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Abstract

PCNA ubiquitylation on lysine 164 is required for DNA damage tolerance. In many organ-

isms PCNA is also ubiquitylated in unchallenged S phase but the significance of this has

not been established. Using Schizosaccharomyces pombe, we demonstrate that lysine 164

ubiquitylation of PCNA contributes to efficient DNA replication in the absence of DNA dam-

age. Loss of PCNA ubiquitylation manifests most strongly at late replicating regions and

increases the frequency of replication gaps. We show that PCNA ubiquitylation increases

the proportion of chromatin associated PCNA and the co-immunoprecipitation of Polymer-

ase δwith PCNA during unperturbed replication and propose that ubiquitylation acts to pro-

long the chromatin association of these replication proteins to allow the efficient completion

of Okazaki fragment synthesis by mediating gap filling.

Author summary

PCNA is a homotrimeric complex that clamps around the DNA to provide a sliding plat-

form for DNA polymerases and other replication and repair enzymes. The covalent modi-

fication of PCNA by ubiquitin on lysine reside 164 has been extensively studied in the

context of DNA repair: it is required to mediate the bypass of damaged template bases

during DNA replication. Previous work has shown that PCNA is modified by ubiquitin

during normal S phase in the absence of DNA damage, but the significance of this modifi-

cation has not been explored. Here we show that, in addition to regulating bypass of

damaged bases, lysine 164 ubiquitylation plays a role in ensuring the completion of unper-

turbed DNA replication.
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Introduction

It is well established that the replication machinery encounters a variety of obstacles and is

thus designed with a degree of flexibility. This plasticity of DNA replication depends on both

alternative components and regulation by post-translational modification. For example, while

genetic and physical studies indicate that the leading and lagging strands are primarily repli-

cated by DNA polymerase ε (Polε) and DNA polymerase δ (Polδ), respectively [1–4], this

assignment is flexible: Polδ synthesises the leading strands on rare occasions [5–7], synthesises

both strands during viral replication [8] and can sustain cell viability in the absence of Polε
[9].

Key to orchestrating enzymes for DNA replication is PCNA, which serves as a scaffold for

recruiting many of the numerous enzymes involved, including the replicative DNA polymer-

ases. In addition, PCNA ubiquitylation on lysine164 regulates DNA damage tolerance (DTT).

When replication is blocked by damaged DNA bases the Rad6-Rad18 E2-E3 ligase complex

binds to single stranded DNA coated with RPA and mono-ubiquitylates PCNA to promote

translesion DNA synthesises by non-canonical polymerases [10, 11]. Subsequent to mono-ubi-

quitylation, PCNA can be poly-ubiquitylated by the Ubc13-Mms2-Rad5 complex [12, 13] to

initiate damage bypass by HR-dependent template switching [14]. The level and duration of

PCNA ubiquitylation is additionally regulated by constitutive deubiquitylation [15–17].

The prevailing view is that PCNA ubiquitylation is a DNA damage-induced phenomena.

This is consistent with the budding yeast situation, where PCNA ubiquitylation is barely

detectable in unperturbed S phase but robustly induced in response to replication-blocking

DNA lesions [10, 12]. However, PCNA is robustly ubiquitylated during unperturbed replica-

tion in fission yeast [18] and significant levels of PCNA ubiquitylation are evident during

unperturbed replication in frog extracts and metazoan cells [19, 20]. Several observations sug-

gest that PCNA ubiquitylation is linked to DNA replication: PCNA ubiquitylation is upregu-

lated in response to an increase in canonical replication intermediates [21–23] and a recent

synthetic genetic array analysis in budding yeast showed that the PCNA ubiquitylation path-

way is genetically correlated with the mechanism of lagging strand DNA synthesis [24]. More-

over, in vitro reconstitution of PCNA ubiquitylation demonstrates that efficient mono-

ubiquitylation is coupled to DNA synthesis by Polδ [25].

Despite the accumulating evidence that PCNA ubiquitylation is linked to the processes of

DNA replication, there have been no reports that examine if the process of unperturbed DNA

replication is influenced by the ubiquitylation of PCNA and the role of this modification dur-

ing unperturbed S phase remain unclear. To address this question experimentally, we investi-

gated how replication dynamics are influenced by PCNA ubiquitylation in fission yeast. We

find that, in the absence of PCNA ubiquitylation DNA replication is slower and that there is

an increase in single stranded DNA gaps in S phase cells. We also observe that PCNA ubiquity-

lation increases the amount of chromatin associated PCNA and influences the recruitment of

Polymerase δ. We propose that PCNA ubiquitylation facilitates the completion of Okazaki

fragment synthesis.

Results

In fission yeast PCNA is ubiquitylated during unperturbed S phase [18] and is not significantly

further induced by UV-induced DNA damage during S-phase (Fig 1A and S1A and S1B Fig).

Cells arrested in early S phase by hydroxyurea maintained high levels of PCNA ubiquitylation

(S1C Fig) and after irradiation in S phase PCNA ubiquitylation persisted for longer (Fig 1A),

likely due to the slowed S phase progression. Thus, the PCNA ubiquitylation promoted by

UV-irradiation of asynchronous fission yeast cultures (S1D Fig) is primarily a consequence of
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Fig 1. The impact of PCNA ubiquitylation on genome replication. (A) Time-course of PCNA ubiquitylation during

S-phase in fission yeast cells. Top-left, experimental scheme: cells were synchronised at the G1/S boundary, UV-

irradiated, released from the arrest by incubation at 25˚C and samples were analysed at the indicated time points for

cell-cycle profile (top-right) and PCNA ubiquitylation status (bottom). As = asynchronous cells. (B) Experimental

scheme to analyse replication dynamics by BrdU incorporation: fission yeast cells are synchronised in G2 and BrdU

Ub-PCNA in unperturbed replication
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cells accumulating in S phase. To explore what replication defects result in PCNA ubiquityla-

tion we examined PCNA-Ub in selected temperature-sensitive replication mutants. We

observed that inactivation of enzymes required for lagging strand synthesis (DNA ligase 1,

Polδ), but not enzymes associated with replisome progression (the MCM complex, Polε),

resulted in elevated ubiquitylation levels at lysine 164 of PCNA (S1E and S1F Fig). Collectively,

these results indicate that the accumulation of lagging strand intermediates [21–23], but not

fork stalling per se, are a major cause of PCNA ubiquitylation.

