the comma-shaped body and subsequently the
S-shaped body. Various signals are involved in the patterning process, including Wnt4, FGF and
Notch signaling. In the S-shaped body, production of vascular endothelial growth factor isoforms
attracts endothelial cells to the proximal part to ultimately form the glomerulus. Endothelial cells
in turn produce platelet-derived growth factor subunit B to attract mesangial progenitor cells that
organize endothelial cells in glomerular capillary loops. The S-shaped body continues to differentiate
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and transforms into the mature nephron [10–12]. The stromal part of the kidney derives from forkhead
box D1 (FOXD1)+ stromal progenitors that emerge in the periphery of the metanephric mesenchyme
and to a lesser extent invading TBX18+ progenitors. These FOXD1+ and TBX18+ cells give rise to
fibroblasts, smooth muscle, pericytes, and mesangial cells. Furthermore, during kidney development,
the stromal population provides cues (e.g., GDNF) that modulate UB branching and cap mesenchyme
differentiation [13–19]. Nephron formation permanently ceases around week 36 of gestation.
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Figure 2. Brief overview of kidney development and some of the key signals that regulate specific steps.
The top figures display induction and maintenance of ureteric bud branching. The bottom figures
display the transition of mesenchyme to epithelial structures and subsequent elongation, patterning and
vascularization to generate the full nephron. ND = nephric duct. UB = ureteric bud. MM = metanephric
mesenchyme. CM = cap mesenchyme. PA = pretubular aggregate. MET = mesenchymal-to-epithelial
transition. RV = renal vesicle. CSB = comma-shaped body. SSB = S-shaped body. GDNF = glial cell
line-derived neurotrophic factor. FGF8 = fibroblast growth factor 8. VEGFA = vascular endothelial
growth factor A.

2.3. Injury and Regeneration in the Adult Kidney

During homeostasis, the kidney shows a low rate of proliferation. However, upon injury, the tubular
part of the nephron has significant capacity to repair itself by a burst of proliferation [20]. Various studies
suggest that this process is mediated by proliferating tubular epithelial cells that are characterized by
CD24, CD133, Vimentin, SOX9, CD44, and possibly PAX2 expression [21–30]. These proteins could
mark either a constitutively present population of progenitor cells that activate during renewal and
repair, or mark a stem cell state that differentiated cells could adapt, as is the case for several other
organs [31,32]. This remains a matter of debate in the field [20,25,33]. An elegant lineage tracing study
provides insight in this matter. Kusaba and colleagues found that labeled SLC34A1+ differentiated
proximal tubule cells start to proliferate and repair that segment after ischemia reperfusion injury.
During this process, labeled cells downregulated SLC34A1 and upregulated CD24, CD133, and Vimentin.
These data indicate that a plastic process of dedifferentiation, proliferation, and redifferentiation
is responsible for renal repair, at least in the proximal tubule [24,25]. This is in line with other
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studies that also advocate a process of plasticity rather than a constitutively present progenitor
population [21,22,34–36]. Based on these findings, CD24, CD133, Vimentin, and probably the other
aforementioned markers (CD44, SOX9, PAX2) appear to mark a progenitor state that differentiated
cells can adopt upon damage (Figure 3). Another question is whether tubular repair is mediated
by segment-committed or more promiscuous progenitors. Rinkevich and colleagues used inducible
Confetti labeling to trace the fate of tubular epithelial clones during nephrogenesis and both homeostasis
and repair in the adult kidney. Labeled clones predominantly expanded in a proximal tubule, loop of
Henle, distal tubule, or collecting duct-committed manner. Interestingly, Wnt signaling appears
important in tubular regeneration, since clones expressing the Wnt target gene Axin2 established larger
clonal populations upon damage than unselected labeled cells. Wnt-responsive cells contributed only
to proximal tubules and collecting ducts [37]. Other studies support an important role for Wnt in the
adult kidney as well [38]. Segment-committed Wnt-responsive progenitors also play a role during
nephrogenesis, where LGR5+ cells arise during the S-shaped body stage and contribute to formation of
the loop of Henle and distal tubule [39]. Besides Wnt, other signaling pathways contribute to tubular
epithelial regeneration as well, especially tyrosine kinase signals including epidermal growth factor
(EGF), FGFs, and insulin-like growth factor 1. These signals require precise timing and dosing as
overexposure can result in maladaptive repair with subsequent fibrosis [40,41].
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Figure 3. Proposed mechanism for regeneration in the adult proximal tubule. Upon injury, generic
differentiated epithelial cells dedifferentiate, proliferate and redifferentiate to repair the damage.
During this process, differentiated cells lose markers of differentiation (e.g., the brush border, specific
transporters) and upregulate markers that indicate a stem or progenitor cell state (CD24, CD133,
Vimentin and probably CD44, SOX9 and PAX2 as well).

