
REVIEW

Tuft cells are key mediators of interkingdom

interactions at mucosal barrier surfaces

Madison S. Strine1,2, Craig B. WilenID
1,2,3*

1 Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of

America, 2 Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States

of America, 3 Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of

America

* craig.wilen@yale.edu, craig.wilen@gmail.com

Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Although tuft cells were discovered over 60 years ago, their functions have long been enig-

matic, especially in human health. Nonetheless, tuft cells have recently emerged as key

orchestrators of the host response to diverse microbial infections in the gut and airway.

While tuft cells are epithelial in origin, they exhibit functions akin to immune cells and medi-

ate important interkingdom interactions between the host and helminths, protists, viruses,

and bacteria. With broad intra- and intertissue heterogeneity, tuft cells sense and respond to

microbes with exquisite specificity. Tuft cells can recognize helminth and protist infection,

driving a type 2 immune response to promote parasite expulsion. Tuft cells also serve as the

primary physiologic target of persistent murine norovirus (MNV) and promote immune eva-

sion. Recently, tuft cells were also shown to be infected by rotavirus. Other viral infections,

such as influenza A virus, can induce tuft cell–dependent tissue repair. In the context of coin-

fection, tuft cells promote neurotropic flavivirus replication by dampening antiviral adaptive

immune responses. Commensal and pathogenic bacteria can regulate tuft cell abundance

and function and, in turn, tuft cells are implicated in modulating bacterial infiltration and

mucosal barrier integrity. However, the contribution of tuft cells to microbial sensing in

humans and their resulting effector responses are poorly characterized. Herein, we aim to

provide a comprehensive overview of microbial activation of tuft cells with an emphasis on

tuft cell heterogeneity and differences between mouse and human tuft cell biology as it per-

tains to human health and disease.

I. Introduction

Tuft cells are rare, chemosensory epithelial cells named for their characteristic tufted apical

microvilli that project into the lumen of hollow organs [1]. Despite their rarity, tuft cells have

been found in the respiratory tract, gastrointestinal tract, urogenital tract, and thymus at vary-

ing levels of abundance [2–13]. In the respiratory tract, tuft cells compose 1% to 10% of the

upper airway mucosal epithelium but are absent in the lower airway until tissue damage [3,14].

In the intestinal tract, tuft cells constitute approximately 0.4% to 2% of the epithelium [15,16].

Tuft cell numbers are elevated in biliary and pancreatic tracts, comprising 20% to 30% of the
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epithelium in these sites [10,17]. Based on their morphology in these locations, tuft cells have

amassed many names, including brush and solitary chemosensory cells (airway), caveolated

cells (stomach), and multi- or fibrillovesicular cells (olfactory epithelium) [3,18–20]. The evo-

lutionary origin of tuft cells is unknown, but they are widespread across vertebrate species,

including placental mammals, snakes, and bullfrogs [3,11,21]. Developmentally, tuft cells

require the transcription factor POU Class 2 Homeobox 3 (POU2F3) for differentiation in

diverse mucosal surfaces and the thymus [15,22–25]. In the gastrointestinal tract where tuft

cells are best characterized, tuft cells are terminally differentiated cells that arise from Leucine

Rich Repeat Containing G Protein–Coupled Receptor 5 (Lgr5+) intestinal stem cells in the

crypt [15,26]. While the exact environmental cues and transcriptional regulation that drive

this process are not completely clear, it has been shown that immune cell–derived cytokines

such as interleukin (IAU : PleasenotethatILhasbeendefinedasinterleukininthesentenceWhiletheexactenvironmentalcues::::Pleasecheckandcorrectifnecessary:L)-13 act on Lgr5+ stem cells to drive polarization toward the tuft cell

lineage [27–30]. Other proteins, such as the Taste 1 Receptor Member 3 (TAS1R3) and mecha-

nistic target of rapamycin (mTORC1), also regulate homeostatic tuft cell differentiation and

abundance [31,32]. Whether tuft cells emerge from a secretory (Atonal BHLH Transcription

Factor 1 (ATOH1-dependent) or nonsecretory (ATOH1-independent) lineage progenitor

may vary by anatomic location [15,33–35].

Since their original discovery in the rat trachea and mouse stomach in 1956, the functional

roles of tuft cells have remained elusive for over 60 years, even after their identification in

humans [2,4,36]. The general signal transduction pathways and effector biosynthetic pathways

within tuft cells have been extensively reviewed elsewhere and are outlined generally in Fig 1

[1,37–39]. Despite different sensor and effector functions, tuft cells share many signal trans-

duction pathways with type II taste cells [37]. Briefly, ligands bind to G protein–coupled recep-

tors (GPCRs) on the surface of tuft cells. Intracellular G protein alpha subunits are

subsequently activated and promote cleavage of the membranous lipid phosphatidylinositol

4,5-bisphosphate (PIP2) by phospholipase C beta 2 (PLCβ2) or another PLC family member,

producing diacylglycerol (DAG) and inositol triphosphate (IP3). IP3 then binds its cognate

receptor IP2R in the small intestine or IP3R in the airway and causes calcium efflux from the

endoplasmic reticulum. Calcium efflux also appears to require interactions between Inositol

1,4,5-Triphosphate Receptor Associated 2 (IRAG2) with IP3 receptors [40]. Intracellular cal-

cium flux activates transient receptor potential cation channel subfamily M member 5

(TRPM5), which allows sodium influx and subsequent cellular depolarization. This calcium

flux and depolarization are canonical measures of tuft cell activation. Downstream of TRPM5,

undefined pathways trigger the release of the tuft cell effectors IL-25, acetylcholine (ACh), leu-

kotrienes (LTs), and prostaglandins (PGs) (Fig 1) [29,41–46]. The secretory systems that con-

trol effector release are not well understood, and their regulation requires further research. It is

known that release of IL-25 can be blocked with the vesicular transport inhibitor Brefeldin A,

suggesting that it may be stored in vesicles until triggered for vesicular release [47]. ACh, in

contrast, may be secreted in a noncanonical mechanism, as tuft cells do not detectably express

the machinery required for ACh to undergo synaptic release [48].

