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Abstract

Background: Vestibular schwannomas are benign tumors that arise from Schwann cells in the VIII cranial pair and usually
present NF2 gene mutations and/or loss of heterozygosity on chromosome 22q. Deregulation has also been found in
several genes, such as ERBB2 and NRG1. MicroRNAs are non-coding RNAs approximately 21 to 23 nucleotides in length that
regulate mRNAs, usually by degradation at the post-transcriptional level.

Methods: We used microarray technology to test the deregulation of miRNAs and other non-coding RNAs present in
GeneChip miRNA 1.0 (Affymetrix) over 16 vestibular schwannomas and 3 control-nerves, validating 10 of them by qRT-PCR.

Findings: Our results showed the deregulation of 174 miRNAs, including miR-10b, miR-206, miR-183 and miR-204, and the
upregulation of miR-431, miR-221, miR-21 and miR-720, among others. The results also showed an aberrant expression of
other non-coding RNAs. We also found a general upregulation of the miRNA cluster located at chromosome 14q32.

Conclusion: Our results suggest that several miRNAs are involved in tumor formation and/or maintenance and that global
upregulation of the 14q32 chromosomal site contains miRNAs that may represent a therapeutic target for this neoplasm.
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Introduction

Schwannomas are benign tumors that arise from Schwann cells

in the peripheral nerves. These tumors often originate from the

vestibular nerve, and although they are histologically benign,

vestibular schwannomas may cause hearing loss, tinnitus, facial

palsy, and when large enough, brain stem compression and even

death. Vestibular schwannomas may appear unilaterally but may

also appear bilaterally when associated with neurofibromatosis

type 2 syndrome (NF2). Patients with NF2 also develop other

tumors such as meningiomas and gliomas [1]. The molecular

hallmark of the disease is the biallelic inactivation of the tumor

suppressor NF2 gene by several mechanisms [2], such as mutation

or loss of heterozygosity (LOH) of chromosome 22 where this gene

is hosted (i.e., 22q12.2). Since the first description of monosomy 22

in schwannomas by cytogenetic analyses [3], other genetic

alterations in these tumors have been identified, including

chromosomal gains of 9q34 and 17q and losses of 1p [4–6]. For

an extensive review, see citation [7]. Contrary to non-head and

neck schwannomas, sporadic vestibular schwannomas have shown

no mutations on BRAF, EGFR, PIK3CA or KRAS [8]. Controversial

findings on epigenetic aberrant methylation of NF2 in schwanno-

mas have been provided [9–12], and data on promoter

methylation of tumor-related genes have also been described

[13]. The NF2 gene encodes for Merlin or Schwannomin [14,15],

a protein that shares sequence homology with members of the

ezrin/radixin/moesin (ERM) family. Merlin is involved in an

array of signaling pathways, such as the suppression of tumor-

igenesis by its entering into the nucleus and binding to DCAF1

through the blocking of CRL4DCAF1 action [16], or downregula-

tion of membrane levels of ErbB2, ErbB3 and EGFR upon cell-to-

cell contact [17,18]. Using microarray technology in schwanno-

mas, complete genome expression analysis is possible, and several

regulatory pathways and specific genes, such as CAV1, have been
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found to display an altered expression pattern [19–23]. Micro-

RNAs (miRNAs) are endogenous, non-coding RNAs 21 to 23

nucleotides in length that regulate gene expression at the post-

transcriptional level by, among other mechanisms, binding and

repressing target mRNAs [24]. Each miRNA is able to regulate

thousands of mRNAs, and each miRNA acts in a tissue-specific

manner [25]. Overexpression of miRNAs may involve tumor

development by silencing certain tumor suppressor genes. On the

other hand, underexpression of miRNAs may cause tumor

progression by upregulating target oncogenes. Thus, miRNAs

might be considered oncogenes or tumor suppressor genes in and

of themselves. A wide variety of tumors have been found with

altered miRNA expression, such as breast cancers [26], hepato-

cellular carcinomas [27], osteosarcomas [28] and many others

[29]. Aberrant expression patterns in miRNAs have also been

described in tumors that affect the nervous system, such as gliomas

and meningiomas [30,31].

In schwannomas, the regulation of two miRNAs has been

associated with tumorigenesis: miR-21 upregulation [32] and

miR-7 downregulation [33], which suggests that deregulation of

these small RNAs plays a role in the development of these tumors.