PCNA ubiquitylation contributes to the progression of replication forks

If incomplete lagging strand synthesis activates PCNA ubiquitylation, it is possible that

PCNA-Ub participates in the completion of Okazaki fragment synthesis. To examine this pos-

sibility, we first determined the contribution of PCNA ubiquitylation to the progression of

unperturbed S phase by assessing replication dynamics in synchronised populations (Fig 1B–

1F). Since S. pombe Pcn1 can be modified on lysine 164 by either ubiquitin or SUMO, we first

examined cells defective for the Rhp18 E3-ligase (Rhp18 is the S. pombe homolog of S. cerevi-
siae Rad18. For clarity, we refer to this E3 ligase as Rad18 through the text). While S phase

entry was slightly delayed in rad18Δ cells (Fig 1C), bulk replication progression proceeded

with similar kinetics when assessed by total bromodeoxyuridine (BrdU) accumulation (Fig

1C). In contrast, while cells carrying the mutation of the ubiquitylated PCNA residue,

pcn1-K164R, also slightly delayed S phase entry, their progress through S phase was also defec-

tive (S2A and S2B Fig). Importantly, rad18Δ was epistatic with pcn1-K164R for the slight delay

to S phase entry (S2A Fig), confirming that the delay seen in rad18Δ cells is PCNA ubiquityla-

tion dependent. It is unclear why the pcn1-K164R mutation also conferred a ubiquitylation-

independent defect in S phase progression (S2A Fig). We observed that replication timing was

also perturbed and that Polε DNA association during S phase was reduced (see below) in a

manner that was independent of the Pli1 SUMO ligase. As pcn1-K164R is thus clearly acting as

a hypomorphic allele, we concentrated our analysis on the rad18 deletion mutant cells.

To establish if PCNA ubiquitylation affected the DNA replication kinetics of specific loci

we examined enrichment of BrdU across the genome during mid to late S phase by BrdU-IP

in rad18+ and rad18Δ cells (Fig 1D). This showed changes to the replication dynamics, with

advanced replication close to origins and delayed replication for the inter-origin regions.

Because relative BrdU enrichment between two samples does not directly reflect relative repli-

cation kinetics (the two samples will not be at exactly the same point in S phase), we performed

independent replication time courses for rad18+ and rad18Δ cells and normalised for replica-

tion progression in order to directly compare DNA replication timing across the genome

added to the media when cells were released. Samples are taken at 75 and 90 minutes for the experiments in panel D

and at the indicated times for experiments in panels C and E. (C) Global BrdU incorporation during synchronous S-

phase. Replication was analysed by detecting BrdU in purified total genomic DNA by dot-blot. (D) A representative

region showing BrdU enrichment following immunoprecipitation and high throughput sequence analysis at two time

points for rad18+ and rad18Δ cells progressing through S phase. (E) Replication profiles throughout S phase. Local

replication extents were determined following BrdU immunoprecipitation and high throughput sequence analysis. The

progression of local replication for each 300 bp chromosomal region was plotted for three conditions: when global

genomic replication progression was either 25%, 50% or 75% complete. The blue line represents rad18+, the red line

rad18Δ. Filled shaded area between these lines highlight the regions where replication extents differ between the two

strains; light blue—rad18+ > rad18Δ, light red—rad18+ < rad18Δ. (F) Ensemble analysis of replication timing at origins.

The distribution of local replication progress when global genomic replication progress is either 25%, 50% or 75%

complete. Left: early replicating regions (origins, indicated by open triangle in E). Right: late-replicating regions distal to

the origins (indicated by inverted solid triangle in E). (G) Correlation between late replication and relative change in

replication timing between rad18+ and rad18Δ. The latest replicating regions in rad18Δ cells are shown in pink (see S4

Fig).

https://doi.org/10.1371/journal.pgen.1006789.g001
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(Fig 1E, see Materials and methods for details). Replication progression was calculated at each

local region of the genome when the global genome replication level was either 25, 50 or 75%.

I.e. we used the global extent of replication to standardise comparisons between rad18+ and

rad18Δ strains such that the extent of local replication was compared between strains with

equivalent global levels. rad18Δ cells showed delayed replication at regions distal to replication

origins which are, relative to origins, late replicating (light blue, Fig 1E). This was compensated

for by higher local replication at many origin-associated regions that are relatively early repli-

cating (light red, Fig 1E). Some additional peaks were also observed, for example regions

1770-kb region in Chr. II and 3320-kb in Chr. III, suggesting reduced fork progression rates

are partially compensated for by firing cryptic origins [26]. The distribution of BrdU at geno-

mic regions surrounding origins would be expected to become wider as S phase progressed

(ultimately it would be flat at the end of S phase). Consistent with our hypothesis that replica-

tion fork progression is subtly delayed in rad18Δ cells (Fig 1E), we observed that deletion of

rad18 resulted in a narrower distribution of BrdU later in S phase when compared to rad18+

control cells (S3A–S3E Fig). Control experiments where we allowed cells to progress into S

phase in the presence of hydroxyurea confirmed that the two strains initiated S phase at the

same origins and confirm that our sequencing methodology is reproducible (S3B Fig).

To examine further whether rad18Δ caused delayed replication in regions that replicate

late, a meta-analysis was performed by computationally identifying replication origins and

analysing the relatively late replicating inter-origin regions. As shown in Fig 1F the local repli-

cation extent of the early replicating origins was not perturbed in rad18Δ. In contrast, later

replicating regions show a significant decrease in their extent of replication, even when

adjusted for the global replication amounts. This effect was particularly striking in the regions

that were amongst the last to be replicated (Fig 1G). Analysis of the specific loci that were most

under-replicated in rad18Δ cells (S4A and S4B Fig) showed they correspond to those loci that

we previously demonstrated to be the last to be replicated in wild type cells [5]. These data

demonstrate that the lack of PCNA ubiquitylation delays replication fork progression, with the

cumulative effect manifesting most obviously at late replicating regions.

DNA-loaded PCNA is stabilised by ubiquitylation

PCNA is loaded during DNA replication, functions as the replicative clamp and remains chro-

matin associated until the polymerase has finished replication and ligation is complete. We

speculated that PCNA ubiquitylation may contribute to PCNA retention on the chromatin.

