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Abstract

In March 2020, rapidly spreading across the world, the severe acute respiratory syndrome cor-
onavirus 2 reached Poland. Since then, many efforts have been made to develop methods to
forecast the coronavirus disease-2019 (COVID-19) pandemic spread and to prevent its nega-
tive consequences. In this paper, we presented one of such methods, a simplified way of build-
ing a data-driven model for predicting the daily number of new coronavirus infections.

Our method is based on parameter selection of the exponentially modified Gaussian
cumulative curve, where the obtained curve should describe the curve of a total of COVID-
19 cases in Poland with the best possible fit.

We showed that a simplified modelling approach can give good correlations between
model values and actual COVID-19 cases data. By forecasting during the COVID-19 epidemic
in Poland, we obtained a high enough accuracy for our model to be considered a valuable and
helpful tool for making health policy.

Introduction

At the beginning of 2020, the news about the emergence of the new severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) which is dangerous for humans and causes the cor-
onavirus disease-2019 (COVID-19) broke out. The virus spread all over the world, reaching
Poland in March 2020. Since then, scientists from various fields have been trying to stop
the deadly pandemic. The main method of stopping it is the widespread distribution and
application of the vaccine [1]. But until then, it is necessary to respect other ways of preventing
the pandemic spread such as hand washing, wearing a mask and social distancing [2]. It is also
important, already in the early stage of the outbreak, to develop tools which help mitigate the
negative effects of the pandemic [3]. One of those negative effects is an acute increase in oxy-
gen demand. To help governments and hospital managers find the most appropriate solution
under pandemic conditions, we have engaged in work to develop a hybrid local oxygen
demand system using a pressure swing adsorption (PSA) cycle. For that matter, we have pro-
posed a mathematical model to forecast the pandemic spread.

Mathematical epidemiological models are not a new concept. One of the simplest models,
and the most used to this day, is the SIR model described by Kermack and McKendrick [4].
This model was later developed by many scientists and used to predict, among others, the epi-
demics of influenza, dengue fever and SARS [5]. Mathematical modelling is a powerful (valu-
able) tool to understand COVID-19 transmission and to analyse different scenarios.
Regardless of the approach adopted to build the model, the main and most important feature
of any model is its effectiveness. High effectiveness is required to make the model a useful tool
for people who are responsible for making important decisions about health policy.

During the COVID-19 pandemic, several models have been developed and described since
the early phase of the pandemic. In March 2020, Remuzzi & Remuzzi [6] presented a model
prepared for the Italian political leaders, based on the counted number of patients in intensive
care units (ICU) in Italy. The model allowed predicting the increase of the number of patients
in ICU based on fitting the exponential curve to the data set. Another approach was adopted
by Manca et al. [7], who present more accurate models, also based on the number of patients
in ICU during the first wave of the Italian COVID-19 epidemic. Their models are based on
different, already known curves, such as EMG, Logistic, Gompertz. There were also more
mathematically complicated attempts to adapt modifications of a typical SIR model.
Carcione et al. [8] performed a simulation of the COVID-19 pandemic using a deterministic
SEIR model. This model is based on four differential equations describing the following groups
of people: susceptible, exposed, infected and recovered. This model is more demanding math-
ematically than the ones discussed earlier, but it allows to calculate various epidemiological
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factors, such as reproduction ratio R0 (associated with the repro-
ductive power of the virus), virus-induced average fatality α, per-
capita natural death rate μ.

The problem of modelling the COVID-19 spread has also been
worked in Poland. The epidemiological modelling team of the
Interdisciplinary Modeling Center of the University of Warsaw
[9], part of the advisory group of the Polish Ministry of Health,
have prepared an advanced model to predict potential paths of
further epidemic spread, as well as to conduct simulations on
various scenarios according to the restrictions introduced. The
StatSoft Poland [10] approached the issue differently. They mod-
elled and analysed various pandemic data using statistical meth-
ods, aiming to find a mechanism of increase in the number of
COVID-19 cases in Poland.