In the light of these results, we performed a microarray analysis on

16 schwannomas and 3 control-nerves for non-coding RNAs, in

order to identify new targets for the disease.

Materials and Methods

Patient Samples
The study group consisted of 16 patients who underwent

surgery at our center for the removal of vestibular Schwannoma.

Fifteen of these patients presented sporadic schwannomas and 1

sample (tumor S1) was from a patient diagnosed with NF2. The

population included 7 women and 9 men. The mean age of the

patients was 45.2614.9 years. The local ethics review board of the

University Hospital La Paz approved the study protocol, which

was based on the principles of the Declaration of Helsinki. All

Figure 1. Three dimensional representation of the Principal
Component Analysis of the 16 schwannomas (blue dots
corresponding to sporadical and red dot to the NF2 patient)
and the 3 control nerves (green dots).
doi:10.1371/journal.pone.0065868.g001
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patients received detailed information on the study and provided

their written informed consent prior to their inclusion in the study.

DNA/RNA Preparation
DNA was isolated using the Wizard Genomic DNA Purification

Kit (Promega). DNA was also extracted from the corresponding

patients’ peripheral blood. Total RNA was extracted using the

mirVana miRNA Isolation Kit (Ambion, CA, USA). A hypoglossal

ansa cervicalis nerve and two auricular nerves from non-tumoral

patients were used as control samples.

Mutational and MLPA Analysis of NF2 and LOH of
Chromosome 22q

We performed a mutational analysis of the NF2 gene by

dHPLC/PCR and a specific NF2 SALSA of MLPA (MRC-

Holland) and tested the LOH status of chromosome 22q. In brief,

the LOH of chromosome 22q was tested using 5 microsatellite

markers (D22S275, D22S264, D22S929, D22S268 and D22S280

located at 22q11-q12.3). For the PCR/dHPLC analysis of the NF2

gene, a set of 15 primer pairs were selected using the standard

PCR method and the dHPLC manufacturer’s protocols. For the

MLPA analysis, SALSA P044, which contains probes for all NF2

exons, was used. Complete procedures were described previously

[34].

miRNA Expression Array
We used the GeneChip miRNA 1.0 array (Affymetrix) with

coverage of miRBase v.11. The array contains 4 [35] probe sets

for mature miRNA and is able to detect the expression of 847

human mature miRNAs and 922 small nucleolar RNAs

(snoRNAs) and small Cajal body-specific RNAs (scaRNAs).

Hybridization targets were prepared from 500 ng of total RNA

using the FlashTag Biotin HSR Kit (Genisphere). The labeled

samples were hybridized to GeneChip miRNA arrays (Affymetrix).

GeneChips were scanned in a GeneChip Scanner 3000 (Affyme-

trix). CEL files were generated from DAT files using AGCC

software (Affymetrix). To generate the log2 expression estimates,

the overall array intensity was normalized between the arrays, and

the probe intensity for all probes in a probeset were summarized to

a single value using the RMA (Robust Multichip Average)

algorithm [36]. The arrays were processed at the IRB Barcelona

Functional Genomics Core Facility. The microarray data was

entered into the NCBI Gene Expression Omnibus database and

are accessible through GEO Series accession number GSE43571.

Statistical Array Analysis
Given that the 19 samples were processed in two separate

batches, with controls and tumors in both, the batch-removal tool

of the Partek Genomic Suite 6.6 was used to remove the batch

effect. We also used this software in order to include genes as

deregulated, and we selected those genes with at least a 2-fold

change in expression and a p,0.05 cutoff in the one-way ANOVA

test. The rest of statistical analyses were performed using

MultiExperiment Viewer (MeV) [37]. Principal component

analysis (PCA) was performed by eigenvalue decomposition of

the 3 principal components for three-dimensional classification of

the samples, and an unsupervised hierarchical cluster by Pearson’s

correlation was selected to group the samples and the deregulated

miRNAs. We used the mirWalk (http://www.umm.uni-

heidelberg.de/apps/zmf/mirwalk/index.html) and DAVID

(http://david.abcc.ncifcrf.gov/) web tools in order to predict the

biological meaning of the deregulated miRNAs [38,39]. As NF2

vestibular schwannoma had the same way as the other tumors, we

decided to include it in the statistical study.

