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Abstract: A growing body of evidence shows that dysbiotic gut microbiota may correlate with a wide
range of disorders; hence, the clinical use of microbiota maps and fecal microbiota transplantation
(FMT) can be exploited in the clinic of some infectious diseases. Through direct or indirect ecologi-
cal and functional competition, FMT may stimulate decolonization of pathogens or opportunistic
pathogens, modulating immune response and colonic inflammation, and restoring intestinal home-
ostasis, which reduces host damage. Herein, we discuss how diagnostic parasitology may contribute
to designing clinical metagenomic pipelines and FMT programs, especially in pediatric subjects. The
consequences of more specialized diagnostics in the context of gut microbiota communities may
improve the clinical parasitology and extend its applications to the prevention and treatment of
several communicable and even noncommunicable disorders.
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1. Introduction

The intestinal environment is an ecosystem where biological and chemical interactions
occur at various organizational levels between host, parasites, and microbial communities,
greatly affecting human health and physiology.

Considering the gut microbiota at the taxonomic level, we can observe a significant
variation among individuals, each harboring a unique collection of bacterial species, which
may change over time and could be considered a fingerprint [1–3].

The microbiota at the gut microenvironment level provides important protective,
immune regulatory and metabolic functions. The defensive mechanism against pathogenic
bacteria is exerted by the barrier effect of the intestinal epithelium, playing a major role in
protecting the host and representing an important obstacle to pathogenic invasion [4,5].
Indeed, gut microbiota has an important role in immunological activation and development,
as demonstrated in many metabolic and autoimmune diseases [6], by influencing host
immune response [7–11]. The balance of the gut microbial ecosystem, eubiosis, is an
important concept. Indeed, the eubiotic gut microbiota is characterized by a preponderance
of potentially beneficial species, belonging mainly to the two bacterial phylum Firmicutes
and Bacteroidetes, and, potentially, pathogenic species such as Proteobacteria. In the
dysbiosis state, “bad bacteria” predominate “good bacteria” [12–14].

Moreover, environmental factors, such as age, diet, stress, drugs, and infections in-
cluding parasitosis, strongly influence the composition of the human microbiota [15–18].
Nowadays, it is evident that the intestinal microbiota has an important impact on human
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pathophysiology, also regulating pathogenic burden [19]. Intestinal helminths may directly
influence the immune system through their effects on both gut luminal and mucosal micro-
biota [20]. Indeed, Th2 cells have an important role in combatting parasitic infections [21].
However, in existing literature, there is conflicting evidence on the effect of parasites on
microbiota ecology and function and their impact on health and disease balance.

Within this complex scenario, intestinal citizens (e.g., viruses, mycetes, and parasites)
interact with the microbial community, modifying the balance between host and gut micro-
biota [4,22]. The intestinal microenvironment, considered as a whole community, provides
an important protective mucosal defense mechanism, but there is evidence that change
in the composition of the commensal microbiota alters the gut environment, making this
composition vulnerable to pathogenic organisms [23–25]. Many factors such as antibiotics,
psychological stress, physical stress, modern diet, and hygiene can affect microbial stability,
and thus contribute to intestinal dysbiosis [13].

2. Role and Relationship amongst Gut Microbiota Citizens

In addition to bacteria, other key microorganisms, such as yeasts and filamentous
fungi, viruses, and phages, are present in the gut [26,27]. Moreover, for ~25% of the world’s
population, the gut microbiota also comprises intestinal protozoan and worms, namely
meiofauna [28,29].

The diversity of meiofauna living on or in our bodies is associated to all metazoans
with dimensions between 30 µm and 1 mm. Many members of the meiofauna significantly
affect morbidity and mortality, including fungi (e.g., Candida, Aspergillus), unicellular
protozoa (e.g., Giardia, Entamoeba), and helminthic worms (e.g., Ascaris) (Figure 1) [30].
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Sequencing technologies allow us to analyze the global diversity of the meiofauna
of the human gastrointestinal tract to intimately demonstrate gastrointestinal meiofauna
may be important in promoting health or disease. Several studies indicate that diet can
influence the proportions of the meiofauna and that there is the possibility of trans-kingdom
interactions in the gastrointestinal tract [30] (Figure 1).