In literature, there is one research that describes a forecast of
the COVID-19 epidemic in Poland. Orzechowska & Bednarek
[11] taking into account the impact of government regulations
and people’s behaviour, using eSIR modelling estimated that by
the end of September, the lowest number of infected cases
would be 263 900. In addition, they calculated that the total num-
ber of COVID-19 cases could exceed one million at the beginning
of 2021. Meanwhile, there have been approximately 100 000 total
cases reported in the country by the end of September, whereby
one million cases have been reached already in early December.

We think that instead of focusing on which model is the most
accurate, we should accept that ‘one model cannot answer all our
questions’. We need more models that can answer complementary
sub-questions that will put the puzzle together and stop the
COVID-19 spread.

In this paper, we present our method to build a new data-
driven model for predicting the daily number of new coronavirus
infections.

The presented model was built based on COVID-19 data from
Poland in 2020. The model uses exponentially modified Gaussian
cumulative (EMGCum) curve. The model was used for short-term
predictions in each stage of the COVID-19 epidemic in Poland.
The practical advantage of the proposed method is that, using a
simplified modelling approach it does not require neither advanced
mathematical background nor the use of epidemiological factors.

The EMG curve has found many applications. McGuffin et al.
[12–14] used it to analyse peaks in chromatography. Golubev
[15, 16] found an EMG application to model cell cycles in biology.
Sager & Timoshenko [17, 18], based on EMG curve, built
trade-predict models in economics. EMG was even used to
describe the football scoring process in football statistics as
found by Da Silva and Dahmen [19].

Methods

We have been interested in the issue of modelling the COVID-19
outbreak in Poland since its very beginning. Our model was pre-
pared based on a data set made by Rogalski [20] as part of his
civic engagement. The data set was based on official reports pub-
lished by the Ministry of Health of the Republic of Poland. To
build our model we used the following data from his set: diagnosed
new daily cases and a total number of coronavirus infection cases in
Poland. Additionally, from new daily cases, we calculated the 7-day
moving average (7-dma) of new daily cases. We selected the range
of data from 3 March 2020 (one day before the ‘patient 0’ in Poland
was diagnosed) to the end of 2020. Thus, 3 March 2020 was
defined as the first day (assigned number 1) and 31 December
2020 was defined as the last day (assigned number 304). We

have analysed the variability of the selected data over time in the
specified range. As a result, as Figure 1 shows, we divided the
data range (A), depending on the shape of the new daily cases
curve, into four sections: (1) first peak (B; days 1–45; 3 March–
16 April), (2) relative plateau (C; days 45–130; 16 April–10 July),
(3) second peak (D; days 130–190; 10 July–8 September), (4)
third peak (E; days 190–304; 8 September–31 December).

In the next step, using TableCurve2D 5.01 (Systat Software Inc.
Richmond, Ca.) a software tool, we compared the fit of several
selected curves to the total of COVID-19 cases in Poland. Based on
commonly used fit criteria (r2 Coefficient of Determination, Degree
of Freedom Adjusted R2, Fit Standard Error, F-value), we selected
the EMGCum. The exponentially modified Gaussian (EMG) prob-
ability distribution is defined as the convolution of an exponential
distribution and a Gaussian distribution which are independent of
each other. The mathematical form of the cumulative form of the
EMG function that we used in our methodology is as follows:
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where: y – total number of COVID-19 cases since the beginning of
the epidemic, x – number of epidemic days represented by the num-
bers 1 to 304 (1–304; 3 March–31 December), a, b – transition
height, c – transition centre for deconvolved Gaussian cumulative,
d – transition width for deconvolved Gaussian cumulative, d > 0, e
– exponential time constant, e≠0, exp() – natural exponential func-
tion, erf() – Gaussian error function, n = x−c

1.4142d

The developed fitting method is based first on fitting the
cumulative form of the EMG curve (presented as equation 1) to
the real cumulative curve of all COVID-19 cases. Then, we used
the differential form of the EMG equation to compare with the
daily cases data of COVID-19, by calculating Δy, according to
the following formula:

△y = yi+1 − yi (2)

where: i – the sequence number of a day of the epidemic, x – fol-
lowing the number of days of the epidemic (1–304; 3 March–31
December).