Validation by qRT-PCR
For validation by miRCURY locked nucleic acid (LNA)TM

Universal RT microRNA PCR protocol qRT-PCR (Exiqon), we

used the 3 control nerves and 7 of the 16 Schwannoma chosen at

random. A total of 10 miRNAs with aberrant expression were

selected based on potential pathways of interest and/or chromo-

somal location (hsa-miR-1, hsa-miR-10b, hsa-miR-133b, hsa-

miR-183, hsa-miR-206, hsa-miR-221, hsa-miR-370, hsa-miR-

431, hsa-miR-493 and hsa-miR-720). The cDNA synthesis and

Figure 2. Hierarchical cluster by Pearson’s correlation of all 19
samples (16 schwannomas and 3 control nerves) and miRNAs
matching the criteria established as deregulated (2-fold
change in expression and a p,0.05 cutoff by one-way ANOVA).
doi:10.1371/journal.pone.0065868.g002

Table 1. The top 30 upregulated miRNAs obtained by
microarray analysis, ordered by positive fold-change in
schwannomas.

miRNA p-value Fold-Change

hsa-miR-431 5.47E-09 29.93

hsa-miR-720 4.96E-05 16.40

hsa-miR-34a* 2.73E-09 14.80

hsa-miR-221* 1.04E-09 9.96

hsa-miR-21 0.00116 9.71

hsa-miR-493 4.23E-07 8.48

hsa-miR-409-5p 9.25E-07 8.31

hsa-miR-363* 0.00010 8.09

hsa-miR-363 4.86E-09 8.05

hsa-miR-154 2.85E-05 7.53

hsa-miR-654-3p 0.00001 7.45

hsa-miR-20b* 3.33E-08 7.14

hsa-miR-543 3.29E-05 6.79

hsa-miR-377* 5.19E-06 5.63

hsa-miR-758 0.00057 5.63

hsa-miR-22* 5.70E-05 5.51

hsa-miR-127-3p 9.35E-07 5.42

hsa-miR-542-5p 0.00140 5.34

hsa-miR-200a 0.00028 5.31

hsa-miR-34a 4.27E-13 5.23

hsa-miR-224 0.00052 5.23

hsa-let-7i* 5.30E-06 5.17

hsa-miR-409-3p 9.77E-06 4.98

hsa-miR-221 1.23E-12 4.82

hsa-miR-184 0.01893 4.73

hsa-miR-181a-2* 2.89E-06 4.65

hsa-miR-493* 0.00094 4.65

hsa-miR-410 0.00096 4.47

hsa-miR-222 1.28E-10 4.47

hsa-miR-181c* 1.35E-07 4.30

doi:10.1371/journal.pone.0065868.t001
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real-time amplification were performed as recommended by the

manufacturer. All tests were performed in duplicate.

The calculation of gene expression was conducted as follows:

Average cycling threshold (Ct) values were obtained using SDS 2.2

software (Applied Biosystems). The maximum Ct value was set at

40. Ct values were normalized using two housekeeping non-coding

RNAs extracted from data obtained in arrays (SNORD49A and

hsa-miR-130). The relative expression level of each target gene

was expressed as DCt = Ctref–Ctgene [40]. Reference-normalized

expression measurements were adjusted by defining the lowest

expression value as 0, with subsequent 1-unit increases reflecting

an approximate doubling of the RNA. The non-parametric Mann-

Whitney-Wilcoxon test at p,0.05 coupled with the Benjamini-

Hochberg correction test was used to calculate the significance of

differences between the control samples and the schwannomas.

Results

Allelic Status of 22q and Mutational Analysis of NF2
A total of 9 samples (56%) presented 22q LOH using

microsatellite markers. Eight of the schwannomas (50%) had

NF2 sequence mutations detected by PCR/dHPLC, and 10 of the

schwannomas (62%) had NF2 sequence mutations detected by the

combined MLPA and PCR/dHPLC analysis. In 7 cases, LOH

was concomitant with either MLPA or PCR/dHPLC alteration.

In 4 cases, no alterations were found. We found no mutations in

the patients’ peripheral blood, with the exception of the NF2

patient. The individual results are shown in Table S1.