All these microorganisms offer additional dimensions to the investigation of the host
microorganism and microorganism–microorganism interactions. These interplays can
be exploited only by combined models obtained by metagenomics, metabolomics and
metaproteomics harmonization and integration [31], aiming at producing decision support
systems for disease stratification in medicine [32].
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All microbial inhabitants may have both beneficial and detrimental roles in the human
health, including improvement of microbial resilience, immune evasion, maintenance of
physiologic processes, but even alteration of microbial communities [33]. Bacteriophages
in the gut are largely unexplored, despite their potential to regulate bacterial communities
and thus human health [34,35]. Indeed, experimental limitations still successfully affect
the isolation of phages and genome annotation as well as the full characterization of
virus–human populations [36]. Some studies have highlighted the uniqueness of phage
communities in individuals and their capacity to be stable in a healthy gut [37]. Remarkably,
the stability of the viral genome is probably responsible for the stableness of bacteria and
microbiota metagenomes [38]. However, there are still only a few studies on the role of the
virome in the host’s intestinal microbiota ecosystem [39].

Fungi are normal inhabitants of the mammalian gastrointestinal tract. In fact, the
human gut is colonized by more than 50 genera of fungi [40]. In particular, the gut is
characterized by the presence of Candida, Saccharomyces and Cladosporium species. Nutri-
tional modification may have an effect on the fungal microbiota; in particular, plant-based
diets increase the levels of Candida, whereas animal-based diets improve the presence of
Penicillium species [41,42]. Indeed, fungi compose a very small portion of gut microbiota
but play determinative roles in the homeostasis of the gut bacterial composition and the
mucosal immune responses. An interkingdom correlation between bacteria and fungi has
been suggested. Alterations in the composition and function of the gut microbiota are a
usual event in patients who suffer from IBD. Although the main reason for this alteration
is not clear, the interaction between gut bacteria and gut fungi seems to be an important
subject in IBD patients [43].

So, intestinal parasites, both protozoans and metazoan (nematodes and platyhelminths),
interact with the microbial community, modifying the balance between host and gut micro-
biota [44].

3. Parasites and Gut Microbiota Profiling

Parasitic infections represent a significant health problem, particularly in underde-
veloped and developing countries. Soil-transmitted helminths (STHs), e.g., Strongyloides
stercoralis and Trichuris trichiura, are common intestinal parasites, followed by blood flukes
(i.e., Schistosoma spp.) and filarial worms (e.g., Wuchereria and Brugia). Generally speak-
ing, intestinal parasitic infections may have a low impact in immunocompetent subjects;
however, they can potentially become a major issue in vulnerable groups. In fact, helminth
infections produce malnutrition, physical damage, and cognitive development complica-
tions in children [45]. Furthermore, a wide range of protozoans are common parasites of
the human gastro-intestinal tract (e.g., Cryptosporidium spp., Entamoeba histolytica, Giardia
duodenalis). The spectrum of clinical manifestations of protozoan infections varies from
chronic diarrhea or weight loss, or mild self-limiting illness to acute disease, until mal-
absorption [29,46,47], as well as the modality of transmission, zoonotic or anthroponotic,
particularly investigated as reported for Apicomplexan parasites [48]. A study conducted
on packaged salads highlighted the presence of protozoan contamination, such as Giardia
duodenalis, Cryptosporidium spp., Toxoplasma gondii, and Cyclospora cayetanensis, through mi-
croscopy and molecular analyses, concluding that 4.2% of the samples were contaminated
by at least one protozoan species, and 0.6% of samples with at least two protozoa [49].

Together with trillions of microorganisms, i.e., archaea, viruses, bacteria, and eu-
karyotes residing in the GI tract, parasitic worms establish the “macrobiota” [50]. The
microbiota of a host may strongly interfere with the survival and physiology of many
parasites and, consequently, with the outcome of many parasitic infections. During parasite
infections, the interaction between the gut microbiota and the helminths has been associ-
ated with the establishment of the infection, the clinical manifestations, and even immune
modulation [51,52]. However, both increased and decreased gut microbiota diversity has
been observed in subjects affected by intestinal parasites [53–57].
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Experiments performed in murine models of intestinal schistosomiasis have suggested
interactions between Schistosoma parasites and the host gut microbiota with a direct impact
on the intestinal microbial communities [58]. In a study by Alba Cortés et al., the gut
microbiome composition of the host actually influenced the host’s susceptibility to S.
mansoni infection, as well as infection-associated changes in gut microbiota profiles [58].
Some studies have evidenced that Necator americanus infection could alleviate chronic
inflammation in celiac disease and improve prokaryotic species richness, reestablishing
the eubiosis and immune homeostasis [59]. In a case report on Strongiloides stercoralis
infection, gut microbiota composition was associated with enrichment in Bifidobacterium,
Blautia, Ruminococcus, Bacteroides, Corynebacterium, Colinsella, Streptococcus, Coprococcus,
and Oscillospora genera, and a decrease in Staphylococcus, Lactobacillus, and Pediococcus.
The authors suggested a putative direct or immune-mediated ability of S. stercoralis to
promote the increase in bacterial diversity [60]. In some studies conducted in a rural
African population, the authors showed a characteristic gut microbiota ecology in patients
carrying Entamoeba colonization [61–63] (Table 1).