What is shown in the figures in this paper is actually a com-
parison of daily COVID-19 cases with the differential form of
the EMG equation. In our opinion, that form of providing results
is better to perform a visual assessment of model predictions. In
the authors’ opinions, such a representation is especially helpful
in determining the dynamics of the spread of an epidemic.
Moreover, the authors found that to achieve possibly best fit of
EMG curve to real COVID data it was a necessity to apply data
representing a single peak or peak and plateau. Thus, applying
the adopted methodological criteria, a fitting was performed on
the appropriate data set. In situations where there were significant
changes with newly emerging data and where the model deviated
from the expected value, the data set was changed to represent a
single peak or peak and plateau.

From the obtained Δy values we calculated the 7-day moving
averages curves. In the next step, we fitted the calculated curves
to the 7-day moving average daily new COVID-19 cases in
Poland. The basis for predictions was to extrapolate the obtained
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Fig. 1. Timeline of the COVID-19 epidemic in Poland divided into sections depending on the shape of the new daily cases curve.
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curves 14 days forward. Obtained predicted values were compared
with real values by calculated model estimation error (MEE) of
these two. The MEE was defined as:

MEE% = P − R
R

× 100% (3)

where P = predicted 7-day moving average of daily new
COVID-19 cases, R = real 7-day moving average of daily new
COVID-19 cases.

This definition of MEE has been chosen because when the data
obtained from the model will be higher than the real data, then the
MEE will be positive, while when the data obtained from the model
will be lower than the real data, then the MEE will be negative.

Results

Figure 2 includes five graphs comparing the data obtained from
our model and real data. For a better interpretation of values,
below Figure 2, we included Table 1. which presents a comparison
of values between the real 7-day moving average (7-dma) of daily
new COVID-19 cases and the predicted cases. The comparison
was made for each of fourteen prediction days, also with the
MEE for each day.

Graph A covers the time range from the one day before when
the first case of COVID-19 was confirmed in Poland to the begin-
ning of the relative plateau phase. Thus, the model curve was fit-
ted based on the first 60 days of the epidemic (3 March–1 May).
The prediction was made up to day 74 (15 May). From an epi-
demiological point of view, Graph A shows the first epidemic
wave. After an initial rapid growth in new daily cases, the
model curve flattened and reached an inflection point at day 44
(15 April). From day 44 the model curve indicated a slow decrease
in new daily cases. By day 70 (11 May), the MEEs were no more
than ±10%. Then, as a result of daily new cases growth, the MEEs
increased. We think that the curve flattening was related to restric-
tions introduced by the Polish Government. It is proven that
reducing social contacts, respecting physical distancing and
hygiene measures help sharply reduce the reproduction ratio R0

[21]. The first restrictions limiting the number of people
participating in mass events were introduced already on day 8
(10 March). Two days later, all schools and universities were closed,
and activities of cultural institutions were limited. Because of the
constantly increasing daily numbers of COVID-19 cases, more
and more restrictions have been introduced. When the infection
curve flattened out, a gradual relaxation of the restrictions started.
The first phase of relaxation of restrictions began on day 49
(20 April) and lasted until day 96 (6 June).