Acute kidney injury (AKI) can result from numerous causes, including nephrotoxic agents,
ischemia, infections, immune-mediated tubulo-interstitial nephritis and auto-immune disease.
Although the kidney has a high regenerative ability, damage can surpass this capacity and become
irreversible, resulting in permanent loss of nephrons. Nonetheless, the accompanying decline in kidney
function is often ameliorated by compensatory hypertrophy of the remaining nephrons. Repeated AKI
episodes and more insidious chronic damage (e.g., hypertension or diabetic nephropathy) can exceed
the compensatory potential of the kidney and/or elicit maladaptive repair, both leading to chronic
kidney disease (CKD). This is a common endpoint characterized by epithelial senescence, pericyte
detachment, accumulation of myofibroblasts, loss of microvasculature, and progressive fibrosis. One of
the suspected driving factors are senescent epithelial cells that adopt a profibrotic and proinflammatory
secretory phenotype. Senescent cells arise from proliferating cells that are ageing or that face DNA
damage and subsequent cell cycle arrest without adequate repair or initiation of apoptosis. The origin
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of pathogenic myofibroblasts is debated, and suspected sources include pericytes and interstitial
fibroblasts. Episodes of AKI increase the risk of CKD, but also vice versa [13,42–49].

3. Kidney Organoids and Tubuloids

The intricate architecture and the many cell types and complex interactions involved in kidney
development, repair and function require advanced tools for in-depth studies. Kidney organoids and
tubuloids are established from respectively PSC and ASC. These are 3D multicellular structures that
more accurately resemble the complex architecture and composition of the kidney in vivo than cell lines.
Both organoid types also better reflect human physiology and disease compared to animal models
and allow personalized medicine and high-throughput drug screening. In the following paragraphs,
kidney organoids and tubuloids will be discussed in detail.

3.1. Pluripotent Stem Cell-Derived Kidney Organoids

3.1.1. Sources of Pluripotent Stem Cells

Pluripotent stem cell-derived organoids are established from either embryonic stem cells (ESC)
or induced PSC (iPSC). Embryonic stem cells were first isolated and cultured in vitro from mouse
embryos in 1981 and from human blastocysts in 1998 [50–52]. These are self-renewing cells that have
the potential to differentiate into cell types of all germ layers (endoderm, mesoderm and ectoderm) [52].
In 2006 and 2007, iPSC that harbor the same potency for self-renewal and differentiation as ESC
were generated by dedifferentiating mouse and human fibroblasts via retroviral transfection with
four transcription factors: Sox2, Oct3/4, Klf4, and c-Myc [53,54]. The development of iPSC took away
the ethical concerns of ESC and provided an autologous cell source. Since then, innovative novel
reprogramming techniques have been developed and used, including non-genome-integrating viruses,
plasmids, micro RNAs, synthetic messenger RNAs, and the injection of recombinant proteins [55–63].
Many cell types can be reprogrammed to iPSC, including relatively easily accessible skin fibroblasts,
adipocytes, peripheral blood cells and epithelial cells from urine [63,64]. The latter is advantageous
because the procedure is non-invasive. Furthermore, since the epigenetic memory of donor cells
influences iPSC differentiation, the use of (urine-derived) renal cells appears favorable for the creation
of kidney organoids [65,66].