However, in native cell extracts PCNA is progressively deubiquitylated, compromising the

ability to measure PCNA ubiquitylation during chromatin association assays. To overcome

this limitation, we increased the level of PCNA ubiquitylation by engineering a strain, Purg1-

rad18, where rad18+ is under the control of an inducible promoter (Fig 2A). Fractionation of

cell extracts following rad18 induction revealed that ubiquitylated PCNA was preferentially

associated with chromatin (Fig 2B) in a manner dependent on K164 ubiquitylation (Fig 2C

and 2D). This suggests the modification contributes to the stability of PCNA chromatin associ-

ation. Consistent with this, shut-off of rad18+ transcription from Purg1 when combined with

induced Rad18 degradation resulted in rapid PCNA disassociation from chromatin, concomi-

tant with deubiquitylation (S5 Fig). Because it is not practical to assay native fission yeast

extracts for endogenous levels of ubiquitylated PCNA on chromatin due to its deubiquitylation

by isopeptidase in native extracts we compared the total chromatin-associated PCNA in

rad18+ and rad18Δ cells during S phase. In rad18+ cells, PCNA accumulated in S phase and

gradually diminished towards the completion of replication. Comparatively, in rad18Δ cells,

the amount of chromatin associated PCNA decreased during the late stages of replication

Ub-PCNA in unperturbed replication
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Fig 2. PCNA ubiquitylation influences PCNA chromatin association. (A) PCNA ubiquitylation levels in

log phase cells when Rad18 is absent (Δ), expressed normally (+) or upregulated in Purg1-rad18 cells (++).

Ubiquitylation was assessed following protein extraction in denaturing condition (TCA prep). (B) PCNA

chromatin association. The cells shown in panel A expressing different levels of Rad18 and thus harbouring

distinct level of PCNA ubiquitylation were analysed for PCNA chromatin association. Pgk1 (a soluble cytosolic

protein) and histone H3 were used as controls. (C) Dependency of chromatin association on PCNA-K164 and

Ub-PCNA in unperturbed replication
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(Fig 2E). This is reminiscent of the predominant effect of loss of PCNA ubiquitylation mani-

festing at late replicating regions (Fig 1F and 1G).

We verified the observed effect of Rad18 loss on PCNA chromatin association using a

photo-activated localization microscopy (PALM)-based technique that directly visualises

DNA-associated PCNA [27]. Briefly, this method exploits motion blurring to selectively elimi-

nate signals arising from rapidly diffusing molecules, allowing visualisation of low mobility

signals derived from DNA-associated molecules (Fig 2F). Previously we reported that low

mobility PCNA (mEos3.1-Pcn1) is notably enriched during S phase [27]. Deletion of rad18
significantly reduced the fraction of these molecules (Fig 2F, right), thus confirming that

PCNA-K164 ubiquitylation results in increased amounts of loaded PCNA during unperturbed

S phase.

Polδ association with PCNA is increased by PCNA ubiquitylation

One possible explanation for the increased amount of chromatin-associated PCNA accompa-

nying K164 ubiquitylation is that this contributes to the function of DNA polymerases during

DNA replication. In unchallenged cells we could detect the association of Polδ, but not Polε,

with PCNA by immunoprecipitation (S6A and S6B Fig). This would be consistent with the

higher PCNA-dependency of Polδ function [28–30], but may equally reflect the lower levels of

DNA-associated Polε during S phase when compared to Polδ. Increased PCNA ubiquitylation

(by Rad18 overexpression via Purg1-rad18) increased Polδ co-immunoprecipitation with anti-

PCNA without influencing cell cycle profiles (Fig 3A and 3B). PCNA ubiquitylation and co-

immunoprecipitation were also both enhanced by hydroxyurea treatment of rad18+ and Purg1-

rad18 cells. Thus, Polδ: PCNA co-immunoprecipitation intensity scaled with PCNA ubiquity-

lation (Fig 3A and 3B). We also noted that the PCNA which co-immunoprecipitated with Polδ
was biased toward ubiquitylated forms (Fig 3C) and that the loss of poly-ubiquitylation (ubc13
deletion) showed an intermediate decrease in co-immunoprecipitation of Polδ when com-

pared to loss of all ubiquitylation (pcn1-K164R) (Fig 3D). Using the PALM motion blurring

assay (see Fig 2F) we did not detect a decrease in the Polδ immobile fraction in untreated S

phase rad18Δ cells (Fig 3E), possibly because our assay is insufficiently sensitive. However,

when rad18Δ cells were arrested within S phase by hydroxyurea treatment, the fraction of low

mobility Polδ molecules decreased when compared to rad18+ controls, providing support for

the contention that PCNA ubiquitylation contributes to Polδ function.

PCNA recruits DNA polymerases after it is loaded [31] and the affinity of PCNA: Polδ
binding is not influenced by K164 ubiquitylation [32]. Thus, the increased Polδ-PCNA associ-

ation could be accounted for purely by the increased amount of PCNA on DNA due to

ubiquitylation inhibiting clamp unloading. This predicts that increasing PCNA chromatin

association independently of its ubiquitylation status would lead to increased Polδ: PCNA co-

immunoprecipitation. To address this, we examined Polδ-PCNA association in cells deleted

Ubc13. An equivalent experiment as shown in panel B for pcn1-K164R and ubc13 mutant backgrounds. (D)

Quantification of the modified and unmodified PCNA from C. (E) Chromatin association of PCNA during S

phase progression. Top left, experimental scheme: cells were synchronised at the G1/S boundary by

temperature shift and PCNA chromatin association (bottom left panel) and cell cycle profiles (right) monitored

at the indicated time points after release into S phase. The relative amounts of chromatin-associated PCNA

were quantified (centre) (F) Quantification of DNA-associated PCNA by single molecule PALM imaging. Top

left: schematic showing how motion blurring filters out mobile molecules. Bottom left: example of the

visualisation of only the DNA-associated molecules. Middle: example of static localised molecule (top) and the

typical signal from a diffusing molecule (bottom). Right: box plots of the numbers of visualised immobile PCNA

molecules in the S phase nuclei of the indicated strains. Bi-nucleate (S phase) mEos3-pcn1 cells (expressing

mEos3-tagged PCNA) were imaged and mEos3-PCNA localisations quantified per nucleus.

https://doi.org/10.1371/journal.pgen.1006789.g002
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for elg1, where PCNA chromatin association is enhanced due to inactivation of the Elg1

unloader (Fig 3F) [33]. Loss of Elg1 resulted in an increase in Polδ co-immunoprecipitation

with PCNA in both rad18+ and rad18Δ backgrounds (Fig 3G). This result demonstrated that

the amount of loaded PCNA relates to the level of PCNA-polymerase association, although we

Fig 3. PCNA ubiquitylation contributes to the interaction of Polδwith the clamp. (A) Assessing co-

immunoprecipitation of Polδ and PCNA. Top: experimental scheme for co-immunoprecipitation experiments. Cells were

either treated, or not, with hydroxyurea (HU) and TCA extracts prepared to monitor PCNA modification (whole cell) or

soluble extracts prepared for immunoprecipitation with either anti-PCNA or anti-GFP (the catalytic subunit of Polδ is GFP

tagged). Bottom: comparison of the Polδ - PCNA interaction in rad18Δ (Δ), wild-type (+) or urg1-rad18 cells (++) cells that

exhibiting distinct levels of PCNA ubiquitylation (see Fig 2A). (B) Cell-cycle profiles. Open histograms -HU, grey

histograms +HU. (C) Quantification of modified forms of PCNA that was co-immunoprecipitated with Polδ (“IP with

αGFP” in a) and in whole cell extracts. (D) Co-immunoprecipitation of Polδ in Purg1-rad18 cells is partially dependent on

ubc13. (E) Quantification of DNA-associated Polδ by single molecule PALM imaging (see Fig 2F for details). (F).