Graph B covers the time range of when the first wave of the
COVID-19 outbreak appeared in Poland and the entire relative plat-
eau phase. Graph B is therefore a further prediction than Graph
A. The model curve was fitted based on the first 120 days of the epi-
demic (3 March–30 June). The prediction was made up to day 134
(14 July). Real numbers of daily cases were greater than the predic-
tion shown in Graph A. Therefore, the model curve generated using
more input data was reshaped. As a result, for 14 days of prediction,
an average daily MEE equal to 14.9% was obtained, with a max-
imum of 23.8% for day 129 (9 July) and a minimum of 7.4% for
day 134 (14 July). As the spread of the virus slowed down in the
summer because of a lower reproduction ratio R0 than in
autumn/winter [22], there was a short plateau phase despite the
relaxing of restrictions and increasing social contacts.

Graph C includes the entire second peak of the COVID-19 epi-
demic in Poland. It is important to mention that the introduction
of the term ‘second peak’ is not the same as the official pro-
nouncement about a second wave of the epidemic. This term
was only introduced for modelling purposes. Nonetheless, this
growth should be alarming. Therefore, on day 159 (8 August),
the Polish Government reintroduced some restrictions dividing
Poland into zones with different sanitary rules. The model
curve was fitted based on days 120 to 180 of the epidemic
(30 June–29 August). The prediction was made up to day 194
(12 September). Data from the model curve were significantly
overestimated over a 14-day forecast, reaching up to a MEE
value of 33.4% on day 193 (11 September), even though the aver-
age MEE for the first 7 days was as low as 6.6%. Thus, it is import-
ant to update the model as soon as new data is available. Frequent
updating is easier with a less time-consuming method like the one
we proposed.

Graph D shows the beginning of the growth of the third peak
of the COVID-19 epidemic in Poland, which had the largest
increase in daily infections in 2020. In contrast to the other graphs
presented in this paper, Graph D shows the model prediction for
rapidly increasing cases of COVID-19 infections. In response to
this growth, on day 236 (24 October) the Polish Government
put the entire country under stricter restrictions. The model
curve was fitted based on days 180 to 240 (29 August – 28
October) of the epidemic. The prediction was made up to day
254 (11 November). For 7 days, the prediction was slightly under-
estimated with an average daily MEE equal −4.2%. For the next 7
days the prediction was slightly overestimated with an average
daily MEE equal 4.1%.

Graph E presents a model curve made from third epidemic peak
growth, its inflection and the beginning of its decrease. The model
is therefore a prediction of the further decrease in COVID-19 infec-
tions that occurred at the third peak. The model curve was fitted
based on days 238 to 268 of the epidemic (26 October–25
November). The prediction was made up to day 282 (9
December). From an epidemiological point of view, Graph E
shows the second wave of the epidemic in Poland, which was sig-
nificantly greater than the first wave. In the first wave, the model
curve inflection point was reached on day 44 (15 April) with a
7-day moving average of daily new COVID-19 cases being approxi-
mately 367, while the model curve inflection point of the second
wave was reached on day 256 (13 November) with a 7-day moving
average of daily new COVID-19 cases being approximately 24 373.
For 8 days the prediction was slightly overestimated with an average
daily MEE equaling 8.6%. Then, the real 7-day moving average
decreased more rapidly than the model average. Thus, the model
curve was more and more underestimated on each following day
of prediction. From day 9 of prediction to day 14 of prediction,
the MEE increased from −1.1% to −25.4%.

Discussion

We have presented a simplified method for building the
COVID-19 new daily cases model. The study demonstrates a
very good correlation between the real COVID-19 data from
Poland and the data from our model. In the proposed form the
model cannot be used to study what kind of impact may the chan-
ging of different epidemiological factors have on the epidemic
spread but in the face of quickly changing government policies
and the emergence of vaccines, more complex models based on
multiple factors become even more difficult to apply, while the
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Fig. 2. Timeline of the COVID-19 epidemic in Poland. Comparison of data obtained from our model and real data.
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data-driven model we proposed is adaptive to the changing
trends. We think that the best approach to modelling of the
COVID-19 epidemic is to use both: extended epidemiological
models and the simplified approach. Epidemiological models
may be more useful for long-term forecasts and for showing the
impact of different decisions on the epidemic spread, while our
model may be more effective for short-term forecasts. An add-
itional advantage of this model is that there is no need for

assuming in advance some unknown parameters in order to use
it. We showed that even building a simplified model can lead to
good correlations. The results mainly demonstrate two things.
Firstly, low MEEs of model curve fits in the short term were
obtained. Secondly, for the best fit, it is necessary to update the
model parameters as frequently as possible. To demonstrate the
impact of model parameters daily updates on the prediction
accuracy we chose the data presented in Graph C from Figure 2