Based on their known signaling pathways, tuft cells have been linked to a wide variety of

bodily functions, such as the establishment of T cell tolerance, cross talk with the nervous sys-

tem, epithelial repair and remodeling, cell division, and luminal sensing of microbes [9,24,56–

60]. Given these roles, it is unsurprising that tuft cells have been implicated in allergy, inflam-

matory bowel disease (IBD), and cancer [25,44,45,60–71]. Tuft cells are suggested to have pro-

tective functions in the 2 manifestations of IBD: Crohn disease and ulcerative colitis [60,62–

64]. The specific mechanisms by which tuft cells mitigate IBD have not been elucidated, but

this may be microbiome dependent. Perhaps tuft cells regulate microbiota populations and

support protective mucosal barrier function, ameliorating the dysbiosis and bowel dysfunction
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observed in mouse models and IBD patients. As in IBD, tuft cells may possess protective roles

against cancer, such as by impeding Kras-mediated pancreatic tumorigenesis via the produc-

tion of prostaglandin D2 (PGD2) [45]. In a seemingly juxtaposed role, a number of cancers

(colon, pancreatic, thymic, gastric, and small cell lung cancer) have been evidenced to arise

from tuft cell origin or to be mediated at least in part by tuft cells [25,65–73]. Further investiga-

tion on these topics is warranted, as our understanding of the specific mechanisms by which

tuft cells modulate cellular behavior to prevent or promote disease is incomplete.

Fig 1. Canonical tuft cell ligands, downstream signal transduction, and effector molecules as understood to date

in mouse and human tuft cells. Molecules derived or produced by microbes and damage-associated by-products of

microbial infection can drive tuft cell activation through GPCRs. Most commonly, the GPCR alpha subunit GNAT3

activates PLCβ2 and promotes this signaling cascade after receptor binding, but other alpha subunits and PLC family

members have also been implicated. It is not known whether all responses share downstream intracellular signaling

pathways, but evidence suggests there may be pathogen-specific and location-specific differences. The transcriptional

regulation driving expression of tuft cell signaling components is poorly characterized, but it is known that p53

regulates expression of the transmembrane protein coding gene Irag2, which is required for calcium flux. Additional

molecules that activate tuft cells likely exist that have not been discovered [23,29,31,40,43,47,49–55]. GAU : AbbreviationlistshavebeencompiledforthoseusedthroughoutFigs1and2:Pleaseverifythatallentriesarecorrect:NAT3, G

Protein Subunit Alpha Transducin 3; GPCR, G protein–coupled receptor; IRAG2, Inositol 1,4,5-Triphosphate

Receptor Associated 2; PLCβ2, phospholipase C beta 2.

https://doi.org/10.1371/journal.ppat.1010318.g001
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The best described function of tuft cells emerged after their recent implication in immune

sensing of helminths and protists. Through use of the canonical signal transduction pathways

delineated in Fig 1, tuft cells can sense the luminal environment. In responding to these

microbes at steady state and during insult, tuft cells boast diverse functions ranging from regu-

lating immunity, driving epithelial repair, and maintaining homeostasis. In the mouse small

intestine, parasites can trigger tuft cells to release IL-25, stimulating type 2 innate lymphoid

cells (ILC2s) to produce IL-5/9/13. These cytokines then drive a type 2 immune response—an

inflammatory adaptive immune response that is classically associated with allergy and parasitic

infection—which then skews epithelial differentiation [23,29,43,47,49–52,64]. Interestingly,

the upstream signaling molecules that drive this pathway differ depending on the pathogen,

suggesting unique specificity to tuft cell–mediated immune responses. Tuft cells in the mouse

upper airway and lung similarly mediate this type 2 immune pathway, reacting to aeroallergens

and transitory helminth infection, respectively [44,55,74,75]. Tuft cell involvement in type 2

immunity has also been reported in the context of coinfection, where tuft cell–IL-4 circuits

can impair virus-specific CD8+ T cells during concurrent helminth and viral infection [76,77].

Unlike the small intestine, tuft cells in the colon do not perform parasite-driven tuft cell–ILC2

circuits and instead respond to bacteria. Bacterial microflora can regulate colonic tuft cell

numbers and induce tuft cell expansion, and colonic tuft cells have been reported to reduce

bacterial infiltration and facilitate epithelial repair [16,60,64,78]. In both the small and large

intestine, tuft cells serve as the primary physiologic target of persistent murine norovirus

(MNV) viral infection and may promote immune evasion [78–80]. Ultimately, tuft cells

respond to both commensal and pathogenic microorganisms, and they perform heterogeneous

immunomodulatory functions that vary by anatomic location. This review aims to provide a

comprehensive overview of microbial activation of tuft cells with an emphasis on tuft cell het-

erogeneity and differences between mouse and human tuft cell biology as they relate to human

health and disease.

II. Tuft cell heterogeneity

Tuft cells express several characteristic markers that distinguish them from other cell types

(Table 1). Tuft cells exhibit broad inter- and intracellular diversity with variation in their

expression profiles, phenotypic behavior, and development. While tuft cell receptor and effec-

tor gene expression may differ by anatomic location, only a small fraction of these transcrip-

tional differences have been functionally mapped. For example, in the thymus, in addition to

their canonical markers, tuft cells also uniquely express antigen presentation hallmarks such as

L1cam and genes that encode for major histocompatibility complex II proteins (H2-Aa,

H2-Ab, and CD74) that support their function in thymocyte development and immune toler-

ance [9,52]. Despite their conservation among mammals, tuft cells also exhibit distinct differ-

ences in both marker profiles and phenotypic behavior between mice and humans (Table 1).

Transcriptomic analyses reveal distinct tuft cell subsets

Single-cell RNA sequencing (scRNA-seq) analyses have uncovered distinct tuft cell subsets.