Deregulation in miRNAs
When the control nerves and the schwannomas were compared

using the one-way ANOVA at p,0.05 and with at least a 2-fold

change, we found 176 deregulated miRNAs from a total of 847

human miRNAs available in the array. Of these, 119 (14%) were

found to be upregulated and 57 (6.7%) were downregulated. The

top 30 of each group are shown in Tables 1 and 2, and the full

results of the deregulation can be seen in Table S2. The PCA

showed a clear distinction between the control nerves and the

schwannomas, and the tumor from the NF2 patient grouped

together with the other schwannomas (Figure 1). The hierarchical

cluster of deregulated genes showed no major differences at the

miRNA level between the schwannomas (included that tumor

from a NF2 patient) but showed differences with respect to the

controls (Figure 2).

The chromosomal location of the miRNA affected by dereg-

ulation is shown in Table 3. Chromosome 14 was the most

affected, with 52% of all miRNAs located on this chromosome

deregulated; all of these miRNAs were overexpressed, but one was

downregulated. Chromosome X also presented a high degree of

deregulation, with more than 27% of all miRNAs in this

chromosome showing aberrant expression. Other chromosomes

displaying significant rates of abnormally expressed miRNAs were

chromosome 1 (28%), chromosome 7 (26%) and, although fewer

miRNA probes were available in the array for this study,

chromosome 6 (29%) and 18 (33%).

Deregulation in other Non-coding RNAs
Other non-coding RNAs appeared deregulated: 128 of all

snoRNAs available in the array corresponded to HAC-Box, with

one downregulated (U71c) and 25 upregulated. A total of 67 of the

274 CD-box snoRNAs were upregulated, and only 5 of the other

499 snoRNAs were upregulated. The scaRNAs were not

deregulated, and the 5.8s rRNAs were upregulated in all 10

copies available at the probeset. The 30 most deregulated non-

coding RNAs are shown in Table 4.

Web-tool Analysis
Using mirWalk, a web-tool that finds gene targets from a given

list of miRNAs, we obtained a set of validated gene targets using

our lists of upregulated and downregulated miRNAs. These lists of

targets, with 1554 and 1597 genes respectively, were analyzed

separately using the DAVID platform, which uses a set of

functional annotation tools to find biological meaning from data

using gene ontology terms, BioCarta, etc. Using these web tools,

the main deregulated pathways identified were vasculature and

nervous system development (Tables S3 and S4).

Table 2. The top 30 downregulated miRNAs obtained by
microarray analysis, ordered by negative fold-change in
schwannomas.

miRNA p-value Fold-Change

hsa-miR-206 2.17E-09 2222.68

hsa-miR-1 3.85E-09 262.96

hsa-miR-10b 4.85E-08 251.58

hsa-miR-183 1.01E-06 225.33

hsa-miR-182 0.00019 224.44

hsa-miR-204 3.57E-06 217.68

hsa-miR-10b* 5.15E-08 214.51

hsa-miR-133b 8.36E-08 211.44

hsa-miR-214 2.59E-05 211.13

hsa-miR-383 7.99E-06 210.03

hsa-miR-223 0.000085 27.73

hsa-miR-148a 0.000486 27.61

hsa-miR-34b 0.005987 27.36

hsa-miR-10a 0.000004 27.31

hsa-miR-486-3p 0.000185 26.58

hsa-miR-509-3p 1.14E-05 26.57

hsa-miR-486-5p 9.88E-05 26.27

hsa-miR-199a-3p 0.002156 25.42

hsa-miR-199b-3p 0.002919 25.33

hsa-miR-133a 4.49E-06 25.18

hsa-miR-214* 0.015433 24.01

hsa-miR-15b 2.10E-05 23.87

hsa-miR-625 3.35E-07 23.76

hsa-miR-143 0.000495 23.74

hsa-miR-138-2* 0.000303 23.59

hsa-miR-183* 2.30E-05 23.55

hsa-miR-143* 0.01991 23.29

hsa-miR-92a-1* 0.01092 23.23

hsa-miR-595 8.73E-05 23.17

hsa-miR-199a-5p 0.02445 23.10

doi:10.1371/journal.pone.0065868.t002
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Microarray Data Correlation versus NF2 Alterations and
22q Allelic Status

We also tested the possibility that grouping schwannomas by

their molecular characteristics such as the presence or not of NF2

mutations or LOH 22q/normal 22q, would result in a statistically

significant subset of over- or under-expressed miRNAs (using the

one-way ANOVA at p,0.05 and at least a 2-fold change).