Increased chromatin association of PCNA in the elg1Δ genetic background. Chromatin was fractionated from the

indicated strains and probed for Pcn1 and a histone H3. (G) Co-immunoprecipitation of Polδwith PCNA in elg1+ (+) and

elg1Δ (Δ) cells in the rad18+ and rad18Δ genetic backgrounds.

https://doi.org/10.1371/journal.pgen.1006789.g003
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cannot rule out the possibility that additional factors that directly respond to PCNA ubiquity-

lation can also influence the association.

PCNA ubiquitylation is proposed to help ‘replace’ replicative polymerases with non-canon-

ical polymerases. We therefore examined co-immunoprecipitation of several DNA damage

tolerant polymerases, Polη, Polκ and Polz, with PCNA (S6C Fig). Marginal Polη: PCNA co-

immunoprecipitation was observed in Purg1-rad18 cells, where PCNA ubiquitylation levels

were high, consistent with the ubiquitin-binding zinc-finger domain of Polη directing PCNA

association. Co-immunoprecipitation of Polκ or Polz with PCNA was not detectable, presum-

ably due to sparse protein levels (S6C Fig). Taken together, these data indicated that the non-

canonical polymerases do not appreciably outcompete Polδ for association with ubiquitylated

PCNA. Consistent with this, neither of Polη, Polκ nor Polz were responsible for the altered

BrdU incorporation observed in rad18Δ cells during unperturbed S phase (S6D Fig).

To establish if PCNA modification influences Polδ and Polε function we examined syn-

thetic genetic interactions between rad18Δ and temperature sensitive (ts) polymerase muta-

tions (Fig 4A). For cdc6-23, (Polδ-ts), concomitant rad18Δ reduced the restrictive temperature,

consistent with PCNA ubiquitylation enhancing Polδ activity. Importantly, this synthetic

genetic interaction was also observed for pcn1-K164R and combining both rad18Δ and

pcn1-K164R showed no additive effect (Fig 4B). For cdc20-m10 (Polε-ts) rad18Δ did not affect

the restrictive temperature, suggesting Polε activity is not influenced by PCNA ubiquitylation.

Consistent with this, when we examined the fraction of low mobility Polε in S phase cells

using PALM motion blurring, we did not detect a significant change in when rad18 was

deleted (S6E Fig). Interestingly, when we examined Polε mobility in a pcn1-K164R back-

ground, a significantly lower fraction of Polε displayed low mobility in S phase cells (S6E Fig).

This phenomenon was not observed in a pli1 deletion mutant (S6F Fig). Thus, the K164R

mutation has effects beyond that of PCNA ubiquitylation (c.f. S2 Fig) which are unlikely to be

related to modification by small Ub-like molecules.

PCNA ubiquitylation during unperturbed replication promotes gap filling

During DDT ubiquitylation of PCNA promotes ssDNA gap filling opposite DNA lesions [22,

34, 35]. We have confirmed (S1E Fig) that PCNA ubiquitylation is induced following dysfunc-

tion of Okazaki fragment synthesis and demonstrated that this increases the fraction of Polδ
co-immunoprecipitating with PCNA (Fig 3A–3C) and can contribute to the chromatin associ-

ation of this lagging strand polymerase (Fig 3E). Since Polδ repeatedly disassociates from and

re-associates with the template during synthesis [32], relatively long lived ssDNA gaps may

occur stochastically between Okazaki fragments. We reasoned that PCNA ubiquitylation

could act to supress or repair such events via a DTT-like gap filling mechanism during unper-

turbed S-phase (Fig 4C). This predicts that the absence of PCNA ubiquitylation would result

in ssDNA gap accumulation during DNA replication.

To estimate the extent of ssDNA gaps in vivo, we first utilised an S1 nuclease-based assay

[36] previously developed for detecting ssDNA in replicated molecules (Fig 5A). By calculating

the distribution of DNA fragment sizes from gel intensities (S7 Fig) we infer that rad18Δ cells

displayed increased DNA fragmentation when compared to rad18+ cells, with small (< 1 kb)

fragments accumulating in rad18Δ throughout S phase (Fig 5B–5D). As an alternative assay,

we BrdUTP labelled ssDNA gaps in genomic DNA prepared in agarose plugs. When DNA

from rad18Δ cells was compared to rad18+, increased signal was evident in mid to late S phase

(Fig 5E–5G). These two experiments support a model where PCNA ubiquitylation occurs

between Okazaki fragments (Fig 4C) and prevents the accumulation of ssDNA gap during

unperturbed S phase (see Discussion).
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Fig 4. PCNA ubiquitylation predominantly affects Polδ function. (A) Spot tests showing the influence of PCNA ubiquitylation on cell

growth/viability in genetic backgrounds compromised for Polε or Polδ function. cdc20-m10 and cdc6-23 are temperature sensitive mutations

in the catalytic subunits of Polε and Polδ, respectively. (B) The effect of pcn1-K164R mutation and rad18 deletion on the temperature

sensitivity of cdc6-23 (Polδ) are epistatic. (C) Model. Left: Schematic of Okazaki fragment synthesis. (i) Following priming by Polα-primase

PCNA is loaded by RFC. (ii) Polδ associates with PCNA and synthesis begins. Rad18-Rad6 mono-ubiquitylates PCNA. (iii) Stochastic

dissociation of Polδ from PCNA. Ubiquitylation prevents PCNA dissociation/unloading. (iv) Polδ re-associates with PCNA and synthesis

resumes. (v) Okazaki fragment synthesis is completed. Right, a potential effect of loss of Rad18: (vi) Following priming by Polα-primaae

PCNA is loaded by RFC. (vii) Polδ associates with PCNA and synthesis begins. (viii) Stochastic dissociation of Polδ from PCNA. (ix) PCNA

is not ubiquitylated and thus can dissociate (possibly unloaded by Elg1). (x) Okazaki fragment synthesis is not completed and a gap

remains.

https://doi.org/10.1371/journal.pgen.1006789.g004
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Discussion

Here we have used the fission yeast model to demonstrate that, in addition to its known role in