A review of the literature tried to study in depth the mutual influences of intestinal
nematodes and host-gut microbiota, highlighting the potential beneficial effects (i.e., promo-
tion of eubiosis) through the production of useful metabolites (i.e., short-chain fatty acids,
SCFA) [60]. Conversely, nematode infection may promote dysbiosis due to promotion of
pathogenic bacterial species and decrease in mutualistic commensal. Authors exemplified
the nematode–microbiota interactions and their impact on the host immune response [64].

A shotgun metagenomics study on samples of patients with the Blastocystis spp.
infection showed a very strong association between the presence of Blastocystis spp. and the
abundance of archaeal organisms (Methanobrevibacter smithii) [65]. Additionally, another
study showed a decrease in Blastocystis in individuals with the Bacteroides enterotype
compared to subjects with the Ruminococcus or Prevotella enterotypes [66]. Audebert
et al. highlighted a high microbiota diversity, increased abundance of Clostridia, and
low abundance of Enterobacteriaceae in Blastocystis-colonized patients, suggesting that
Blastocystis infection may be associated with a healthy gut microbiota [67]. Conversely,
another study did not highlight significant modifications in the gut microbiota of Blastocystis
positive subjects affected by irritable bowel syndrome [68]. In a rat model of Blastocystis ST3
infection, the colonization altered gut microbiota composition, but not richness, inducing
only mild gut inflammation but no clinical symptoms. In addition, the long-term Blastocystis
exposure appeared to promote faster recovery from colitis, suggesting that Blastocystis may
alter the gut ecosystem in a protective way and promote faster recovery [69]. Conversely,
in healthy subjects, the fermentation by anaerobic bacteria and Blastocystis induced an
increased SCFA production [70]. A further study has developed a bioinformatic pipeline to
detect Blastocystis subtypes (STs) from shotgun metagenomics data, identifying Blastocystis
as a common component of the healthy gut microbiome [65]. The authors showed how
metagenomics could play an important role in advancing evidence on population genomics
of human parasites. Therefore, through DNA sequencing-based methods, it might be
possible to address the role of Blastocystis and Dientamoeba as commensal components of
healthy gut microbiota rather than pathogenic microorganisms.

In other papers, B. hominis and D. fragilis appeared to be more or less obligated
eukaryotic members of the gut microbiota [71–73] and less frequent in subjects with
intestinal diseases and metabolic disorders [65,74–76].

Conversely, other studies have highlighted the possible role of D. fragilis and B.
hominis as infectious agents, providing a relationship with gut microbiota profiles and
host phenotypic features, including microbiota dysbiosis or eubiosis [70]. Indeed, in this
article, Stensvold C.R. et al. discussed the possible role of Blastocystis as an indicator of
disease-related gut microbiota profiles in subjects affected by gut dysbiosis [70] or as an
indicator of eubiosis in healthy subjects.

Since the composition of the intestinal bacterial population affects the impact of the
infection of protozoans, or vice versa, the modulation of different components of the
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microbiota could be used to prevent or attenuate intestinal protozoan infection and the
ultimate outcome of parasitic disease (Table 1). Indeed, microbial signatures associated
with parasitic infections may represent the actual link with the gut microbiota shape,
playing a role in unveiling the susceptibility to infections and in their clinical outcome in
terms of disease onset, progression, and severity [77].

Table 1. Gut microbiota profiles associated to parasitic infections.

Reference Parasite Type of Infection Type of
Study

Type of
Sequencing Gut Microbiota Composition

[67] Blastocystis Natural Human
study

16S rDNA
sequencing

Increase in Clostridia, Mollicutes,
Clostridiales, Ruminococcaceae and

Prevotellaceae.
Decrease in Bacilli, Lactobacillales,
Enterococcaceae, Streptococcaceae,

Lactobacillaceae and Enterobacteriaceae.