Tuft cells cluster separately by expression profile both within and between anatomic locations

[52]. Some studies have found 2 distinct mature tuft cell populations within a given site

deemed “tuft-1” and “tuft-2” [93,94]. In the small intestine, tuft-1 and tuft-2 populations share

consensus tuft cell signatures and express Dclk1, CD24, Pou2f3, Trpm5, and IL25 [93]. In the

airway, canonical consensus tuft cell markers are also shared but some skew more toward tuft-

1 (Pou2f3 and Gnat3) or tuft-2 (Gfi1b, Alox5ap, Sox9, Dclk1, and CD24) populations [52,94].

In general, tuft-1 populations express tuft cell–specific genes related mostly to taste
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transduction, such as Tas2r and Tas1r gene families, Gnat3, and Plcb2, although taste receptor

expression is limited in intestinal tuft cells [52,93,94]. Tuft-2 populations overall surprisingly

express immune-related genes, including Ly6e, TSLP, and even the hematopoietic lineage

marker Ptprc (CD45) [93,94]. However, not all single-cell sequencing analyses have unveiled

tuft-1 and tuft-2 populations and instead identify tuft cells as a single cluster [22,35,52,64].

Within their cluster, some of these tuft cells are still heterogeneous in their expression of spe-

cific effector pathway components. For instance, only a subset of tuft cells expresses detectable

Fcgr2a (the Fc receptor activated by IgG) or the vesicular ACh transporter required for ACh

trafficking and secretion [22,48]. In response to cholinergic blockade, some tuft cells can

expand and adopt an enteroendocrine transcriptional profile, releasing more ACh to restore

cholinergic homeostasis [95].

Long- and short-lived tuft cells

Various studies have demonstrated that mature tuft cells transit upward along the crypt-villus

axis as terminally differentiated cells [15,96,97]. With a half-life of approximately 3 to 4 days,

tuft cells are generally described as short-lived, postmitotic cells that continually undergo turn-

over in the intestinal epithelium. A small subset of tuft cells may exhibit long-lived, quiescent

stem cell-like behavior with self-renewal properties. This long-lived subpopulation may

Table 1. Expression of canonical tuft cell markers across anatomical locations and tuft cell subsets in Mus musculus and Homo sapiens.

Marker Name M.

musculus
H.

sapiens
Expression patterns and exceptions Source(s)

DCLK1 Doublecortin-like Kinase 1 ✓ Most tuft cells (>95%) [1,64,81]

POU2F3 POU Class 2 Homeobox 3 ✓ ✓ All tuft cells [23–25]

GFI1B Growth Factor Independent 1B

Transcriptional Repressor

✓ All tuft cells [22,34]

AVIL Advillin ✓ ✓ Intestinal tuft cells [82,83]

ALOX5AP Arachidonate 5-Lipoxygenase

Activating Protein

✓ ✓ All tuft cells [82,83]

ALOX5 Arachidonate 5-Lipoxygenase ✓ ✓ All tuft cells [43,82]

PTGS1 (COX-

1)

Prostaglandin-Endoperoxide Synthase

1 (Cyclo-oxygenase-1)

✓ ✓ All tuft cells [82,83]

PTGS2 (COX-

2)

Prostaglandin-Endoperoxide Synthase

2 (Cyclo-oxygenase-2)

✓ ✓ All tuft cells [16,82]

HPGDS Hematopoietic Prostaglandin D

Synthase

✓ ✓ Small intestinal tuft cells [15,83]

IL-25 Interleukin-25 ✓ � All tuft cells� [22,29,84–

86]

PLCβ2 Phospholipase C Beta 2 ✓ Most tuft cells; skewed toward tuft-1 populations [87,88]

ChAT Choline O-Acetyltransferase ✓ ✓ Most tuft cells; not in type II taste bud cells [46,83,89,90]

SIGLECF Sialic acid-binding Immunoglobulin-

like Lectin F

✓ Intestinal and pancreatic tuft cells [22,23]

pEGFR Epidermal Growth Factor Receptor ✓ ✓ All tuft cells [16]

GNAT3 G Protein Subunit Alpha Transducin 3 ✓ Most tuft cells, skewed toward tuft-1 populations [22,91]

TAS2Rs and

TAS1Rs

Taste 2 Receptors and Taste 1

Receptors

✓ ✓ Lowly/undetectably expressed in the intestinal tract; specific receptor

expression and combinations may vary by tissue; skewed toward tuft-

1 populations

[31,47,52,88]

TRPM5 Transient Receptor Potential Cation

Channel Subfamily M Member 5

✓ ✓ All tuft cells [82,92]

�IL-25 transcripts have been detected in diseased nasal epithelium of humans but have not been identified in tuft cells in other contexts [22,84–86].

https://doi.org/10.1371/journal.ppat.1010318.t001
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constitute 5% of the overall tuft cell population and is characterized by the expression of pluri-

potency factors (Oct4, Nanog, Klf4, and Sox2), survival factors (Survivin, Akt, and p53), and

markedly low turnover rates [66,98]. Although DCLK1 is expressed at the +4 position of the

crypt, a known site of quiescent intestinal stem cells, long-lived tuft cells express other tuft

cell–specific markers, like COX2, and likely do not function as reserve stem cells [66,98–102].

Instead, their expression profiles poise them for injury repair and uncontrolled proliferation.

Upon inflammatory insult, tuft cells can serve as tumor stem cells in colorectal cancer and

some colorectal tumors can originate from long-lived tuft cells [66,97]. Whether long-lived

tuft cells are present in all mice and in extraintestinal sites is unknown. Further, the presence

of long-lived tuft cells in humans has yet to be confirmed, although their existence may have

important ramifications in human cancers. In mice, long-lived tuft cells have been traced

using Cre recombinases driven by expression of the mouse-specific tuft cell marker Dclk1
[35,66,98,103]. Therefore, probing for a comparable tuft cell subset in humans will likely

require an alternative cognate tuft cell marker.