Table 1. Comparison of values between real 7-day moving average (7-dma) of daily new COVID-19 cases and predicted cases from our model

Number of
days

Real 7-dma of
daily new
cases

Predict 7-dma
of daily new

cases

Model
estimation error

(%)
Number of

days

Real 7-dma of
daily new
cases

Predict 7-dma
of daily new

cases

Model
estimation error

(%)

61 309 326 5.3 188 565 673 19.2

62 306 323 5.6 189 536 663 23.6

63 310 320 3.3 190 515 652 26.6

64 322 317 −1.6 191 490 640 30.6

65 307 314 2.5 192 475 628 32.2

66 307 312 1.5 193 461 615 33.4

67 323 309 −4.2 194 466 602 29.1

68 325 306 −5.8 241 14 931 14 239 −4.6

69 329 304 −7.7 242 16 074 15 118 −5.9

70 331 301 −9.2 243 17 255 16 031 −7.1

71 353 298 −15.5 244 18 031 16 979 −5.8

72 354 296 −16.6 245 18 793 17 962 −4.4

73 370 293 −20.8 246 19 231 18 978 −1.3

74 379 291 −23.3 247 20 070 20 028 −0.2

121 279 328 17.4 248 21 068 21 110 0.2

122 291 327 12.3 249 21 847 22 225 1.7

123 287 326 13.4 250 22 701 23 370 2.9

124 286 325 13.3 251 23 789 24 545 3.2

125 292 323 10.8 252 24 665 25 748 4.4

126 286 322 12.8 253 25 535 26 978 5.7

127 288 321 11.4 254 25 611 28 234 10.2

128 273 320 17.1 269 17 476 18 585 6.3

129 258 319 23.8 270 16 704 17 769 6.4

130 259 318 22.9 271 15 414 16 930 9.8

131 257 317 23.1 272 14 416 16 076 11.5

132 277 316 13.9 273 13 092 15 213 16.2

133 291 315 8.3 274 12 944 14 348 10.8

134 292 314 7.4 275 12 729 13 486 6.0

181 730 729 −0.1 276 12 465 12 633 1.4

182 723 723 0.0 277 11 919 11 794 −1.0

183 693 717 3.4 278 11 526 10 974 −4.8

184 674 709 5.3 279 11 197 10 176 −9.1

185 634 701 10.6 280 11 009 9405 −14.6

186 620 693 11.7 281 10 896 8663 −20.5

187 593 683 15.3 282 10 655 7953 −25.4

6 Mieczysław R. Bałys et al.



because of its highest MEE values among those presented in this
article. The method used in this paper was based on making a
14-day prediction based on one-time selected model parameters
for each of the ranges. To check the aforementioned impact, the
method was changed and after each day of prediction, the
EMGCum equation parameters were updated. The graph present-
ing the updated model curve is shown in Figure 3. As a result of
model parameters daily updates, the model curve described the
real epidemic spread much more accurately. A comparison of
the MEEs obtained without daily updates and with daily param-
eter updates is shown in Table 2. The higher the number of pre-
diction days, for the model curve without daily updates, the
stronger its trend of the MEE to reach the maximum MEE
value of 33.4%. The model curve with frequent parameter updates

does not show any noticeable trend, but its MEE reached a max-
imum value of 18.9%. For example, looking at the last day of the
first prediction week (day 187; 5 September) the MEE of the
model curve fit without updates was 15.3%, while for the curve
with updates it was 13.2%, so the MEE was reduced by 2.1%.
On the last day of the second prediction week (day 194; 12
September), the MEE of fitting the model curve without updates
was 29.1%, while for the curve with updates it was only 7.5%,
which reduced the MEE by an impressive 21.6%.