3.1.2. Generation and Characterization of Pluripotent Stem Cell-Derived Kidney Organoids

In vivo studies have greatly expanded our knowledge about nephrogenesis and are the foundation
of differentiation protocols that allow generation of kidney organoids from iPSC. Based on these studies,
it is known that the reciprocal interaction between UB and MM that is governed by growth factors
secreted by these populations (e.g., Wnt11, Wnt9b, FGF) is essential for nephrogenesis. These signals are
mimicked in vitro to push iPSC towards primitive streak and intermediate mesoderm and subsequently
towards UB, MM or both. The UB and MM populations then interact with one another, resulting in
further differentiation and self-organization into nephron structures [4–7,67–78]. To date, various well
characterized protocols to generate kidney organoids are available. The predominant factor used in these
protocols is the activation of canonical Wnt signaling, mostly via CHIR99021 [4–7,11]. The duration of
Wnt signaling determines whether UB or MM becomes the most dominant population, though often an
intermediate condition is used to obtain both populations. Consecutive addition of FGF9 then enables
MM patterning. Together, this results in the formation of complex multicellular 3D renal organoids
that consist of approximately 500 nephron-like structures [74]. Further protocol refinement allowed
more selective differentiation into UB and MM alone. Subsequent combination of separately cultured
UB and MM populations with embryonal stromal cells resulted in higher-order organized mouse renal
organoids with an interconnected urine collecting system. The stromal population appears to provide
one of the distinct cues essential to generate high-order organogenesis in rodent organoids [76].
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Organoids have been extensively characterized. Single cell RNA-sequencing revealed that
organoids contain developing podocytes, parietal epithelial cells, proximal tubules, loops of Henle,
distal tubules, collecting ducts, and interstitial, endothelial, and stromal cells. Underrepresented or
missing cell types include mesangial cells, immune cells, glomerular endothelium, principal and
intercalated cells [79–81]. Transcriptome comparison revealed that current iPSC-derived organoids
resemble first or second trimester fetal kidney tissue. Interestingly, early and late clusters of developing
podocytes and proximal tubule cells were detected, indicating heterogeneous development [74,79–84].
On the protein level, physiological arrangement of the various nephron segments was shown using
stainings for various podocyte markers (e.g., nephrin, podocalyxin, WT1), Lotus Tetragonolobus lectin to
mark proximal tubules, and E-Cadherin minus and plus GATA3 to identify respectively distal tubules
and developing collecting ducts [67,74,76,78]. Moreover, several proteins required for glomerular
and tubular function were present. Organoid podocytes express a range of proteins required for
glomerular function (e.g., nephrin, podocin, podocalyxin, synaptopodin) which are nearly absent in
conventional 2D podocyte cell lines. Confirmed tubular transport proteins include megalin, cubulin,
Na-K-Cl cotransporter 2, and calbindin-1 [67,74,76,79–84]. Stromal populations were identified as well.
The expression of FOXD1 and MEIS1 indicated the presence of cortical and medullary interstitial cells
and probably pericytes in close proximity to the endothelium [74,76,85].

The functionality of PSC organoids is less thoroughly investigated [86]. So far, proximal tubule
endocytic receptor function was shown by dextran uptake [74]. Furthermore, the uptake of fluorescent
methotrexate is suggestive of organic anion transporter function, although the expression of drug
transport proteins was not detected [4,67,86]. Other proximal tubule functions and transport of
electrolytes or water reabsorption in the more distal parts of the nephron were not yet shown.

Various novel strategies emerged to further characterize and mature organoids. High-throughput
screens were developed that expedite improvement of differentiation in terms of growth factor
concentrations, timing and duration. Minor concentration changes in factors such as CHIR99021 or
FGF9 have major effects on the proportion of UB, MM, and early proximal and distal nephron cells [80,87].
To better understand and characterize complex cell fate dynamics of human kidney development in
organoids, genetic tools were established during the past years [82,88–92]. Using a SIX2+ reporter line,
it was shown that SIX2+ progenitor cells contribute to proximal nephron formation, but are not involved
in collecting duct development [92]. In addition, SIX2:CITED1, MAFB:GATA3, and LRP2:HNF4α dual
reporter lines were successfully generated to monitor podocyte, proximal tubule and collecting duct
development [91]. Another approach is organoid implementation in microfluidics systems. Superfusion
enhanced the number of endothelial vessels and improved podocyte characteristics [87,93]. Besides
in vitro approaches, xenograft transplantation to mice resulted in improved maturation of organoid
tissue (e.g., expression of Na-Cl cotransporter and aquaporin 2) [94,95]. Knowledge obtained from
these studies is highly valuable to understand what signaling pathways are required to improve
in vitro maturation. Taken together, recent developments in single cell RNA-sequencing combined with
high-throughput (microfluidic) platforms, lineage tracing and transplantation with maturation in vivo
are excellent combinations to acquire insights that advance organoid differentiation and reproducibility
and permit detailed validation of new protocols.