Murine versus human tuft cells

Murine and human tuft cells share similar structure and anatomical distribution, although

tuft-1 versus tuft-2 populations and the presence of tuft cells in the cecum have yet to be

described in humans [1,56,83]. Some human tuft cell functions that mirror those of mice have

also been identified, including their role in thymocyte development and potentiating type 2

immune circuits [75,85,104]. However, IL-25 production of human tuft cells has only been

described in the nasal epithelium [84–86]. IL-25 transcripts are not robustly detected in tuft

cells from intestinal tissue in nonhuman primates or humans [22,42]. Whether human tuft

cells produce an alternative effector molecule instead of IL-25 and under what circumstances

human tuft cells promote type 2 immunity is an active area of investigation. In addition to IL-

25, human and mouse tuft cells exhibit differential expression of some canonical tuft cell mark-

ers, most notably DCLK1, but how these differences affect tuft cell functionality is unknown

(Table 1) [64,103]. With a heavy reliance on mouse models, our understanding of human tuft

cell biology remains impeded by the rarity of tuft cells in human scRNA-seq analyses, limited

genetic modeling tools, and the fact that many human samples are derived from diseased

patients. Nonetheless, translating these key findings to humans is an important future

direction.

III. Tuft cells in host–microbe interactions

Located in the mucosal epithelium, tuft cells are subject to continual microbial exposure and

insult. It is thus unsurprising that tuft cells have evolved to perform critical functions in modu-

lating host–microbe interactions. Tuft cells are best characterized as type 2 immune mediators,

specifically during parasitic infection, and the role of tuft cells in other microbial interactions

remains an active area of investigation. Tuft cells function as luminal sentinels that can sense

and respond to a variety of microbial stimuli beyond parasitic helminths and protozoa, includ-

ing bacteria, viruses, and fungi. In each anatomic location, tuft cells have adaptively tuned

their responses to each class of microbe with exquisite specificity, potentially in part due to

their heterogeneity. Still, it is poorly understood how many of these interactions are regulated

and how specific tuft cell subpopulations differentially contribute to microbial sensing. Impor-

tantly, it is even less understood how many these interactions translate to human health, as the

majority of tuft cell functions associated with luminal perturbations have been studied only in

small animal models.
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Parasites (protists, protozoa, and helminths)

It was long appreciated that IL-25 is one of the earliest cytokines induced in response to hel-

minth infection, but the cells that sense helminths and produce IL-25 were unknown until the

simultaneous discovery that tuft cells were the elusive source [23,29,49]. Infection with the

transitory helminth Nippostrongylus brasiliensis induces a strong type 2 immune response

driven by IL-25 and IL-13 that facilitates worm clearance within 7 to 10 days [23,49]. By

employing an IL-25 reporter mouse known as Flare25 (flox and reporter of IL25; IL25F25/F25),
tuft cells were found to constitutively express IL-25, implicating them as possible mediators of

type 2 immunity [29]. At resting state, tuft cell–derived IL-25 acts in a paracrine manner on

the IL-25 receptor IL17RB on ILC2s to support homeostatic production of IL-13 [29]. IL-13 in

turn acts on IL4RA/IL13RA dimers on epithelial progenitors in the crypt, regulating intestinal

homeostasis and supporting tuft cell and goblet cell differentiation [23,29]. During N. brasi-
liensis infection, this feed-forward loop becomes more pronounced, inducing a 10- to 15-fold

increase in tuft cell abundance and small intestine lengthening [23,29,49–51]. Tuft cell activa-

tion by N. brasiliensis requires expression of TRPM5, ILC2 production of IL-13, downstream

signaling through IL4RA, and Signal Transducer and Activation of Transcription 6 (STAT6)

[23,29,49,50,52]. Despite its role in signaling, GNAT3 is not required for tuft cell sensing of N.

brasiliensis [52]. While recombinant IL-4 and IL-13 can drive this circuit, endogenous IL-4 is

unaffected by loss of tuft cells and is dispensable for in vivo N. brasiliensis infection [23]. This

same positive feedback loop has been identified during infection with the protozoan Tritricho-
monas muris and the intestinal helminths Trichinella spiralis, Heligmosomoides polygyrus, and

Hymenolepis microstoma, although the degree of tuft cell hyperplasia may vary [29,49,53,93].

In addition to IL-25, helminths trigger small intestinal tuft cells to secrete cysteinyl leukotri-

enes (CysLTs) [43]. The CysLTs LTC4 and LTD4 bind CysLTR1 on the surface of ILC2s, likely

activating ILC2s via induction of Nuclear Factor of Activated T-cell (NFAT) signaling [43,74].

CysLTs constitute a critical and nonredundant component of the anti-helminth immune

response, as they operate synergistically with IL-25 signaling and worm clearance is signifi-

cantly delayed in their absence [43]. Surprisingly, the type 2 immune response against intesti-

nal protists does not require CysLTs, indicating that tuft cell effectors can differ between

microbial taxonomies within the same tissue [43]. Much like CysLTs, ACh is indispensable for

driving optimal tuft cell–ILC2 immune responses [105]. N. brasiliensis and T. muris can induce

ChAT expression and ACh production by ILC2s, and IL-25 up-regulates ACh receptors on

ILC2s [105]. In the absence of ILC2-derived ACh acting in an autocrine loop, helminth expul-

sion is significantly dampened [105]. Whether tuft cell–derived ACh acts directly on ILC2s is

not clear. Tuft cells also up-regulate Hpgds2, Cox1, and Cox2 and produce PGD2 during late N.

brasiliensis infection [106]. Tuft cell–derived PGD2, unlike CysLTs and ACh, acts as a negative

regulator of tuft cell–ILC2 immunity by down-regulating Il13ra and limiting intestinal stem

cell differentiation programs driven by type 2 immune cytokines [106]. Ultimately, PGD2

seems to aid in restoring intestinal cell populations to homeostatic baseline after infection

[106]. Whether this mechanism is true for all intestinal parasites is not known and requires

further investigation.