DNA damage tolerance, PCNA K164-ubiquitylation contributes to the timely completion of

unperturbed DNA replication. Our results show that PCNA association with chromatin is sta-

bilised by PCNA-K164 ubiquitylation during S phase. We also observed an increased co-

immunoprecipitation of Polδ with PCNA when PCNA is ubiquitylated and we provide evi-

dence that the chromatin association of Polδ is promoted by PCNA ubiquitylation. In budding

yeast, PCNA ubiquitylation is barely detectable in unperturbed S phase [22] and robustly

Fig 5. PCNA ubiquitylation mediates repair of ssDNA gaps during S-phase. (A) Schematic of the S1 nuclease assay [36] used to monitor gaps

during DNA replication. (B) Experimental scheme. cdc25-22 cells were synchronised at G2 phase by temperature shift then released into the cell

cycle and samples harvested at the indicated time points. (C) Analysis of S1-nuclease digested total DNA. Samples were subjected to agarose gel

electrophoresis and visualised by ethidium bromide (EtBr) staining to reveal the total DNA (top) and subjected to BrdU antibody detection to reveal

newly synthesised strands (bottom). (D) Quantification of S1-nuclese digested fragments. Fractions of fragments along the axis of fragment length

were calculated from the intensity of BrdU signals in C. (See S7 Fig for the calculation steps). (E) Schematic of the BrdU assay used to monitor gaps

during DNA replication. (F) detection of BrdU incorporated into the indicated DNA samples prepared in agarose plugs. Experimental scheme as in B.

(G) Quantification of BrdU incorporation. Plotted data are derived from three independent experiments.

https://doi.org/10.1371/journal.pgen.1006789.g005
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induced in response to DNA lesions that block the canonical replicative DNA polymerases

[10, 12]. Consequently, PCNA ubiquitylation has been studied almost exclusively in the con-

text of its key role in DNA damage tolerance [37]. In contrast, in fission yeast PCNA is robustly

ubiquitylated during unperturbed S phase [18] and this is not significantly further induced if

DNA is damaged during S phase. Budding and fission yeast thus represent opposite ends of

what appears to be a spectrum. We note that both yeasts have approximately similar genome

sizes and there is no evidence to suggest that fission yeast suffers from elevated levels of sponta-

neous DNA damage. Interestingly, mammalian cells exhibit both S phase-dependent PCNA

ubiquitylation and DNA damage induced PCNA ubiquitylation (see S8A and S8B Fig).

It is currently not known what underlies the differences between organisms in terms of

PCNA ubiquitylation in unperturbed S phase. However, as Rad18 is activated by regions of

single stranded DNA it is possible that PCNA ubiquitylation is reflecting the extent of ssDNA

present when DNA replication is active. In support of this, in budding yeast a defect in short-

flap Okazaki fragment processing caused by compromising the function of the Fen1 flap endo-

nuclease, which normally processes the 5’end of Okazaki fragments, induced detectable levels

of PCNA ubiquitylation [24]. This is explained by the accumulation of long 5’ ssDNA flaps

that bind RPA and activate Rad18 ubiquitylation. However, when Okazaki fragment-process-

ing is proficient, the vast majority of flap structures are cleaved by Fen1 when they are 1 or 2

nucleotide in length [38]. Thus, Okazaki fragment processing is unlikely to be a significant

source of ssDNA during unperturbed S phase. We have shown here that the lack of PCNA ubi-

quitylation leads the accumulation of ssDNA gaps during S phase in fission yeast. We propose

that the dynamics of Polδ disassociation from PCNA result in stochastic formation of transient

gaps during lagging strand synthesis. These gaps trigger Rad18-dependent ubiquitylation of

PCNA, which stabilises PCNA on the DNA, allowing association of Polδ and rapid gap resolu-

tion. In the absence of PCNA ubiquitylation, a proportion of these gaps persist and thus gaps

are detected in our assays. The generation of transient gaps during lagging stand synthesis

likely explains the fact that PCNA is ubiquitylated during S phase in this organism.

In support of fission yeast generating increased regions of ssDNA during unperturbed

DNA replication (when compared to budding yeast) we note that the abrogation of recombi-

nation pathways in fission yeast (e.g. rad51Δ or rad52Δmutants) causes a much more severe

growth defect than the equivalent loss of recombination pathways in budding yeast and that

the combination of rad51 deletion with rad18 or pcnl-K164R results in synthetic lethality (S9

Fig). This suggests that homologous recombination and DTT pathways cooperatively repair

ssDNA gaps, which may be abundant compared to S. cerevisiae.

In considering the origin of ssDNA during S phase that we observe in S. pombe and the dif-

ferential PCNA ubiquitylation between S. pombe and S. cerevisiae in unperturbed S phase, it is

interesting to consider that the kinetics of Polδ holo-enzyme dissociation from PCNA. It has

recently been reported [32] that the S. cerevisiae enzyme is more processive than its human

counterpart: human Polδ dissociates more rapidly from PCNA than its budding yeast counter-

part and it was estimated that ~14–31% of human Okazaki fragments are completed by two

independent Polδ: PCNA association events. Conversely, >99% of budding yeast Okazaki

fragments are predicted to be completed by a single Polδ: PCNA interaction. While the kinet-

ics of S. pombe Polδ dissociation from PCNA has not been studied, the fact that PCNA ubiqui-

tylation is strongly influenced by the intermediates of lagging strand DNA synthesis [21–23]

(see S1E and S1F Fig) is consistent with the fission yeast PCNA ubiquitylation pathway, in

addition to regulating translesion synthesis during DTT, functioning to maintain accurate

Okazaki fragment synthesis in the face of frequent Polδ: PCNA dissociation.

Okazaki fragment synthesis is necessarily coupled, either directly or indirectly, to the move-

ment of replication forks. Approximately 105 and 107 Okazaki fragments are synthesised per
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cell cycle in fission yeast cells and human cells, respectively. The potential for failure during

this process as a consequence of premature Polδ dissociation would therefore need to be mini-

mised by ensuring the re-association of Polδ and completion of Okazaki fragment synthesis.

We propose that this is facilitated by PCNA ubiquitylation, which ensures that PCNA is not

prematurely unloaded. The fact that we show that the loss of PCNA ubiquitylation results in

the accumulation of ssDNA gaps during unperturbed S phase in S. pombe (Fig 5) supports our

model. Intriguingly, preliminary analysis (S10 Fig) showed the positive effect of PCNA ubiqui-

tylation on PCNA chromatin association is evident only when the Elg1 unloader complex is

active, suggesting that PCNA ubiquitylation may inhibit its unloading by Elg1, a PCNA

unloading factor currently characterised only in in S. cerevisiae [33].