[68] Blastocystis Natural Human
study

16S rDNA
sequencing No significant change.

[69] Blastocystis
Mouse infected

with Blastocystis
ST3

Murine
model

16S rDNA
sequencing

Increase in Bilophila and Butyricimonas in
the Blastocystis-colonized group.
Decrease in Defluviitaleaceae.

[65] Blastocystis Natural Human
study

Shotgun
metagenomics

Increase in Firmicutes and Clostridiales.
Decrease in Bacteroides.

[61] Entamoeba Natural Human
study

16S rDNA
sequencing

Increase in Bacteroidales, Mollicutes,
Christensenellaceae, Elusimicrobiaceae,
Ruminococcaceae, Paraprevotellaceae,

Treponema, Parabacteroides, Streptococcus,
Butyrivibrio, Oscillospira, Desulfovibrio and

Ruminococcus bromii.
Decrease in Prevotella, Prevotella copri.

[62] Entamoeba Natural Human
study

16S rDNA
sequencing

Positive correlation between
Bifidobacterium vs. B. fragilis, and

Prevotella vs. Bacteroides.
Negative correlation between
Bifidobacterium vs. Bacteroides.

[63] Entamoeba Culture of E.
histolytica

Culture
study

16S rDNA
sequencing

Increase Lactobacillaceae, Clostridiaceae,
Erysipelotrichaceae, and

Bifidobacteriaceae.

[58] Schistosoma
Infected with S.

mansoni cercariae
(Sm-exp)

Murine
model

16S rDNA
sequencing

The authors supposed that susceptibility
to Schistosoma infection in mice is

partially dependent on the composition
of the host baseline microbiota.

[59] Necator
americanus

Percutaneous
infection with

third-stage larvae
N. americanus

Longitudinal
study

16S rDNA
sequencing

Increase in Tenericutes, Mollicutes and
Parabacteroides.

[60] Strongiloides
stercoralis Natural Case report 16S rDNA

sequencing

Increase in Bifidobacterium, Blautia,
Ruminococcus, Bacteroides,

Corynebacterium, Colinsella, Streptococcus,
Coprococcus, and Oscillospora.

Decrease in Staphylococcus, Lactobacillus,
and Pediococcus.
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4. New Molecular Approaches in Translational and Clinical Parasitology

In January 2019, the Parasite Microbiome Project (PMP) began to understand the role of
parasite-associated gut microbiota in the pathophysiology of helminthiases [78]. The PMP
tried to draw best practices for experimental studies to ensure reliable comparisons between
data sets and the introduction of appropriate controls to identify possible environmental
microbial contaminants [78]. In a recent review, the authors suggested four elements that
must be considered when the scientist wants to generate reliable and reproducible data [50].
As a first step, they propose generating appropriate negative controls (“blanks”) in each step
of the experiment, followed by the microscopy-based visualization of helminth-associated
bacteria to identify and characterize worm microbiomes across different helminth tissues
and developmental stages. Best practices are becoming more and more important because
clinical metagenomic next-generation sequencing (mNGS) is rapidly moving from research
to clinical laboratories. Chiu et al. focused on the challenges of implementing mNGS in the
clinical laboratory and addressing potential solutions for maximizing its impact on patient
care and public health [79]. In fact, metagenomic methods (NGS) are the new approach that
microbiologists and parasitologists should undertake to improve accuracy and sensitivity,
with respect to the classical approach based on the microscopical method, which may
be affected by ambiguities and subjective interpretations [80]. Indeed, major usage of
different genomic approaches, such as metataxonomics and metagenomes [81], may assist
in reducing ambiguities and subjective interpretation in parasite description and assessing
their relationship with microbial communities. Marchesi et al. suggested metataxonomics
to assess fine metataxonomic tree descriptions of the entire microbiota and metagenomics
to assemble microbial genomes and characterize new genes after annotation through
shotgun sequencing [81]. Particularly, metataxonomics refers to targeted sequencing of
16S rRNA gene hypervariable regions [82] andallows representative bacterial taxonomic
description [83].

In this context, remarkable is the choice of primers able to reduce potential bias in the
representation of entire taxonomic units [84–86]. The sequencing output represents a set of
clusters of close related sequences, called operational taxonomic units (OTUs) [87]. Through
bioinformatic OTUs analysis, it is possible to assess the level of microbial community
diversity, both in terms of evenness and richness [88] and the degree of divergence between
different ecosystems or sample types [89].