3.1.3. Applications

Organoids derived from iPSC allow detailed studies of the (patho)physiology of renal development,
screening for compound nephrotoxicity or teratogenesis, and potentially implementation in renal
replacement therapies. As extensively reviewed by Koning et al., various congenital disorders have
been successfully studied using organoids, including polycystic kidney disease (PKD1, PKD2),
congenital nephrotic syndrome (NPHS1), podocalyxin mutations, and nephronophthisis-related
ciliopathy (IFT140) [96]. Other examples of disease modeling include the metabolic disease cystinosis
and Mucin-1 kidney disease. Cystinotic organoids were established from patient-derived PSC and
recapitulated typical pathophysiologic features, including elevated cystine levels and perturbed
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autophagy. Upon drug testing, the mTOR inhibitor everolimus was found to provide additional
beneficial effects when combined with the current standard therapy cysteamine [97]. Another group
developed kidney organoids from patients suffering from tubulo-interstitial disease caused by a
mutation in the MUC-1 gene. Mutant organoids showed Mucin-1 protein retention in vesicles of the
early secretory compartment in kidney epithelial cells, which could be reversed by a small molecule
that enabled the lysosomal degradation of the mutant protein. The molecular mechanism as well
as the therapeutic effect of this compound were confirmed in organoids, patient cells and mice [98].
Renal fibrosis has been investigated as well. Lemos and co-workers resolved that interleukin-1β can
induce a MYC-dependent metabolic switch that results in renal tubulointerstitial fibrosis in vivo and
in vitro. In kidney organoids, interleukin-1β caused proximal tubule damage (upregulation of kidney
injury molecule 1) and stimulated MYC-dependent activation of stromal cells and differentiation
towards pro-fibrotic myofibroblasts [85]. A recent translational study focused on glomerulopathies.
The authors found that the single cell transcriptome of glomerular cells (podocytes and parietal
epithelial cells) in kidney organoids shares signatures with the developmental kidney. Interestingly,
a similar signature (increased expression of LYPD1, PRSS23 and CHD6) was observed in glomerular
tissue from kidney disease patients and observed in focal segmental glomerulosclerosis (FSGS) rats,
suggesting reactivation of this developmental program upon injury [99]. These studies highlight
the potential of kidney organoids to study the molecular mechanisms of renal disease, especially
when combined with in vivo models and human kidney tissue. Organoid-based disease models are
promising to aid the development of future therapies.

Another application is screening for adverse effects. Various nephrotoxic compounds were
found to accumulate in organoids and inflict injury [86]. For example, adriamycin treatment caused
dose-dependent podocyte damage and exposure to cisplatin and gentamycin induced kidney injury
molecule-1 and apoptosis in the proximal segment [74,78,80,100]. These studies imply that organoids
are potentially a valuable source for nephrotoxicity screening.

Kidney organoids derived from iPSC also hold promise as a source of renal tissue for regenerative
medicine. Preliminary studies found that upon transplantation into mice, iPSC-derived kidney
organoids engrafted, were vascularized by the host and became more mature [75,94,95]. Whether this
approach may ultimately result in the development of a safe and full-scale kidney that can replace renal
function remains to be determined. Another strategy is whole organ bioengineering, which has gained
considerable interest during the past years. Cadaveric rat and human kidneys were decellularized and
used as bioscaffolds. Recellularization of a rat kidney with human umbilical vein endothelial cells
through the renal artery and rat neonatal kidney cells using the ureter resulted in the engraftment of
both cell types and rudimentary renal function in vitro and in vivo [101]. Recently, a human bioscaffold
was re-endothelialized with iPSC-derived endothelial cells via arteriovenous delivery. Endothelial cells
were present in the cortex with expression levels comparable to normal human kidney. Moreover, hardly
any occlusions where detected and the recellularized kidney was successfully perfused with blood [102].
Obviously, re-epithelialization with iPSC-derived renal epithelial cells would be the next step. However,
this is challenging because it requires site-specific epithelial recellularization. Another strategy is
generation of human kidneys by injection of human iPSC in blastocysts or the nephrogenic niche
of kidney deficient large animals, though this approach is still in its infancy [5,103–105]. Altogether,
this exciting work indicates that iPSC-derived kidney organoids may provide a novel source of donor
organs in the future.