In S. cerevisiae yeast, SUMOylated PCNA is the predominant modification during unper-

turbed S phase [12, 39]. Previous work showed that Elg1 preferentially interacts with SUMO-

modified PCNA [40]. However, Elg1 unloads both unmodified and SUMOylated forms of

PCNA, an event which in budding yeast requires the ligation of Okazaki fragments [41]. How-

ever, in fission yeast, and in human cells, SUMOylated PCNA is much harder to detect and the

SUMO-interacting motifs identified in S. cerevisiae Elg1 are not conserved. Thus, the influence

of PCNA SUMOylation is unlikely to be prominent and we propose that the effect of PCNA

ubiquitylation on stabilising PCNA is more predominant in fission yeast cells and potentially

higher eukaryotes. It has also been suggested that the unloading of PCNA in response to HU

or MMS in S. cerevisiae is dependent on its ubiquitylation and concomitant activation of the

DNA damage checkpoint [42]. One interpretation of this apparent contradiction could be

that, under extensive replication stress, checkpoint activation changes the response to PCNA

ubiquitylation. Alternatively, this may again reflect a difference between the two organisms in

the regulation of PCNA unloading.

In fission yeast a significant proportion of PCNA is ubiquitylated during unperturbed S

phase. To avoid a global engagement of error prone DNA polymerases, we propose that the rep-

licative polymerases remain the preferred binding partners for ubiquitylated PCNA. However,

when a replicative polymerase is stalled at a blocking lesion, the ubiquitin binding domain-con-

taining polymerases are provided an increased opportunity to sample the damaged base. In

budding yeast the situation is distinct: PCNA is not significantly ubiquitylated in unperturbed S

phase, but is robustly ubiquitylated in response to a replicative polymerase arrested at a lesion.

Thus, we would predict that the binding kinetics for the replicative and error-prone DNA poly-

merases will be different between the two organisms in order to maintain the same biological

outcomes: an appropriate balance between unsuitable use of error prone DNA polymerases

during unperturbed S phase (to minimise constitutive mutagenesis) and their appropriate use

during DNA damage tolerance to maximise cell survival in response to DNA damage [43].

In summary, our analysis shows that PCNA ubiquitylation, in addition to controlling DNA

damage tolerance pathway usage, also participates in the timely completion of unperturbed

DNA synthesis. We propose that this function is related to the increased association of ubiqui-

tylated PCNA with chromatin. We suggest that, when Polδ stochastically dissociates during

Okazaki fragment synthesis, the consequent ssDNA results in PCNA ubiquitylation which

ensures it remains DNA-associated to facilitate the recapture of Polδ and completion of Oka-

zaki fragment synthesis.

Materials and methods

Yeast strains and molecular genetics

Standard S. pombe genetic and molecular techniques were employed as described previously

[44]. The BrdU-incorporating strains have been already reported [45]. Polδ-GFP cells were
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constructed by introducing the sequence encoding GFP into the N-terminal of the cdc6 gene

on S. pombe genome based on the Cre-loxP method [46]. Polε-GFP cells were constructed by

introducing GFP at the C-terminal of cdc20 gene using PCR-based integration [47]. Purg1-
rad18 strains were based on rad18Δ cells in which ORF of the rad18 gene fused with the AID

degron construct [48] was used to replace the endogenous urg1 ORF [49].

Cell cycle synchronisation in human cells

U2OS cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% foe-

tal bovine serum (DMEM-FBS10%) in a 5% CO2 atmosphere. The medium was exchanged

with one containing 400 ng/ml of nocodazol. Following 18 hr incubation, mitotic cells were

detached by gentle shaking of the culture vessel and passaged in DMEM-FBS10%. Cells were

then either UV-irradiated (254 nm peak; 20J/m2), or not, 2 hr prior to sampling. At the indi-

cated time points cells were sampled and then subjected to immunoblotting with anti-PCNA

antibody (mouse monoclonal, PC10 clone, Abcam). To determine the S-phase fraction of the

synchronised cells, 5μM if EdU was added into an aliquot and EdU positive cells scored 2 hr

after EdU addition [50]. 1BR3hTERT cells were cultured in DMEM-FBS10% and the medium

was exchanged with DMEM without FBS. Following 15 days, cells were passaged into

DMEM-FBS10%. Cells were UV-irradiated and scored for S-phase fraction as described. Cell

lines from GDSC collection. Authenticated 2015 by STR profiling.

BrdU-labelling assay

cdc25-22 cells harbouring the constructs for BrdU-incorporation were grown to exponential

phase (0.2 x106 /ml) at 25˚C and synchronised at G2 phase by incubation at 36˚C for 3.5 hr.

After adding bromodeoxyuridine (0.5 μM), cells were further incubated at 25˚C. At relevant

time points, 1x108 cells were pelleted and subjected to genomic DNA extraction. To detect

total BrdU incorporation, dot blotting was performed as previously described [34]. The inten-

sity of BrdU-incorporation was established by quantifying the signal using an ImageQuant

LAS 4000 imager (GE Healthcare Life Sciences). Global replication rates for each time point

after release from G2 phase were estimated by dividing signal intensities at each time-points

by that for 150 min, at which genome replication was completed. Local replication rates were

established from BrdU-IP-Sequencing.

Analysis of BrdU-IP sequencing

Paired-end reads from high throughput sequencing were aligned to the S. pombe genome

sequence (ASM294v2.23: chromosomes I, II and III, downloaded from ’PomBase’ website)

using bowtie2–2.2.2. From the alignment data the position of the centre of each read was calcu-

lated and the number of reads in 300bp-bins across genome counted. The Perl program convert-

ing alignment data to count data: ‘sam-to-count.pl’ is available on the GitHub website (https://

github.com/yasukasu/sam-to-bincount). The counts at the chromosome coordinate x, CB(t, x)–

the BrdU-IP sample derived from cells at the t-min time point, CI(0, x)–the input sample

derived from cells before release from G2 (t = 0), were normalised with the total number of

reads: NB(t, x) = CB(t, x)/SCB(t, x), NI(t, x) = CI(t, x)/SCI(t, x). Enrichments for BrdU-incorpo-

rated fragments were calculated: E(t, x) = NB(t, x)/NI(t, x). As BrdU is an analogue of thymine

and its enrichment is thus likely to be biased towards A/T rich regions, the dataset of enrichment

was normalised using the A/T-ratio of each 300-bp bin AT(x): E’(t, x) = E(t, x)/AT(x). Moving

average of E’(t, x) with 8 bins at both side were calculated and plotted (Fig 1D). To estimate the

extent of local replication, enrichments across the genome were multiplied by the global replica-

tion amount G(t) determined from the dot-blot assay (Fig 1C): L(t,x) = E’(t, x) ×G(t). These
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were then normalised with that of the last time point, at which all the cells had completed

genome replication: L’(t,x) = L(t,x)/L(160, x). To obtain a function of local replication extent,

data of multiple time points at each 300 bp (L’(70, x), L’(75, x), L’(80, x), L’(85, x), L’(90, x)) were

fitted with a cumulative normal distribution function in which the global replication amount is

variable, F(G, x). Using this function, Local replication extent when the global replication was

25%, 50% or 75% completed was determined: F(0.25, x), F(0.5, x) and F(0.75, x). Fig 1E–1G and

S4 Fig is derived from these datasets. The custom R scripts used for this computational analysis

are available on request.