On the contrary, shotgun metagenomics is based on DNA molecules, which are
randomly broken into fragments that are then sequenced [90]. Hence, the shotgun metage-
nomic approach provides major information on the taxonomic composition and inferred
functional genes, thus fully characterizing the sample, despite requested high coverage [91].

Clinical applications of metagenomic sequencing include direct identification of mi-
croorganisms from primary clinical samples, antimicrobial resistance prediction by charac-
terization of resistance genes, detection of species-level or strain-level virulence determi-
nants, and antiviral resistance prediction. Furthermore, by means of NGS techniques, it
is now possible to analyze the onset and progression of infectious diseases in acute and
chronic stages [79]. The current challenge will become the agnostic approach through the
complete characterization of enteric microbial communities, shallow metagenomics, and
trans-kingdom metagenomics (Figures 2 and 3).
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5. Gut Microbiota Profiling as Tools to Restore and Modulate Gut Microbiota

Gut dysbiosis may be harmful to human beings, leading to organ-localized inflam-
mation, delocalized low inflammation, neuro-inflammation, and mucosal tissue damage
predisposed to pathological conditions, such as in the case of obesity, liver steatosis, autism,
and PANDAs [92–95]. Regarding inflammatory mechanisms, amongst infectious diseases,
the infection by C. difficile, exerted by the toxin causing gastrointestinal illness, is associated
with a wide spectrum of severity, ranging from mild diarrhea to pseudomembranous colitis,
toxic megacolon, sepsis, and death 17 [96,97]. C. difficile, a Gram-positive spore-forming
bacillus, is considered a member of the normal gut microbiota. Regardless, its abnormal
growth is suppressed by other more dominant anaerobes [98]. The gut colonization of C.
difficile is reversely related with host age, growing in early infancy and senescence, and
decreasing in adulthood. Furthermore, gut colonization of C. difficile depends on the loss of
the commensal microbiota barrier, loss potentiated by antimicrobial therapies.

In this context, C. difficile infection is responsible for the initiation of the cascade
of inflammatory processes, which may play an important and destructive role in the
initiation and perpetuation of intestinal inflammation [98]. Patients with recurrent C.
difficile infections are characterized by almost monomicrobial bacterial distributions of the
fecal microbiota [99]. A decrease in bacterial diversity and a strong variation in global
distribution of OTUs are, indeed, registered in the fecal microbiota profiling of adult
patients who present C. difficile infections [99]. In particular, a statistically significant
increase in Firmicutes and a decrease in Bacteroidetes phyla, compared to healthy subjects
are observed in the patients, as well as an increase in Clostridiaceae and Erysipelotrichaceae
families (Figure 4). Remarkably, in microbiota profiles associated with infectious agents,
the dysbiosis index (DI) is usually very high, based on the prevalence of few microbial
taxa, as reported by diagnostic maps obtained for C. difficile infection, for which observed
dysbiosis values are actually very high (DI > 35%) (https://www.ospedalebambinogesu.it/
parassitologia-98785/, (accessed on 20 September 2021)) (Lorenza Putignani and Antonio
Gasbarrini, oral communication, 24◦Congresso Nazionale delle Malattie Digestive, Rome,
FISMAD 23 March 2018) (Patent IT: PCT40659, EU: PCT/IT2017/000119, Metagenomic
Method for in vitro diagnosis of intestinal disbiosis).

Fecal microbiota transplantation (FMT) has achieved a major role in the clinical
management of C. difficile infections. In these cases, the transplantation is followed by
a re-establishment of diversity, and, in many cases, the percentage of efficacy is greater
than 90% [100]. FMT is considered as the “ultimate probiotics” because it directly changes
the intestinal microbial composition of the host, thus restoring eubiosis and intestinal
homeostasis. FMT donor screening is a key factor in the safety of the procedure in order to
prevent iatrogenic infectious diseases that are potentially transmittable to the recipient [101].
In fact, the international consensus on stool banking for FMT has recently established that
donor stool must be tested for protozoa and helminths, including B. hominis, D. fragilis,
G. duodenalis, Cryptosporidium spp., Isospora, and Microsporidia [102]. In addition, the
donor must be negative in blood nematodes testing (i.e., S. stercoralis) [102], and particular
attention is necessary for the parasitological screening of donors when recipients are
children [103]. Remarkably, the fecal material (i.e., emulsion) can be stored frozen in a stool
bank for use when needed [103]. Indeed, FMT requires a combination of expertise and
appropriate methods to identify the best donors, including advanced clinical parasitology.