Fourteen miRNAs matched these criteria, and a number of the

miRNAs displayed statistical significance in several comparisons

(Table S5). These included the presence of 22q LOH vs. normal

constitution (with significant upregulation of miR-195* in miRNAs

with LOH), the presence of sequence alteration by all methods vs.

normal miRNAs (4 miRNAs), sequence alteration exclusively by

PCR/dHPLC vs. normal miRNAs (3 miRNAs), and one or more

detected alterations vs. no detected alterations (9 miRNAs).

Validation by qRT-PCR
Validation of the expression patterns of 11 miRNAs and

SNORD49A obtained through microarray analysis by performing

qRT-PCR (Table 5). In all cases, the trend observed in the

microarrays (upregulation, downregulation or no deregulation)

was confirmed by this technique.

Discussion

In this study, we used 16 schwannomas and 3 control nerves to

analyze the expression levels of miRNAs and other non-coding

RNAs in Affymetrix microarrays. As an alternative for control

purposes, in vitro cultures of Schwann cells may be used.

However, although it is possible to obtain up to 90% purity of

Schwann cells [41], it has been reported that Schwann cells in

cultures modify their native gene expression [42]. Thus, it appears

that peripheral nerve may be a more reliable control in expression

studies, as it has been proved by several reports [20,21,33]. Our

findings showed deregulation in schwannomas of more than 150

miRNAs and a set of other non-coding miRNAs, with special

upregulation of those miRNAs located in the chromosomal 14q

region. Eleven of the miRNAs and 1 snoRNA were validated by

qRT-PCR.

The most downregulated miRNAs in this study include the

myomiRs, composed of three clusters: miR-1-1/miR-133a-2,

miR-1-2/miR-133a-1, and miR-206/miR-133b. These miRNAs

have been identified as typically downregulated in several types of

cancer, such as colorectal cancer and hepatocellular carcinoma

(reviewed in citation [43]). Other miRNAs with reduced

expression in our series included miR-10b, which has also been

associated with other cancers such as gliomas [44], metastatic

breast carcinomas [45] and pancreatic carcinomas [46]; however,

in all of these cases, miR-10b was upregulated [44]. Decreased

expression of this miRNA has been reported to escape senescence

by Argonaute 2 expression in stem cells [47]. The miRNA 183/

182 cluster, which was downregulated in our series, has also been

found to be deregulated in medulloblastoma [48] and prostate

cancer [49], and the cluster has been shown to inhibit cell

proliferation and migration by targeting FGF9 and NTM in

Table 3. Available miRNAs correspond to those miRNAs tested in the microarray.

Chromosome Available miRNAs Up-regulated Down-regulated Total Percentage of deregulation (%)

1 61 14 3 17 27.9

2 23 2 3 5 21.7

3 35 2 2 4 11.4

4 31 0 2 2 6.5

5 30 2 4 6 20.0

6 17 3 2 5 29.4

7 42 4 7 11 26.2

8 27 1 3 4 14.8

9 30 1 4 5 16.7

10 23 1 2 3 13.0

11 38 3 2 5 13.2

12 42 2 0 2 4.8

13 25 0 2 2 8.0

14 81 40 2 42 51.9

15 27 4 1 5 18.5

16 17 4 2 6 35.3

17 48 6 4 10 20.8

18 9 0 3 3 33.3

19 102 9 4 13 12.7

20 19 0 0 0 0.0

21 7 1 0 1 14.3

22 19 0 1 1 5.3

X 89 20 4 24 27.0

Up or downregulation was obtained from those with at least a 2-fold change and p.0.05 when schwannomas and control nerves were compared. Other non-coding
RNAs were not considered in this table.
doi:10.1371/journal.pone.0065868.t003
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Schwann cells [50]. Furthermore, miR-183 has been found to be

capable of regulating Ezrin protein (a member of the family with

similarity to Merlin) in osteosarcoma and lung cancer [51,52]. The

miRNA 183/182 cluster may therefore be involved in Schwan-

noma formation if it plays a similar role in these neoplasms. In

malignant peripheral nerve sheath tumors (MPNSTs), miR-204 is

downregulated [53], in a similar pattern as that found in the

schwannomas in our arrays. As these tumors also developed from

Schwann cells, there may be common features associated with this

particular miRNA that appear to participate in the development of

both neoplasms.