Chromatin isolation

Whole cell extracts were prepared by spheroplast lysis using Zymolyase 100T (Seikagaku) and

lysing enzyme (Sigma-Aldrich). Extracts were fractionated into soluble and chromatin-bound

fractions by centrifugation through a sucrose cushion [51].

Immunoprecipitation

5 x 108 exponentially growing cells in 50 ml YE medium were treated with 1% formaldehyde for

15 min at RT under agitation. The crosslinking reaction was quenched by adding 2.5 ml of 2.5

M glycine. Cells were washed with ice-cooled PBS, pelleted and re-suspended in 700 μl pf RIPA

buffer (50mM HEPES pH7.5, 1mM EDTA, 140 mM NaCl, 1% Triton X-100, 0.1% (w/v) sodium

deoxycholate) supplemented with complete protease inhibitor (Roche), 1 mM AEBSF & 1μg/ml

pepstatin (Sigma-Aldrich). After adding zirconia/silica beads (biospec), cells were ribolysed (6

bursts of 30 sec at speed 6.5 in a FastPrep ribolyser (MP-Biomedicals). 300μl of cell lysate was

sonicated (7 cycles; 30 sec on, 30 sec off) using a bioruptor pico (diagenode), l μl of benzonase

(novagen) added and incubated for 20 min on ice. The lysate was then centrifuged (14000 rpm

for 30 min in a microfuge) and the supernatant transferred to new tube. 30 μl was kept as the

‘input’ sample. 2 μg of anti-GFP antibody (rabbit IgG, A11122, Life technologies) or anti-PCNA

antibody [18] was added to the isolated cell extract. After a 3 hr incubation at 4˚C with gentle

agitation, 20 μl of magnetic G protein dynabeads (Life technologies) was added and incubated

for a further 1 hr. Beads were washed twice with RIPA buffer and once with TE. Following addi-

tion of 60 μl of elution buffer, beads were incubated at 65˚C for 15 min. Supernatant was isolated

as the ‘IP’ sample. Laemmli buffer was added into both ‘IP’ and ‘input’ samples and western

blots were interrogated with anti-PCNA or anti-GFP (mouse IgG clones 7.1 and 13.1, Roche).

S1-endonuclease assay

1 x 108 cells were incubated in YE media containing 50 μg/ml of BrdU and subjected to geno-

mic DNA extraction [44]. 2 μg of extracted DNA was digested with 1 μl of S1-nuclease (Life

Technologies) using the manufactures buffer in a 20 μl reaction mixture. The reaction was

stopped by the addition 2 μl of 0.5 M EDTA and heating to 70˚C for 10 min. The complete

reaction mixture was subjected to agarose (1.5%) electrophoresis. DNA was transferred onto

GeneScreen Plus membrane (PerkinElemer) by neutral capillary transfer and the BrdU signal

detected by the immunoblotting [34]. Normalisation of the BrdU incorporation intensities to

the fraction of S1-digested fragments was performed as previously described for alkaline

digested DNA [52].

BrdU gap-filling assay

4 x 107 cells were harvested and subjected to Zymolyase 100T (0.5 mg/ml, Seikagaku) and lys-

ing enzyme (1mg/ml, Sigma-Aldrich) treatment in 1ml of spheroplasting buffer (20 mM
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citrate-phosphate buffer, 50 mM EDTA and 1.2M sorbitol). After spheroplasting, cells were

re-suspended in 80 μl of spheroplasting buffer without enzymes, mixed with 80 μl of 2% aga-

rose (SeaPlaque GTG agarose) and then 20 μl volume of agarose plugs were prepared. Plugs

were washed with detergents and treated with Protease K as described previously [53]. Three

plugs were subjected to treatment with T4 polymerase (6 units, New England Biolabs) and

dNTP with BrdUTP (Sigma-Aldrich) instead of dTTP (200 μM each) in 100 μl at 37˚C over-

night. DNA was recovered from plugs by phenol/chloroform extraction and applied to dot

blots (Scie-Plas Ltd.). BrdU signal was detected as described above.

PALM microscopy

Analysis of DNA binding in vivo by PALM was performed as previously described using a cus-

tom-built microscope system [27]. Photoconversion and excitation of mEos3 molecules was

controlled by continuous wave illumination with 405nm and 561nm laser light. The intensity

of the 405nm laser was modulated during the imaging such that the number of photocon-

verted molecules for any one frame was kept low to reduce the chances of overlapping static

molecules, or the possibility of blurring molecules masking static localisations. Laser intensities

at the sample were calculated as 0.1-1W/cm2 (405nm) and 1kW/cm2 (561nm). Camera EM

gain was set at 250 and exposure time for each frame was 350ms. Typical data acquisition con-

sisted of 3000–4000 frames and 6000–10000 frames for polymerases and PCNA respectively.

Data sets were built from of a minimum of 3 biological repeats. Raw image data were processed

using a custom ImageJ 2D-Gaussian fitting routine as previously described23. Code available

on GitHub: https://github.com/aherbert/GDSC-SMLM and as a Fiji update site (GDSC

SMLM). Scale bar 1.5 micometers.

Accession numbers

Data files for BrdU-IP sequence have been deposited in the Gene Expression Omnibus data-

base under accession number GSE70033.