https://www.ospedalebambinogesu.it/parassitologia-98785/
https://www.ospedalebambinogesu.it/parassitologia-98785/
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6. Materials and Methods

Regarding the literature review, this section of the paper was conducted to analyze
the role of microorganisms (e.g., bacteria, viruses, fungi, worms, and protozoa) on the
microbial communities of the gastrointestinal tract both under conditions of eubiosis and
dysbiosis. The research was conducted on PubMed, using the following terms: “virus”
“fungi”, “worms”, “protozoa”, “microbiota” or “microbiome”, “dysbiosis” or “eubiosis”.
Principal articles providing sufficient information about the relationship between the gut
microbiota, NGS, clinical parasitology, and FMT were considered. The inclusion criteria for
the study were as follows: (1) observational prospective and retrospective studies, case-
control studies, cohort studies, or systemic review; (2) studies investigating gut microbiota
profiles and parasites infection; (3) studies written in English. All the studies that did
not fall in the stated criteria were excluded from the reviewing process. Regarding gut
microbiota map generations, 16S targeted metagenomics maps were reported for single-
case microbiota profiling under clinical microbiomics settings and in standardized and
strict quality procedures. According to OPBG diagnostic procedures, three fecal samples
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for each subject were collected, processed to optimize microbial DNA extraction, amplified
to generate 16S rRNA libraries, pooled, quantified, and sequenced [104] by a MiSeq DX
platform, in accordance with the manufacturer (Illumina, CA, USA). In addition to the
wet part of the map generation pipeline, the dry bioinformatics module was assessed
by an automated process designed by OPBG-GenomeUP in accordance with the OPBG
patent. (Patent IT: PCT40659, EU: PCT/IT2017/000119, Metagenomic Method for in vitro
diagnosis of intestinal disbiosis). Regarding shotgun procedures, before DNA extraction,
differential sample homogenization (Precellys 24 original tissue homogenizer, (Bertin
Instruments, Montigny-le-Bretonneux, France) was performed to optimize parasite and
bacteria DNA extraction. Hence, AllPrep Power DNA/RNA Kit was exploited to provide
shotgun DNA library templates (bacteriome, parasitome). Library preparation was set
up by using Illumina® DNA Prep, (M) Tagmentation (96 Samples), IDT® for Illumina®

DNA UD Indexes Set A, NextSeq 550 High Output Kit v2.5 (300 Cycles) according to
Illumina specific instructions. Sequencing was performed on the NextSeq550 platform,
ensuring at least a sequencing depth of 50–100 M reads/sample. For the dry protocol, a pre-
processing procedure was assured by the removal of the input sequences containing regions
of low quality/complexity and readings of less than 50 nucleotides. Only reads passing
QC filters were directed to the following steps, in which data were mapped against the
human genome. In the third step, a comparison with reference databases was undertaken,
and taxonomic annotation was provided by processing GenBank and RefSeq databases.
Alignments were filtered based on identity percentage and query coverage. Reports were
generated as CSV files, HTML interactive tables, and Krona graphs [105]. Taxonomic and
functional annotation were processed by Python statistics modules.