The tuft cell–ILC2 type 2 circuit is present but restrained in the absence of infection, requir-

ing an activating trigger from parasitic infection. For T. muris and other related Tritrichomo-

nad species, the activating signal has been identified as the fermentative end product and

tricarboxylic acid (TCA) cycle intermediate succinate [51,52]. Succinate activates tuft cells

directly by binding to the GPCR succinate receptor 1 (SUCNR1/GPR91) and initiating a

GNAT3-dependent signal cascade that drives IL-25 release in a TRPM5-dependent manner

[51,52]. The tuft cell receptor TAS1R3 also facilitates a type 2 immune response against T.
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muris colonization. Although TAS1R3 is not required for tuft cells to sense succinate, genetic

ablation of Tas1r3 dampens tuft cell hyperplasia. Increased duration of succinate treatment

can overcome a TAS1R3 deficiency, suggesting that while TAS1R3 is not required for tuft cells

to sense succinate, this receptor may potentiate the response or improve tuft cell response

kinetics [31].

Unlike T. muris, tuft cell activation by the helminths N. brasiliensis, T. spiralis, and H. poly-
gyrus is SUCNR1- and TAS1R3 independent [47,50,52]. These helminths preferentially colo-

nize the proximal small intestine, where Sucnr1 expression is relatively low. In contrast, T.

muris colonizes the SUCNR1-rich distal small intestine [43,51,52]. Tuft cells in the proximal

small intestine are less responsive to succinate as a result, and tuft cells have adapted alternative

strategies to mount immune responses against these parasites [43,51,52]. In the case of T. spir-
alis, excretory–secretory (E–S) products and worm extracts activate tuft cells by acting on the

bitter taste receptor TAS2R143 [47]. The specific molecule(s) from T. spiralis that trigger tuft

cell activation and whether additional TAS2R family members are involved in initial T. spiralis
sensing are undetermined [47]. To date, the identity and nature of the activating signal(s) in N.

brasiliensis and H. polygyrus colonization remain unknown. Whether N. brasiliensis activates

this circuit by first directly activating tuft cells or indirectly by triggering ILC2s is not clear. In

either case, it is likely that N. brasiliensis activates tuft cells by introducing an activating ligand

or removing an inhibitory signal that propels this circuit forward. Direct positive and negative

regulators of tuft cell function remain obscured, but multiple negative regulators of ILC2-me-

diated type 2 immune responses have been described. For example, the E3 ubiquitin ligase

A20 acts as a negative regulator of IL17RB on ILC2s and that A20 deficiency can spontane-

ously trigger this type 2 immune loop [51]. A20 is notably down-regulated during N. brasilien-
sis infection [51]. Cytokine-inducible SH2-containing protein (CISH) also negatively regulates

ILC2s at homeostasis and during N. brasiliensis infection, as CISH restricts IL-25–dependent

ILC2 activation [107]. Global or ILC2-specific CISH knockout also expedites N. brasiliensis
expulsion and increases tuft cell numbers at early infection time points [107]. Perhaps N. brasi-
liensis interferes with A20, CISH, or other negative regulators of ILC2s to release the brakes on

this type 2 immune loop.

Whatever the activating signal, tuft cell activation is characterized by a series of intracellular

signaling cascades that proceed as outlined in Fig 1. This pathway has been best defined during

T. spiralis infection, where TAS2R activation drives tuft cell trimeric G proteins Gα-Gustdu-

cin/Gβ1γ13 and/or Gαo/Gβ1γ13 to dissociate and activate PLCβ2 to cleave IP3, which drives

calcium release from the endoplasmic reticulum via binding at IP3R2 [47]. Calcium release

then induces TRPM5 to open, causing cellular depolarization that stimulates IL-25 release—

pushing the classical tuft cell–ILC2 loop into action [47]. Downstream mucosal type 2 immune

responses aid in mounting a classical “weep and sweep” response and gasdermin C–mediated

activation that drive helminth expulsion [23,108].

Parasitic infections by N. brasiliensis, T. spiralis, and H. polygyrus are typically self-limiting

with rapid clearance mediated by the tuft cell–ILC2 circuit. However, unlike N. brasiliensis
and T. spiralis, tuft cell hyperplasia is markedly lower (approximately 5- to 10-fold) during H.

polygyrus infection and downstream immune-mediated clearance takes months [23,109].

Recently, it was shown that H. polygyrus E–S products suppress tuft cell differentiation, and

this likely has critical consequences for tuft cell–mediated control of chronic helminth infec-

tion [109]. With the prevalence of endemic helminth infection in human populations, the

potential role of human tuft cells in intestinal type 2 immunity and chronic/long-term or sec-

ondary helminth infection are of vital interest. How the tuft cell–ILC2 circuit translates to

repeated helminth infection or endemic helminth infection in the small intestine is currently

unexplored.
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Bacteria

During pathogenic bacterial infection with Salmonella enterica, tuft cells in the small intestine

do not undergo significant transcriptional changes, suggesting that they may not respond to

bacteria [93]. A similar effect has been observed with commensal microbes in the small intes-

tine, where tuft cells are generally resistant to transcriptional perturbation by antibiotic-medi-

ated depletion of the gut microbiome [64,78]. However, evidence thus far suggests that tuft

cells in the small intestine can sense some bacteria such as members of the Bifidobacterium
genus in a succinate-dependent manner [64]. In response to bacterial succinate, ATOH1-inde-

pendent ileal tuft cells initiate the same type 2 immune circuit driven by Tritrichomonads via

SUCNR1 and up-regulate a variety of TCA genes to modulate inflammation in the small intes-

tine [50,64]. The precise mechanisms by which succinate alters tuft cell gene expression and

the consequences of small intestinal tuft cell hyperplasia on the microbiome are unclear.