Supporting information

S1 Fig. Observation of PCNA ubiquitylation in S phase cells, HU-treated cells and mutants

in which lagging strand DNA synthesis is compromised. (A). A repeat of the experiment

shown in Fig 1A with quantification (right). (B) Time-course of PCNA ubiquitylation during

S-phase in fission yeast cells. Top-left, experimental scheme: cells were synchronised in G2

phase using cdc25-22 and released from the arrest by incubation at 25˚C. At the onset of S

phase (45 min after release), cells were UV-irradiated (T = 0). Samples were analysed at the

indicated time points for cell-cycle profile (top-right), ratios of cells during mitosis and sep-

tated cells, which is the indicator of being in S-phase (bottom-right) and for PCNA ubiquityla-

tion status (bottom-left). As = asynchronous cells. (C) Observation of PCNA ubiquitylation in

HU-treated cells. Following releases of cdc10-m17 cells from the G1/S boundary, cells were

incubated with media containing 10mM hydroxyurea. (D) PCNA in UV irradiated asynchro-

nous cultures. Exponentially growing cells were irradiated with the indicated dose of UV and

then incubated at 30˚C for 1–3 hr. (E) PCNA ubiquitylation analysed in response to specific

defects in DNA replication. The indicated temperature sensitive replication mutants were

shifted from the permissive to the restrictive temperature and analysed for cell cycle profile

(top) and PCNA ubiquitylation status (bottom). cdc10 encodes the homolog of E2F subunit

(G1 arrest negative control), cdc20 encodes the catalytic subunit of Polε (leading strand

polymerase), cdc6 encodes the catalytic subunit of Polδ (lagging strand polymerase), cdc17
encodes DNA ligase I, cdc21 encodes the Mcm4 homolog (replicative helicase subunit).
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(F) Dependency of induced PCNA ubiquitylation due to dysfunction of Polδ or DNA ligase on

Lys164 of PCNA, Rad18, Ubc13 and Mms2. The indicated cells were incubated at 36˚C

(restrictive temperature) for 4hr.

(TIF)

S2 Fig. The effect of rad18 deletion and pcn1-K164R mutation on cell cycle progression

and DNA replication. (A) BrdU-incorporation into genomic DNA during the subsequent S-

phase after G2 arrest and release of cdc25-22 cells (see Fig 1 for details). (B) Fraction of septated

cells after release from G2 phase.

(TIFF)

S3 Fig. Genome-wide replication profiles in rad18+ and rad18Δ cells. (A) Experimental

scheme: cdc25-22 cells were synchronised at G2 and released. At the indicated time points cells

were harvested and subjected to BrdU-IP-seq. (B) Representative view of BrdU-incorporation

at a genomic region. The data for untreated time points is reproduced from Fig 1D to provide

a comparison for the HU treated time points. The counts of reads at the chromosome coordi-

nate x (300-bp bin), CB(x)–BrdU-IP sample, CI(x)–input sample derived from cells before

release from G2, were normalised with the total number of reads: NB(x) = CB(x)/SCB(x), NI

(x) = CI(x)/SCI(x). Enrichment of BrdU-incorporated fragments was calculated and plotted:

E(x) = NB(x)/NI(x). (C) The computational detection of replication tracks. Replication origins

were detected as peaks (blue dots) in the profiles in HU-treated cells. The regions where more

than 15 kb of shoulder was associated both sides of the origin were designated as replication

tracks (pink boxes). (D) The Overlay of BrdU enrichment data from the ‘untreated, 75min’

sample for the designated replication tracks. Blue: rad18+, red: rad18Δ. Enrichments for each

track were normalised with the value at the peak and plotted: i.e. the maximum value of each

plotted track is 1. (E) Averages of normalised BrdU enrichment data of all replication tracks.

(TIF)

S4 Fig. Lack of PCNA ubiquitylation results in a significant delay to DNA replication at

the latest replicating latest of the genome. (A) Scatter plot of local replication progress at late

replicating regions. The sub-population of loci that deviate substantially from the distribution

of replication rates in rad18Δ cells is boxed. (B) The late replicating regions indicated in A are

marked (pink lines) on the global replication profile [5] of the three fission yeast chromo-

somes.

(TIF)

S5 Fig. De-ubiquitylation of PCNA results in its release from chromatin. PCNA loaded

onto chromatin was monitored upon the shut-off of Rad18. Following growth under inducing

conditions of Purg1-rad18-aid (presence of uracil (+Ura), the expression was shut off by wash-

ing out uracil (+Ura to -Ura). Residual auxin-degron tagged Rad18 was degraded (+Auxin) or

not (-Auxin) by the addition of auxin.

(TIF)

S6 Fig. Co-immunoprecipitation of the replicative polymerases Polε or Polδ with PCNA

and the motion blur assay for Polε. (A) Whole cell extracts were prepared from untagged

and Polδ-gfp tagged (cdc6-gfp) cells and immunoprecipitated with anti-GFP antibody follow-

ing protein-crosslinking. (B) Equivalent immunoprecipitation was performed with extracts

derived from Polε-gfp tagged (cdc20-gfp)cells. (C) Co-immunoprecipitation of Polz, Polη and

Polκ using anti-PCNA antibody in cells that exhibit distinct levels of PCNA ubiquitylation (see

panel a). � = GFP-tagged polymerase. h ch. = heavy chain. (Bottom right: Alternative exposure

of gel emphasising the GFP tagged polymerase bands. (D) BrdU incorporation in cells which
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lack individual translesion polymerase; Polz (rev3Δ), Polη(eso1-D147N) or Polκ (kap1Δ). Two

independent experiments were shown. (E,F) DNA-associated Polε was quantified by single

molecule PALM imaging (see Fig 2F for details). ns = not significant.

(TIF)

S7 Fig. Normalisation of BrdU incorporation intensities to the fraction of S1-digested

fragments. Calculations were performed as previously described [52]. (A) Fluorescence inten-

sity curves derived from BrdU incorporation in Fig 5C. (B) The horizontal axis of the graph in

A was converted from the position on the gel (pixel) to size of S1-digested fragment (kb). (C)

Fluorescent intensity, i.e. the amount of BrdU incorporation per pixel, was converted to the

fraction of fragments along with the axis of fragment length.

(TIF)

S8 Fig. Analysis of PCNA ubiquitylation in human cells. (A) PCNA ubiquitylation during

cell cycle progression in human U2OS cells. Top-left, experimental scheme: cells were syn-

chronised with nocodozol, released into fresh media and samples either irradiated, or not

irradiated before harvesting at the indicated time points. The fraction of S phase cells was

determined by EdU staining (top-right) and PCNA ubiquitylation status was monitored by

western blot (bottom). (B) Equivalent experiment using 1BR3hTERT immortalized human

fibroblasts synchronised by serum starvation.

(TIF)

S9 Fig. Synthetic lethality of homologous recombination and DDT pathways. Tetrad analy-

sis of a cross between rad52Δ cells and rad18Δ or pcn1-K164R cells. rad52Δ colonies exhibit a

slow growth phenotype whereas rad52Δ rad18Δ or rad52Δ pcn1-K164R double mutants are

lethal.

(TIF)

S10 Fig. Quantification of DNA-associated PCNA in elg1-deleted cells by single molecule

PALM imaging. Motion blur of mEos3-PCNA in S phase cells in rad18+ and rad18Δ cells (see

Fig 2F) and in the rad18+ elg1Δ and rad18Δ elg1Δ backgrounds.

(TIF)
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