The upregulated miRNAs in our studies include miR-21, which

targets PTEN in non-small cell lung cancer [54]; cluster miR-221/

miR-222, which is activated in Schwann cell proliferation

following sciatic nerve injury by targeting LASS2 [55] and

accelerates proliferation during liver regeneration [56]; and

miR-370, which is capable of reducing NF1 mRNA levels in

acute myeloid leukemia [57] and is also overexpressed in prostate

cancer [58]. Another miRNA with increased expression is miR-

493, which is defined as a tumor suppressor in bladder cancer and

is capable of downregulating FZD4 and RhoC protein expression

[59]. Thus, several of these miRNAs may contribute to the benign

proliferation observed in schwannomas, such as miR-221/miR-

222, due to their demonstrated capacity to affect proliferation and

regeneration in various tissues, including nerve tissue.

Web-tool analysis (performed using DAVID) provides us with

the theoretical results of validated genes affected by miRNA

deregulation (performed with mirWalk) and the pathways and

related components that involve these genes. The DAVID results

showed several processes related to carcinogenesis in the Kyoto

Encyclopedia of Genes and Genomes (KEGG), including

hsa05215:Prostate cancer, hsa05214:Glioma and the

hsa04012:ErbB signaling pathway. However, when the up- or

down-regulated miRNAs we had previously identified were

considered, the findings showed similar deregulated GO-terms

(e.g., GO:0010604 positive regulation of the macromolecule

metabolic process; GO:0051960 regulation of nervous system

development; GO:0051270 regulation of cell motion, etc.).

Therefore, the data obtained from the analysis of our deregulated

miRNAs with these web-tools must be viewed with caution, and

no definitive conclusions should be drawn. This event might be

related to the lack of tissue specificity when selecting deregulated

miRNAs that were validated for target genes. Once more detailed

data are available on this subject, a re-evaluation of the pathways

affected by miRNA interaction may be performed. We previously

analyzed the critical regulatory pathways that are abnormally

expressed in schwannomas by studying the expression levels of 96

tumor-related genes [21]. Those genes coding for proteins related

to apoptosis and angiogenesis and genes related to DNA damage

repair were the most frequently altered.

When the chromosomal location of the abnormally expressed

miRNAs was analyzed, we found a clear upregulation for those

miRNAs located in the chromosomal 14q32 region. Only two

miRNAs, miR-203 and miR-625, had reduced expression, while

approximately 40 miRNAs showed overexpression, including

miR-431, miR-370 and miR-493, as validated by qRT-PCR.

This region involves a large miRNA cluster [60] [61] altered in

several neoplasms such as gliomas (by downregulation) [62] and a

subtype of acute myeloid leukemia (by upregulation) [63].

Consequently, this region also appears to play a pivotal role in

Table 4. The top 30 deregulated non-miRNAs present in the
arrays.

Transcript ID Chr Sequence p-value Fold-Change

HBII-99 20 CDBox 1.14E-07 5.97

14q(II-12) 14 CDBox 6.83E-07 5.41

U48 6 CDBox 7.30E-06 5.05

14q(I-4) 14 CDBox 8.33E-06 5.05

U107 X HAcaBox 2.61E-09 4.95

HBII-180C 19 CDBox 7.09E-09 4.90

14q(II-14) 14 CDBox 2.52E-05 4.85

U43 22 CDBox 3.53E-07 4.46

U31 11 CDBox 3.73E-06 4.42

14q(II-3) 14 CDBox 8.57E-06 4.42

U43 22 CDBox 7.81E-07 4.31

ENSG00000200879 11 snoRNA 7.21E-11 4.24

14q(II-14) 14 CDBox 5.42E-05 4.20

ACA7 3 HAcaBox 3.00E-06 4.09

U46 1 CDBox 7.68E-08 4.06

U8 17 CDBox 1.82E-06 4.02

ACA48 17 HAcaBox 6.70E-07 3.98

ENSG00000202252 11 snoRNA 3.03E-05 3.91

U8 17 CDBox 3.32E-07 3.87

U46 1 CDBox 4.34E-07 3.78

14q(II-26) 14 CDBox 0.00128 3.76

ACA16 1 HAcaBox 7.13E-05 3.70

ENSG00000207118 11 snoRNA 0.00011 3.68

U103 1 CDBox 3.05E-08 3.68

ACA48 17 HAcaBox 1.64E-06 3.61

ACA16 1 HAcaBox 3.75E-06 3.54

HBII-85-8 15 CDBox 3.89E-07 3.49

U33 19 CDBox 4.22E-08 3.44

14q(II-12) 14 CDBox 3.84E-05 3.43

HBII-180A 19 CDBox 5.51E-08 3.43

doi:10.1371/journal.pone.0065868.t004

Table 5. The qRT-PCR showed all miRNAs significantly up or
downregulated in schwannomas compared to control-nerves
(at least a 2-fold change and p.0.05), except in those two
used as house-keeping (SNORD49A and miR-103).