In contrast to the small intestine, ATOH1-dependent colonic tuft cells are highly sensitive

to intestinal bacteria and respond independently of SUCNR1 or type 2 immune circuits. After

exposure to antibiotics, tuft cells in the large intestine are significantly depleted [78]. More-

over, the microbiome can causes changes in colonic tuft cell gene expression and tuft cell

expansion, as evidenced by helminth-free fecal gavage in germ-free mice [16]. Tuft cell expan-

sion under these conditions is mitigated after 8 weeks, and tuft cell numbers then return to

baseline [16]. Furthermore, when the mucosal barrier is breached by bacteria, tuft cell differen-

tiation is stifled, and tuft cell numbers decrease [110]. Previous work has shown that tuft cells

are critical for promoting epithelial repair and limiting this bacterial infiltration, especially in

bacterial-induced colitis [60]. Together, these findings imply balanced bidirectional regulation,

whereby the intestinal microbiome maintains homeostatic colonic tuft cell populations and

tuft cells prevent bacterial infiltration and dysbiosis via unidentified direct or indirect mecha-

nism(s). As tuft cells have been linked to IBD in humans, the interactions of tuft cells with the

bacterial microbiome may have implications for human health [62].

A similar phenomenon has been described in the airway of mice and humans, where for-

mylated peptides, gram-negative quorum sensing molecules (QSMs, e.g., acyl homoserine lac-

tones), and some D-amino acids can activate tuft cells [41,57,89,111–113]. While the receptors

for formylated peptides and QSMs have not been identified, D-amino acids appear to trigger

tuft cells using the sweet taste receptor TAS1R2/3 [41,57,89,111–113]. The functional conse-

quence of these interactions is poorly characterized, but they may alter immune responses

against pathogenic bacteria. It was previously shown that calcium flux originating from upper

airway tuft cells can propagate through gap junctions and trigger antimicrobial peptide (AMP)

secretion from neighboring epithelial cells [114]. Importantly, Staphylococcus-derived D-

amino acids can impair antibacterial innate immune responses by reducing AMP production

or release [113]. In contrast, QSMs can incite tuft cells to produce ACh, which may facilitate

mucociliary clearance of virulent bacteria [41,57].

Viruses

Tuft cells can mediate virus pathogenesis both directly by serving as a target cell for infection

and indirectly by coinfection driven immune-mediated effects. Both MNV and murine rotavi-

rus can directly infect and replicate within tuft cells, whereas helminth promotion of West

Nile virus (WNV) pathogenesis requires the immunomodulatory functions of tuft cells. Tuft

cells express the MNV receptor CD300lf and are the primary physiologic target for the persis-

tent strain MNVCR6 [78]. Inducing tuft cell hyperplasia in the small intestine with type 2 cyto-

kines promotes MNVCR6 infection, while reducing colonic tuft cells with broad-spectrum

antibiotics is associated with resistance to MNVCR6 infection [78,79]. Tuft cell tropism also
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enables MNVCR6 evasion of the adaptive immune system. While CD8+ T cells activated by

MNVCR6 appear functional, they fail to eliminate infected tuft cells. Similarly, MNVCR6 elicits

a neutralizing antibody response, but this is not sufficient to clear infection from tuft cells

[115]. This suggests tuft cells may serve as an immune-privileged niche that promotes norovi-

rus immune escape [78,80]. Furthermore, MNVCR6 infection of tuft cells in germ-free mice

restores disrupted barrier integrity, regulates immune cell populations, and supports intestinal

homeostasis [116]. Taken together, these findings demonstrate that tuft cells are critical for

intestinal epithelial homeostasis and immunity. Whether tuft cells mediate human norovirus

infection and pathogenesis remains unclear. The receptor for human norovirus remains

unknown, but human CD300lf does not appear to act as a receptor [117]. Intestinal epithelial

cells including enteroendocrine cells support human norovirus infection and B cells support

replication of the human norovirus strain GII.4-Sydney (genogroup II, genotype 4, Sydney iso-

late) [118–120].

Very recently, it was demonstrated that murine rotavirus also infects tuft cells [121]. While

rotavirus primarily infects mature enterocytes near the apical villi of the small intestine,

infected tuft cells were identified by scRNA-seq and immunofluorescence [121]. More

research will be required to clarify whether rotavirus productively infects tuft cells or whether

tuft cells employ any postentry barriers that restrict rotavirus replication. In the rotavirus-

infected epithelium, tuft cells up-regulate interferon stimulated genes and a number of viral

defense pathways, suggesting they can effectively sense enteric viral infection [121]. During

rotavirus infection, tuft cell responses are categorically different than those seen during para-

sitic infection. In the rotavirus-infected epithelium, tuft cells down-regulate Il25, Alox5,

Alox5ap, and Ltc4s and up-regulate Trpm5, Plcb2, and Plcg2 [121]. The functional consequence

of up-regulating intermediate signaling genes while simultaneously down-regulating down-

stream effector genes is unclear, but this finding suggests that tuft cells may perform divergent

chemosensory pathways in the presence of enteric viral infection. Maybe other chemosensory

effectors are secreted in response to rotavirus, as TRPM5 and PLC family proteins are essential

for tuft cell activation. How tuft cells contribute to rotavirus pathogenesis and how tuft cells

offer an immune privileged niche for some viruses but not others remain open questions.

In the context of coinfection, tuft cells also potentiate viral infection. During coinfection

with the helminth T. spiralis and MNVCR6, tuft cells populations expand and virus-specific

CD8+ T cell populations trend modestly downward, which is associated with increases in

MNVCR6 viral load during persistent infection [76,78]. A similar phenotype has been described

during coinfection with helminth H. polygyrus bakeri during infection with the flaviviruses

WNV, Zika virus, and Powassan virus [77]. During flavivirus and helminth coinfection, this

tuft cell–IL-4 circuit acts directly on the intestinal epithelium to impair virus-specific CD8+ T

cell survival, enabling higher viral replication in multiple segments of the gastrointestinal tract

and central nervous system [77]. Taken together, these findings suggest that tuft cells may

modulate viral persistence and the CD8+ adaptive immune response. Despite high rates of

norovirus and flavivirus infection in countries with endemic helminth burden and previous

reports of coinfection, the role of tuft cells in helminth–virus coinfection in humans is unclear

[122–124].