3.1.4. Challenges

Despite the promising applications, iPSC organoids face several challenges. A major hurdle is the
risk for tumor and teratoma formation, which interferes with experiments and use in regenerative medicine.
Using retroviral transfection to generate iPSC poses a risk for tumorigenesis via interference with
proto-oncogenes or tumor suppressor genes. Therefore, nowadays novel more subtle reprogramming
methods (see Section 3.1.1) are used that reduce this risk, although these can have other drawbacks [106].
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Furthermore, regardless of the method, reprogrammed cells frequently display genomic instability.
This might be inherited from the cell of origin or caused by reprogramming or in vitro culture [107,108].
Another challenge is the presence of off-target cell types after differentiation. Single cell RNA-sequencing
revealed that PSC-derived kidney organoids contain several non-renal cell types, including cardiac,
reproductive, neuronal, undifferentiated and unidentified cells [79,80,109]. Undifferentiated and
off-target cells pose a risk for teratoma formation, as became evident in a study where subcutaneous
transplantation of PSC-derived nephron precursors to mice caused cartilage formation in some
cases [95]. Strategies to reduce unwanted cell types are emerging. For example, tropomyosin receptor
kinase B inhibition during differentiation resulted in a major reduction of neuronal cells and improved
the amount of proximal tubule cells and podocytes [79].

A second issue that can interfere with experiments is variation between batches of organoids from
the same iPSC line. Phipson and co-workers tested the reproducibility of their differentiation protocol
(Little group) using single-cell RNA sequencing and reported that batch-to-batch variation significantly
influenced nephron maturation and patterning, as well as the proportion of on- and off-target cell
types. Interestingly, transcriptional congruence was shown between organoids from different iPSC
lines within the same batch. This suggests that technical issues are the major source of variation and
that comparisons between different organoids require a simultaneous differentiation work-up [110].
However, another group found that whilst cell types were reproducible across protocols, replicates
and time points, cell proportions differed between four iPSC lines. This effect was mainly caused by
off-target cells [109].

Maturation of PSC organoids also remains a challenge. Currently, organoids resemble first or
second trimester fetal kidney [74,79–84]. This is related to the fact that culture of iPSC organoids is
currently limited to a maximum of around 7 + 25 days, using air-liquid or suspension cultures [74,82,90,100].
Organoids beyond day 7 + 25 display divergent patterns of dysplasia such as cyst formation and
mesenchyme expansion, which could be caused by off-target cells or a lack of nutrient and waste
exchange. Another missing link could be the absence of immune cells, serum growth factors and
endocrine signals [100]. Interestingly, organoids transplanted at the age of 7 + 18 days, successfully
grew for additional 28 days in mouse kidneys. Transplanted organoids showed improved maturation of
podocytes and tubular cells and a reduced number of off-target cells [94,109]. Further in vitro organoid
maturation will be crucial to enhance the expression and function of proteins that are essential for
adequate filtration, secretion and reabsorption along the nephron. Identifying the factors responsible
for the improved differentiation in vivo will help to optimize in vitro protocols.

Despite the quite physiological organization at nephron level, generating a higher level of
organization with regard to a common urinary collecting system and vasculature remains challenging [5].
Nonetheless, progress is made towards achieving these goals. For example, rodent organoids that
share a common urinary collecting system were formed by co-culture of separately induced UB
and MM together with stromal cells [76]. Elucidation of specific signals that contribute to branching
morphogenesis and introduction of the required stromal populations could help to induce further UB
branching and higher-order organization in human kidney organoids as well. In addition, a degree of
glomerular vascularization was induced by the addition of VEGFA to the static cultures in vitro [80].
Moreover, when organoids (differentiated to pretubular aggregates) were exposed to perfusion shear
stress in a microfluidic chip, vasculature abundance increased and glomerular wrapping and invasion
of perfusable vessels was described. A mature glomerular basement membrane and functional
filtration were not yet shown [93]. Other studies investigated organoid behavior in vivo and report that
transplantation to mice resulted in vascularization with connection to the recipient vasculature [84,94].
Microfluidic platforms and lessons from xenografts hold promise to advance organoid vasculature
and maturation.
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3.2. Adult Stem or Progenitor Cell-Derived Kidney Tubuloids

3.2.1. Sources of Adult Stem or Progenitor Cells

Organoid cultures from ASC were first established from the mouse small intestine in 2009. In vitro
recreation of the intestinal stem cell niche using specific growth factors and a basement membrane
gel that facilitates 3D growth allowed long-term expansion of LGR5+ intestinal stem cells [111].
Since then, ASC-derived organoids were established in rapid succession from many human organs
as well, including the small intestine and colon, stomach, liver, pancreas, lungs, prostate, fallopian
tube, bladder and recently the kidney [2,3,9]. A hallmark feature is that this approach allows long-term
expansion of primary epithelium. In a similar fashion, ASC-derived tubuloids grow from primary
renal epithelial cells collected from either kidney tissue (biopsies or nephrectomies) or in a rare and
highly favorable non-invasive way from urine.