miRNA Location Fold-change P-value

miR-1 20q13.33 126.72 0.0251

miR-10b 2q31.1 269.19 0.0251

miR-133b 6p12.2 210.49 0.0251

miR-183 7q32.2 57.34 0.0251

miR-206 6p12.2 379.28 0.0251

miR-221 Xp11.3 –9.62 0.0251

miR-370 14q32.2 –3.13 0.0364

miR-431 14q32.2 -6.38 0.0251

miR-493 14q32.2 –7.99 0.0251

miR-720 3q26.1 –3.49 0.0364

SNORD49A 17p11.2 1.01 0.7324

miR-103 5q34 –1.01 0.7324

doi:10.1371/journal.pone.0065868.t005
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Schwannoma formation and/or maintenance. On chromosome

22, which usually suffers a loss of heterozygosity in Schwannoma,

5% of the miRNAs located in this region appeared deregulated. In

fact, only miR-185 (at 22q11) displayed reduced expression levels.

This finding suggests that, in schwannomas, losses involving 22q

do not seem to affect the expression pattern of miRNA located

there. However this particular miRNA (miR-185) may be affected

as a result of other yet unknown regulatory molecular mecha-

nisms.

Several deregulated miRNAs we identified concur with the data

from previous reports in schwannomas [32,33]. In agreement with

the data, miR-7, miR-638, miR-143* and miR-498 were

downregulated, and miR-221, miR-21, miR-29, miR-30a and

miR-138 were upregulated in our study. On the other hand, a few

of the miRNAs, such as miR-34a, let-7d and miR-451, did not

match the same trend of aberrant expression as that previously

described. Establishing a reason for these divergences is a difficult

task, because neither the number of samples nor the methodology

used should influence the result. Therefore, our findings generally

concur with the results of previous reports, although several

miRNAs with a different expression pattern were identified.

We found alterations in other non-coding RNAs (snoRNAs and

scaRNAs) using this type of array. These alterations have been

associated with the development or progression of breast cancer

and acute leukemia [64,65]. Our results showed that at least 98 of

these non-coding RNAs were deregulated, almost all by increased

expression, except for HACA-Box SNORA71C. A total of 14

SnoRNAs were also located in chromosome 14q32, highlighting

the paramount role played by the miRNAs located in this genomic

region in Schwannoma development.

Schwannomas with specific molecular characteristics, such as

gene mutations of NF2 and/or LOH of 22q region, may present a

different miRNA expression pattern when compared to unaltered

schwannomas. When comparing levels of miRNA expression

obtained from arrays with other molecular studies performed on

these tumors (NF2 mutation detection or 22q allelic status

determination), we found 14 miRNAs with aberrant expression.

For example, abnormal overexpression of miR-155, which is

associated with schwannomas with no alterations of any sort,

displayed a statistical significance of p,0.001; however, miR-

125b-2* was found to be significantly downregulated in those

tumors carrying a mutation (p,0.01). Despite these differences,

establishing a molecular reason for these particular alterations is

difficult. Furthermore, the p-values were relatively high compared

with those obtained when tumors and controls were studied, and

outliers could not be ruled out as playing a role in these results. We

therefore concluded that, at the miRNA level, a few miRNA

subsets may have relevance depending on the genetic status of the

tumor (the presence of NF2 mutation and/or LOH of 22q),

although more research needs to be conducted on this particular

aspect.

In conclusion, our results show that the non-coding RNA

expression pattern is critically affected in schwannomas when

compared to healthy tissue. Of these, miRNAs seems to be the

most frequently affected, given that at least 20% appear

deregulated, including several depicted in other tumors. These

mRNAs include miR-10b and miR-204. Furthermore, a well-

described cluster of non-coding RNAs in the chromosomal region

14q32 seems to present global upregulation, suggesting that

miRNA deregulation in this region might play a significant role in

the development and/or maintenance of these tumors. Finally,

other non-coding RNAs, although less numerous when compared

with miRNAs, also seem to be altered in schwannomas.
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