Also, it must be pointed out that the range of data for the
EMGCum parameters adjustment should be taken from a single
peak or peak and plateau. The EMGCum curve is unlikely to fit
well for double peaks. This requirement comes from the
EMGCum curve mathematical formulation which defines its

Fig. 3. Comparison between the data obtained from our model with daily parameters EMGCum actualisation and data obtained without daily parameters EMGCum
actualisation.

Table 2. Comparison of values from our model between 7-day moving average (7-dma) of daily new COVID-19 cases with daily parameters actualisation and 7-dma
of daily new COVID-19 cases without daily parameters actualisation

Number
of days

Real 7-dma
of daily

new cases

Predict 7-dma of daily
new cases without
daily actualisation

Predict 7-dma of
daily new cases with
daily actualisation

Model estimation
error without

actualisation (%)

Relative error
with actualisation

(%)

Model
estimation error
correction ↓ (%)

181 730 729 729 −0.1 −0.1 0.0

182 723 723 723 0.0 0.0 0.0

183 693 717 715 3.4 3.3 0.2

184 674 709 706 5.3 4.8 0.5

185 634 701 697 10.6 9.9 0.7

186 620 693 685 11.7 10.4 1.3

187 593 683 671 15.3 13.2 2.1

188 565 673 655 19.2 16.0 3.2

189 536 663 632 23.6 17.8 5.8

190 515 652 608 26.6 18.0 8.6

191 490 640 583 30.6 18.9 11.7

192 475 628 555 32.2 16.8 15.4

193 461 615 528 33.4 14.6 18.8

194 466 602 501 29.1 7.5 21.6
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specific shape. In addition, we recommend using a 7-day moving
average of daily new COVID-19 cases where, in the case of
Poland, reporting of new daily cases depends on the reporting
organisations’ working days. Analysing the new daily cases, one
notices that there is usually a decrease in cases during weekends,
which is not caused by an actual decrease in cases but by non-
working days for reporting organisations.

Conclusion

The COVID-19 epidemic in Poland so far has had three waves
since its outbreak. Although the third wave has now passed, infec-
tions are decreasing and vaccinations are gradually being adminis-
tered, we must be aware that the fight against COVID-19 is not
over. Especially the threat of new, emerging, more infectious
virus mutations and the uncertainty of how long the immune
antibodies in people after infection or vaccination can last,
make it necessary to still control and predict the rate of
COVID-19 spread using mathematical models. The models
must send a simple message to those who manage the public
health policy. Our model can be applied as a simplified but effect-
ive decision making support tool. People using our method
should be familiar with the rules of its application and be aware
of its limitations. Further works shall be focused on verifying
how our proposed methodology describes the COVID-19 epi-
demic in other countries. We firmly believe that the crisis in
Poland from the end of 2020, when the Polish Healthcare
System faced a real breakdown threat, will not happen again. It
was a major organisational challenge to admit a rapidly increasing
number of patients with COVID-19 into hospitals and to organise
a steady supply of oxygen. The fight against COVID-19 gave us all
valuable experience. Efforts of scientists and doctors helped min-
imise the negative effects of this battle. However, despite the
emergence of vaccines, it is important to still focus on the devel-
opment of tools which could help reduce these negative effects.
Therefore, we think it is a good idea to further develop models
for a better understanding of the coronavirus epidemic develop-
ment dynamics and, at the same time, to rethink the current
ways of supplying oxygen to medical facilities. In our opinion,
these are important topics that need to be undertaken immedi-
ately. The results of our research could prove helpful not only
in the case of the COVID-19 pandemic but could also find poten-
tial application in the case of the emergence of other infectious
diseases with similar dynamics as COVID-19.
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