3.2.2. Generation and Characterization of Adult Stem or Progenitor Cell-Derived Kidney Tubuloids

Tubuloids are 3D multicellular cultures that consist of adult kidney tubular epithelium. To generate
tubuloids, primary renal epithelial cells are encapsulated in a basement membrane gel that allows 3D
growth and cultured in a growth factor-rich medium. A stem cell/progenitor state is induced in these
cells by stimuli such as Wnt amplification by R-spondin and activation of tyrosine kinase signaling by
EGF and FGF. This results in proliferation and formation of heterogeneous 3D structures. Tubuloids
during expansion express highly increased levels of CD24, CD44, CD133, SOX9 and Vimentin compared
to primary kidney tissue, as well as decreased levels of transporters that mark differentiated cells, such as
SLC34A1. Their proliferative capacity and expression profile that fits stemness and dedifferentiation
indicate that tubuloids recapitulate the renal plasticity-based regeneration response in vitro. This allows
exponential expansion of primary kidney epithelium for many months in a physiological way, without
requiring genetic reprogramming or immortalization. Furthermore, tubuloids remain genetically
stable in this period as shown by karyotyping and whole genome sequencing [9].

Similar to other ASC-derived organoids, tubuloids consist entirely of epithelium. Bulk and
single cell RNA-sequencing as well as immunocytochemistry confirm that tubuloids contain a pure
population of polarized proximal tubule, loop of Henle, distal tubule, and collecting duct epithelium.
Podocytes and parietal epithelial cells were not detected. Transcriptomics and stainings also showed the
presence of various important transporter proteins, including multidrug resistance-associated proteins
3 and 4, organic cation transporter 3, Na-K-Cl cotransporter 2, anion exchanger 1, and aquaporin 3.
Furthermore, redifferentiation of tubuloids by withdrawal of growth factors that amplify Wnt signaling
(R-spondin) and activate tyrosine kinase receptors (EGF, FGF) induced expression of the proteins
calbindin-1 and uromodulin that are characteristic of differentiated distal tubule and loop of Henle
cells [9].

The first proof of principle experiments show that tubuloid epithelium contains functional
transporters. Tubuloids in 3D culture displayed P-glycoprotein-mediated efflux. Furthermore, tubuloids
were integrated in the Organoplate®, an advanced microfluidic system for more in-depth characterization.
The resulting tubuloid-on-a-chip proved leak-tight and capable of transepithelial transport by the
concerted action of basolateral and apical transporters [9].

3.2.3. Applications

Tubuloids hold great potential to model kidney disease and screen for effective drugs, because
they can be rapidly established and accurately recapitulate the donor genotype and phenotype. So far,
tubuloids were used to model infectious, hereditary, metabolic and malignant diseases. Infectious
models were developed by infecting tubuloids with BK-virus (BKV), a pathogen that is mostly
encountered in the bladder and kidneys of immunocompromised patients. Upon BKV infection,
tubuloids displayed characteristic enlarged nuclei positive for viral antigens and actual viral particles
were visualized in the nucleus. Viral replication was confirmed by qPCR and could be reduced using the
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drug cidofovir. Tubuloids were also successfully established from the urine of a patient with the genetic
disease cystic fibrosis (CF). In contrast to healthy controls, CF tubuloids showed the characteristic lack
of swelling after cystic fibrosis transmembrane conductance regulator (CFTR) activation by forskolin.
Interestingly, when treated with the CFTR potentiator ivacaftor that also clinically benefitted this patient,
tubuloid swelling was restored [9]. Our lab also found that tubuloids derived from urine of patients
with the hereditary lysosomal storage disease cystinosis recapitulate the metabolic abnormalities
characteristic of the disease, most notably cystine accumulation. These tubuloids can be used to test
the effects of the current treatment cysteamine as well as novel treatments [112]. Tubuloids were also
established from kidney tumor tissue to study malignant disease [9,113]. Moreover, tubuloid culture
protocols were used to generate a large biobank containing tumor organoids from pediatric patients
with various different kidney tumors. These tumor organoids closely mimic the histologic phenotype,
genome, transcriptome and epigenome of the in vivo tumors. This makes these tumor organoids highly
amenable for investigation of the pathophysiology and screening for sensitivity to chemotherapeutics to
facilitate drug development and personalized medicine [114]. Drug efficacy screening was previously
shown to correlate well with clinical outcomes in intestinal tumor organoids [115]. These divergent
disease models and proof of principle drug efficacy screenings pave the way to personalized medicine
in nephrology.