7. Conclusions

Over the last two decades, helminths and protozoans, previously considered only
as pathogens, have been being increasingly suggested as also commensal, protective, or
even curative microorganisms. These findings essentially point out that most of these
primarily considered “parasites” could have an evolutionary history, tipping the balance
towards commensalism, where they have adapted to live off the host without causing any
harm. However, it is important to keep in mind that for most of these data, there are other
studies that have found opposing results. A likely explanation for these differences can
be attributed to various parameters affecting the study design and protocols. The method
of analysis, which includes the type of sample used for sequencing, the workflow stan-
dardization, and lab-to-lab or operator variability, can create important biases in the results.
Moreover, the majority of the studies rely on fecal samples, which does not give enough
information on the localization of the parasite within the GI tract. The characterization
of the human gut parasitome is now urgent, but this still requires time and new tools.
The “-omics” analyses, i.e., (meta)genomics, (meta)transcriptomics, (meta)proteomics,
(meta)metabolomics), represent a robust tool for such types of studies [106]. In this context,
the application of “big data” methodologies to GM may boost this intervention. The intro-
duction of sequencing technologies has revolutionized the field, enabling investigators to
characterize microbial communities. By utilizing larger datasets, researchers are able to
design large-scale studies to ask (and answer) complex questions. Metadata associated with
samples are becoming an increasingly large contributor to microbiome big data and the
challenges associated with streamlining data analysis. The successful application of big mi-
crobiome dataset analysis has already provided relevant insights for other areas of research,
such as epidemiology, agriculture, and healthcare. Since gut microbiota composition differs
widely according to host genetics, diet, lifestyle, geographical location, and disease burden,
the application of big data methodologies to gut microbiota and parasitome profiling
could be of utmost importance in developing a wide understanding of various infectious
diseases. The reach of a new type of clinical parasitology, encountering the approaches
and needs of the clinical microbiomics [107], may contribute to the new data-driven era in
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medicine, establishing new connections with other big data and genome-wide association
links, opening the way to a novel holobiont perspective in infectious diseases.
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101. Cammarota, G.; Ianiro, G.; Tilg, H.; Rajilić-Stojanović, M.; Kump, P.; Satokari, R.; Sokol, H.; Arkkila, P.; Pintus, C.; Hart, A.; et al.
European Consensus Conference on Faecal Microbiota Transplantation in Clinical Practice. Gut 2017, 66, 569–580. [CrossRef]

102. Cammarota, G.; Ianiro, G.; Kelly, C.R.; Mullish, B.H.; Allegretti, J.R.; Kassam, Z.; Putignani, L.; Fischer, M.; Keller, J.J.; Costello,
S.P.; et al. International Consensus Conference on Stool Banking for Faecal Microbiota Transplantation in Clinical Practice. Gut
2019, 68, 2111–2121. [CrossRef]

103. Keller, J.J.; Ooijevaar, R.E.; Hvas, C.L.; Terveer, E.M.; Lieberknecht, S.C.; Högenauer, C.; Arkkila, P.; Sokol, H.; Gridnyev, O.;
Mégraud, F.; et al. A Standardised Model for Stool Banking for Faecal Microbiota Transplantation: A Consensus Report from a
Multidisciplinary UEG Working Group. United Eur. Gastroenterol. J. 2021, 9, 229–247. [CrossRef] [PubMed]

104. Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of General 16S Ribosomal
RNA Gene PCR Primers for Classical and Next-Generation Sequencing-Based Diversity Studies. Nucleic Acids Res. 2013, 41, e1.
[CrossRef] [PubMed]

105. Ondov, B.D.; Bergman, N.H.; Phillippy, A.M. Interactive Metagenomic Visualization in a Web Browser. BMC Bioinform. 2011, 12,
385. [CrossRef]

106. Marzano, V.; Mancinelli, L.; Bracaglia, G.; Del Chierico, F.; Vernocchi, P.; Di Girolamo, F.; Garrone, S.; Tchidjou Kuekou, H.;
D’Argenio, P.; Dallapiccola, B.; et al. “Omic” Investigations of Protozoa and Worms for a Deeper Understanding of the Human
Gut “Parasitome”. PLoS Negl. Trop. Dis. 2017, 11, e0005916. [CrossRef] [PubMed]

107. Scherz, V.; Greub, G.; Bertelli, C. Building up a Clinical Microbiota Profiling: A Quality Framework Proposal. Crit. Rev. Microbiol.
2021, 1–20. [CrossRef]

http://doi.org/10.1086/525047
http://doi.org/10.1111/j.1365-2036.2012.05033.x
http://doi.org/10.1136/gutjnl-2016-313017
http://doi.org/10.1136/gutjnl-2019-319548
http://doi.org/10.1177/2050640620967898
http://www.ncbi.nlm.nih.gov/pubmed/33151137
http://doi.org/10.1093/nar/gks808
http://www.ncbi.nlm.nih.gov/pubmed/22933715
http://doi.org/10.1186/1471-2105-12-385
http://doi.org/10.1371/journal.pntd.0005916
http://www.ncbi.nlm.nih.gov/pubmed/29095820
http://doi.org/10.1080/1040841X.2021.1975642

	Introduction 
	Role and Relationship amongst Gut Microbiota Citizens 
	Parasites and Gut Microbiota Profiling 
	New Molecular Approaches in Translational and Clinical Parasitology 
	Gut Microbiota Profiling as Tools to Restore and Modulate Gut Microbiota 
	Materials and Methods 
	Conclusions 
	References