Viral infection can also prompt de novo tuft cells development. At steady state, tuft cells are

not present in the alveolar epithelium of the lower airway [14]. After infection with the influ-

enza A subtype H1N1, the lung undergoes dramatic dysplastic remodeling and tuft cells appear

de novo at approximately 25 to 51 days postinfection [14]. The functional role for these tuft

cells is unknown, but it has been suggested that they may facilitate injured lung tissue to rap-

idly respond to damage signals [14]. Much like in tuft cell type 2 immune feed-forward cir-

cuits, tuft cells that appear after lung damage appear promote and reinforce their own
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expansion [14]. The proposed the role of tuft cells in lung inflammation and repair is poorly

explored across other respiratory viruses, although a modest 3-fold increase in tuft-like cells in

the upper airway and ectopic development of tuft-like cells in the lung has been recently

described in human patients with Coronavirus Disease 2019 (COVID-19) [125]. The physio-

logical relevance and activities of these tuft cells merit further investigation in virus-induced

lung injury, but they may contribute to pathophysiology or tissue repair.

Other

Tuft cells in the upper airway have been implicated in type 2 immune responses, especially

after stimulation with aeroallergens. Exposure to fungal chitin, dust mites, or Alternaria mold

can elicit the release of ATP, a typical damage-associated molecular pattern (DAMP). ATP

release triggers the purinergic P2Y2 receptor on tuft cells and stimulates tuft cells to release IL-

25 and CysLTs like LTE4 [44]. LTE4 subsequently binds the high affinity receptor CysLT3R on

tuft cells while other CysLTs bind their cognate receptors on ILC2s, driving a feed-forward

type 2 immune circuit similar to that of small intestine [44,55]. Although other LTs can acti-

vate ILC2s directly, LTE4 may indirectly activate ILC2s via tuft cell release of IL-25 in vivo, as

LTE4 poorly binds other CysLTRs and ILC2s lack CysLT3R expression [55,74]. While this

pathway is IL-25–dependent in the upper airway, it likely operates in a STAT6-independent

manner, unlike in the intestinal tract [55]. In humans, Aspergillus fungus and Alternaria can

cause IL-25 release and tuft cell expansion in rhinosinusitis patients, but whether this pathway

translates to healthy individuals or involves LTs is unclear [75].

IV. Concluding remarks

Tuft cells modulate a variety of host-pathogen interactions and act as key mediators of mucosal

immunity to diverse microbes (Fig 2). Tuft cells can sense metabolic by-products, specific

microbial components, and DAMPs using noncanonical pattern recognition receptors, includ-

ing TAS1R3, SUCNR1 and P2Y2. In this sense, tuft cells function as immune sensory cells. Tuft

cells can also maintain epithelial integrity by regulating commensal bacteria in the large intes-

tine. With only a handful of ligands known to activate tuft cells and limited knowledge of down-

stream tuft cell effectors, there are likely others that have not been discovered. Overall, the role

of tuft cells in orchestrating host microbial responses is highly context and location dependent,

with unique activators and effectors depending on the luminal biome and tissue type. This likely

has important implications between species, particularly in relating mouse tuft cell biology to

that of humans. Given that luminal biomes, metabolites, and nutrient contents can vastly differ

between mice and humans, we speculate that tuft cell function and behaviors in humans may be

distinct. Perhaps human tuft cells sense different suites of luminal microbes or their by-prod-

ucts, resulting in unique downstream responses. To fully probe these differences, a scalable in

vitro culture system for tuft cells will be needed to characterize the molecular mechanisms of

tuft cell chemosensation and their downstream effector functions.

Tuft cells have known involvement in human cancers, but their specific roles and how tuft

cells behave in other human diseases are relatively unexplored territories. With the recent dis-

covery of thymic tuft cells in humans, the role of tuft cells in human tolerance and autoimmu-

nity will likely bring critical insights into the human immune system [104]. As reduced

helminth burdens and dysregulated microbiomes in human populations are correlated with

increases in autoimmunity and allergy, it will be compelling to see whether tuft cells support

anti-helminth immune responses or bacterial microflora in humans and how this relates to

allergy and autoimmunity [123,124]. Finally, how tuft cells interact with human enteric viruses

remains to be seen. Whether human tuft cells support viral infection in humans is unclear, but
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the prospect that tuft cells could offer an immune-privileged niche may have important conse-

quences for chronic viral infections. Ultimately, tuft cells are a rare chemosensory cell type

that facilitate striking interkingdom interactions between microbes and their hosts by integrat-

ing viral, bacterial, and parasitic pathogenesis and immunity.
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34. Bjerknes M, Khandanpour C, Möröy T, Fujiyama T, Hoshino M, Klisch TJ, et al. Origin of the brush cell

lineage in the mouse intestinal epithelium. Dev Biol. 2012; 362(2). https://doi.org/10.1016/j.ydbio.

2011.12.009 PMID: 22185794.

35. Herring CA, Banerjee A, McKinley ET, Simmons AJ, Ping J, Roland JT, et al. Unsupervised Trajectory

Analysis of Single-Cell RNA-Seq and Imaging Data Reveals Alternative Tuft Cell Origins in the Gut.

Cell systems. 2018; 6(1). https://doi.org/10.1016/j.cels.2017.10.012 PMID: 29153838.

36. Rhodin J. LXVII Ultrastructure of the Tracheal Ciliated Mucosa in Rat and Man:. Annals of Otology.

Rhinology & Laryngology. 1959; 68 (4):964–74. https://doi.org/10.1177/000348945906800402

37. Schneider C, O’Leary CE, Locksley RM. Regulation of immune responses by tuft cells. Nat Rev Immu-

nol. 2019; 19 (9):584–93. https://doi.org/10.1038/s41577-019-0176-x PMID: 31114038

38. Billipp TE, Nadjsombati MS, von Moltke J. Tuning tuft cells: new ligands and effector functions reveal

tissue-specific function. Curr Opin Immunol. 2021;68. https://doi.org/10.1016/j.coi.2021.10.005 PMID:

34794039.