Tubuloids also proved useful for screening for nephrotoxicity, a common serious adverse effect
of many therapeutic drugs. Exposure of the tubuloid-on-a-chip to the nephrotoxic drug cisplatin
resulted in DNA damage and increased lactate dehydrogenase activity [9] (and unpublished data).
Furthermore, the protocol used for chemotherapeutic efficacy screening in tumor organoids was
modified to investigate nephrotoxicity in tubuloids in 3D culture [112,116]. Tubuloids can therefore be
a promising tool for early selection of non-toxic compounds during drug development.

When seeded in the Organoplate® organ-on-a-chip system, the perfusable tubular architecture
allowed tubuloid epithelium to grow into a more physiological leak-tight and functional tubular
structure [9]. This advanced system opens new opportunities, since it also permits the application of
flow, implementation of various natural (e.g., collagen) matrices, and interaction with vasculature,
stromal cell types, and epithelial cells from other organs. This enables for example exploration of the
interplay between senescent epithelial cells, pericytes and endothelium in the pathogenesis of CKD.
The combination of tubuloids and organ-on-a-chip technology allows studies of multi-tissue/organ
interactions and high-throughput screening of renal epithelial function, nephrotoxicity and drug
efficacy in a personalized fashion.

Finally, tubuloids are promising for regenerative nephrology. Transplantation and safety studies
have not yet been performed. Nonetheless, tubuloids are an easily established source of expectedly
not immunogenic nor oncogenic leak-tight and functional kidney epithelium, a very favorable profile
for cell therapy and tissue-based replacement of kidney function. The fact that human and mouse
ASC-derived colon organoids were successfully engrafted in damaged colons of mice recipients further
fuels the promise of ASC-derived tubuloids in regenerative medicine [117,118].

3.2.4. Challenges

To expand the exciting possibilities of tubuloids, several challenges need to be addressed. First of
all, huge numbers of tubuloids are required for screenings of large libraries of thousands of compounds
and for regenerative nephrology. Therefore, although tubuloid culture already permits long-term
exponential growth of renal epithelium, further enhancement of expansion capacity is feasible. For this
purpose, techniques such as the recently reported spinner flask method that robustly boosts the
expansion of ASC hepatic organoids are an interesting starting point [119].

Secondly, podocytes and parietal epithelial cells were so far not detected in tubuloids [9].
Optimization of retrieval of these cell types (e.g., by refining tissue digestion or sorting these populations)
and culture conditions could help to introduce these cell types in tubuloid cultures. Insights in podocyte
regeneration in vivo can aid development of such protocols. However, although various studies
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present evidence for podocyte regeneration in mice, other studies describe a very limited regenerative
capacity [120–123]. The latter could be an alternative explanation for the absence of these cells.

Although tubuloids express several markers of differentiation up to levels comparable to adult
kidney tissue, some essential transporters are lowly expressed. This is not surprising since tubuloid
culture conditions induce a proliferative and dedifferentiated stem cell state in renal epithelial cells.
Redifferentiation by growth factor withdrawal was found to enhance expression of loop of Henle and
distal tubule transporters and proteins [9]. These differentiation protocols require further improvement
to grant control over tubuloid patterning and induce the expression of important transporters and
enzymes required for disease modeling and regenerative medicine.

Application in regenerative nephrology requires organization of cell types similar to the nephron
in vivo. Whereas PSC kidney organoids self-organize in near-physiological nephron-like structures,
ASC tubuloids organize into cystic and dense structures that predominantly consist of one nephron
segment each [9]. To guide the shape and orchestrate arrangement into more physiological nephron
structures, tubuloids require environmental cues such as growth and differentiation factors, as well as
physical guidance by biological or synthetical matrices. Furthermore, because tubuloids only consist
of pure renal epithelium, introduction of glomerular structures, tubular vascularization and stroma
requires co-culture with endothelial and stromal cells.

For clinical use in regenerative nephrology, the development of reproducible clinical grade synthetic
matrices that support tubuloid-derived self-sustainable living biomembranes is also paramount.
Currently, tubuloids are cultured in basement membrane gels derived from Engelbreth-Holm-Swarm
sarcoma tissue from mice. These gels need to be replaced by biocompatible matrices that allow
controlled tubuloid growth (epithelialization, maintenance, repair) with equal or superior efficiency
and that provide connections to the recipient vasculature and/or urine drainage system.

4. Conclusions and Future Outlook

Kidney organoids and tubuloids are advanced in vitro models that open a window to a wide array
of new possibilities for fundamental research and medicine (Figure 4). Whereas PSC organoids mimic
nephrogenesis to give rise to highly complex in vivo-resembling kidney structures, ASC tubuloids
model homeostasis and regeneration in the adult kidney and offer an extensively expandable autologous
and genetically stable source of more mature epithelium. These are different and complementary
approaches, each with their own specific applications.
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First of all, both organoid types can elevate our understanding of kidney development, renewal
and repair since they mimic these in vivo processes [124]. Organoids from PSC now permit in vitro
modeling of human nephrogenesis and associated congenital abnormalities. The resulting insights
can help to comprehend and treat congenital disorders. Tubuloids are in particular useful to unravel
markers and molecular mechanisms of tubular turnover and repair, which can for example provide
therapeutic targets that can ameliorate regeneration upon AKI and prevent progression to CKD.
Techniques such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-induced
gene knock-out and fluorescent reporter lines (e.g., those reported by Vanslambrouck et al.) combined
with single cell RNA-sequencing will greatly facilitate such studies [91].

Secondly, organoids and tubuloids are widely used to model hereditary, infectious, metabolic,
toxic and malignant diseases affecting the glomerulus or tubular nephron. The results are exciting and
warrant extension to many more renal diseases. Because PSC organoids mimic nephrogenesis, they are
especially well suited for modeling of teratogenic and developmental diseases. Tubuloids on the other
hand are best qualified for diseases that manifest in the fully developed kidney and disorders of cell
cycle regulation (e.g., senescence, cancer). Whereas tubuloids at this moment lack interstitium and a
glomerular structure, PSC-based organoids contain stromal cells and relatively mature podocytes and
allow modeling of stromal and glomerular diseases. On the other hand, tubuloids consist of polarized,
leak-tight and more functional tubular epithelium and are therefore currently more suitable for studies
of tubular transport and related diseases. Further maturation will better qualify PSC organoids for
these purposes as well. Certain diseases involve more components than kidney cells and require
co-cultures, for example addition of immune cells to model auto-immune glomerulonephritis and
co-culture with vasculature and pericytes to model transition to CKD.

Furthermore, organoid and tubuloid-based disease models allow in vitro screening of wide arrays
of (pharmacological) compounds to predict therapeutic efficacy and nephrotoxicity. At this moment,
novel treatments for various diseases are tested in organoid and tubuloid disease models and show
promising results [97,98,112]. Various nephrotoxicity studies were performed as well in both organoid
types. Organoids and tubuloids much closer reflect the in vivo nephron than traditional cell lines and
allow studies of human tissue in a high-throughput fashion in contrast to animal models. Efficacy and
toxicity screenings in these advanced in vitro models are therefore expected to significantly contribute
to preclinical drug development in the near future. Therapeutic interventions other than medication
can be tested as well. Exciting state-of-the-art CRISPR-based techniques such as double stranded
break-free base editing and prime editing warrant a new surge of studies investigating gene therapy
for genetic disease. Organoid- and tubuloid-based disease models are an excellent system to test such
interventions [125,126].

Promising translational developments also include the upscaling of disease models to biobanks
and personalized medicine. Biobanks of tubuloids as described by Calandrini et al. allow drug screening
and validation in a large group of patients with a particular disease to discover interventions that
benefit patients with that disease in general [114]. Moreover, organoids and tubuloids can be used for
personalized medicine. This is not a distant prospect, since ASC-based rectal organoids are currently
already used in Dutch hospitals to predict therapeutic response in CF patients [127]. Because tubuloids
can be easily and rapidly established from autologous cells with high efficiency, they offer the option
to generate large biobanks and facilitate personalized medicine with relative ease. To realize clinical
translation, the major next challenge is to validate in vitro drug screenings by correlation to actual
clinical outcomes.

Finally, both organoids and tubuloids are expected to play a major role in the quest for cell
therapy and tissue-based renal replacement strategies to treat kidney failure. Organoids from PSC
form near-physiological nephron structures and vascularize and mature to some extent in preliminary
xenograft studies. Tubuloids are less organized and currently lack a glomerulus, but are easily
established, more functional, and have a highly favorable safety profile.
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In conclusion, kidney organoids and tubuloids form a long sought-after source of human
patient-specific renal tissue that opens a new chapter in kidney research and clinical nephrology.
Their anticipated role in both the prevention and treatment of kidney diseases is an exciting prospect.
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