39. Nevo S, Kadouri N, Abramson J. Tuft cells: From the mucosa to the thymus. Immunol Lett. 2019;210.

https://doi.org/10.1016/j.imlet.2019.02.003 PMID: 30904566.

40. Chang CY, Wang J, Zhao Y, Liu J, Yang X, Yue X, et al. Tumor suppressor p53 regulates intestinal

type 2 immunity. Nat Commun. 2021; 12(1). https://doi.org/10.1038/s41467-021-23587-x PMID:

34099671.

41. Perniss A, Liu S, Boonen B, Keshavarz M, Ruppert AL, Timm T, et al. Chemosensory Cell-Derived

Acetylcholine Drives Tracheal Mucociliary Clearance in Response to Virulence-Associated Formyl

Peptides. Immunity. 2020; 52(4). https://doi.org/10.1016/j.immuni.2020.03.005 PMID: 32294408.

42. Inaba A, Arinaga A, Tanaka K, Endo T, Hayatsu N, Okazaki Y, et al. Interleukin-4 Promotes Tuft Cell

Differentiation and Acetylcholine Production in Intestinal Organoids of Non-Human Primate. Int J Mol

Sci. 2021; 22(15). https://doi.org/10.3390/ijms22157921 PMID: 34360687.

43. McGinty JW, Ting H-A, Billipp TE, Nadjsombati MS, Khan DM, Barrett NA, et al. Tuft-Cell-Derived Leu-

kotrienes Drive Rapid Anti-helminth Immunity in the Small Intestine but Are Dispensable for Anti-protist

Immunity. Immunity. 2020; 52(3). https://doi.org/10.1016/j.immuni.2020.02.005 PMID: 32160525.

44. Ualiyeva S, Hallen N, Kanaoka Y, Ledderose C, Matsumoto I, Junger WG, et al. Airway brush cells

generate cysteinyl leukotrienes through the ATP sensor P2Y2. Science immunology. 2020; 5(43).

https://doi.org/10.1126/sciimmunol.aax7224 PMID: 31953256.

45. DelGiorno KE, Chung CY, Vavinskaya V, Maurer HC, Novak SW, Lytle NK, et al. Tuft Cells Inhibit Pan-

creatic Tumorigenesis in Mice by Producing Prostaglandin D 2. Gastroenterology. 2020; 159(5).

https://doi.org/10.1053/j.gastro.2020.07.037 PMID: 32717220.

46. Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, et al. Nerve Growth Factor Pro-

motes Gastric Tumorigenesis through Aberrant Cholinergic Signaling. Cancer Cell. 2017; 31(1).

https://doi.org/10.1016/j.ccell.2016.11.005 PMID: 27989802.

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010318 March 10, 2022 14 / 19

https://doi.org/10.1016/s0016-5085%2899%2970222-2
http://www.ncbi.nlm.nih.gov/pubmed/9869596
https://doi.org/10.1016/j.cell.2018.10.008
https://doi.org/10.1016/j.cell.2018.10.008
http://www.ncbi.nlm.nih.gov/pubmed/30392957
https://doi.org/10.1038/s41467-020-20314-w
http://www.ncbi.nlm.nih.gov/pubmed/33397941
https://doi.org/10.1038/nature16161
http://www.ncbi.nlm.nih.gov/pubmed/26675736
https://doi.org/10.1038/s41467-020-20314-w
http://www.ncbi.nlm.nih.gov/pubmed/33397941
https://doi.org/10.4049/immunohorizons.1900099
https://doi.org/10.4049/immunohorizons.1900099
http://www.ncbi.nlm.nih.gov/pubmed/31980480
https://doi.org/10.1038/s41598-017-06070-w
https://doi.org/10.1038/s41598-017-06070-w
http://www.ncbi.nlm.nih.gov/pubmed/28717211
https://doi.org/10.1053/j.gastro.2018.07.023
http://www.ncbi.nlm.nih.gov/pubmed/30055169
https://doi.org/10.1016/j.ydbio.2011.12.009
https://doi.org/10.1016/j.ydbio.2011.12.009
http://www.ncbi.nlm.nih.gov/pubmed/22185794
https://doi.org/10.1016/j.cels.2017.10.012
http://www.ncbi.nlm.nih.gov/pubmed/29153838
https://doi.org/10.1177/000348945906800402
https://doi.org/10.1038/s41577-019-0176-x
http://www.ncbi.nlm.nih.gov/pubmed/31114038
https://doi.org/10.1016/j.coi.2021.10.005
http://www.ncbi.nlm.nih.gov/pubmed/34794039
https://doi.org/10.1016/j.imlet.2019.02.003
http://www.ncbi.nlm.nih.gov/pubmed/30904566
https://doi.org/10.1038/s41467-021-23587-x
http://www.ncbi.nlm.nih.gov/pubmed/34099671
https://doi.org/10.1016/j.immuni.2020.03.005
http://www.ncbi.nlm.nih.gov/pubmed/32294408
https://doi.org/10.3390/ijms22157921
http://www.ncbi.nlm.nih.gov/pubmed/34360687
https://doi.org/10.1016/j.immuni.2020.02.005
http://www.ncbi.nlm.nih.gov/pubmed/32160525
https://doi.org/10.1126/sciimmunol.aax7224
http://www.ncbi.nlm.nih.gov/pubmed/31953256
https://doi.org/10.1053/j.gastro.2020.07.037
http://www.ncbi.nlm.nih.gov/pubmed/32717220
https://doi.org/10.1016/j.ccell.2016.11.005
http://www.ncbi.nlm.nih.gov/pubmed/27989802
https://doi.org/10.1371/journal.ppat.1010318


47. Luo XC, Chen ZH, Xue JB, Zhao DX, Lu C, Li YH, et al. Infection by the parasitic helminth Trichinella

spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. Proc Natl Acad Sci U S A.

2019; 116(12). https://doi.org/10.1073/pnas.1812901116 PMID: 30819885.
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