
Available online at www.sciencedirect.com

Journal of Sport and Health Science 10 (2021) 138�144
Original article

Impaired eye tracking is associated with symptom severity but not dynamic

postural control in adolescents following concussion

Jessie R. Oldham a,b,*, William P. Meehan IIIa,b,c, David R. Howell d,e

a The Micheli Center for Sports Injury Prevention, Waltham, MA 02453, USA
bDivision of Sports Medicine, Department of Orthopedics, Boston Children’s Hospital, Boston, MA 02115, USA

cDepartment of Pediatrics and Orthopedics, Harvard Medical School, Boston, MA 02115, USA
d Sports Medicine Center, Children’s Hospital Colorado, Aurora, CO 80045, USA

eDepartment of Orthopedics, University of Colorado School of Medicine, Aurora, CO 80045, USA
Received 1 July 2020; revised 20 Au
gust 2020; accepted 18 September 2020

Available online 28 October 2020

2095-2546/� 2021 Published by Elsevier B.V. on behalf of Shanghai University of Sport. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract

Purpose: The purpose of the study was to (1) examine the relationship between self-reported symptoms and concussion-related eye tracking

impairments, and (2) compare gait performance between (a) adolescents with a concussion who have normal eye tracking, (b) adolescents with a

concussion who have abnormal eye tracking, and (c) healthy controls.

Methods: A total of 30 concussed participants (age: 14.4 § 2.2 years, mean § SD, 50% female) and 30 controls (age: 14.2 § 2.2 years,

47% female) completed eye tracking and gait assessments. The BOX score is a metric of pupillary disconjugacy, with scores <10 classi-

fied as normal and �10 abnormal. Symptoms were collected using the Post-Concussion Symptom Scale (PCSS), and gait speed was mea-

sured with triaxial inertial measurement units. We conducted a linear regression to examine the relationship between PCSS and BOX

scores and a two-way mixed effects analysis of variance to examine the effect of group (abnormal BOX, normal BOX, and healthy control)

on single- and dual-task gait speed.

Results: There was a significant association between total PCSS score and BOX score in the concussion group (b = 0.16, p = 0.004, 95% confi-

dence interval (95%CI): 0.06‒0.27), but not in the control group (b = 0.21, p = 0.08, 95%CI: �0.03 to 0.45). There were no significant associa-

tions between PCSS symptom profiles and BOX scores in the concussion or control groups. There were also no significant differences in single-

task (Abnormal: 1.00 § 0.14 m/s; Normal: 1.11 § 0.21 m/s; Healthy: 1.14 § 0.18 m/s; p = 0.08) or dual-task (Abnormal: 0.77 § 0.15 m/s; Nor-

mal: 0.84 § 0.21 m/s; Healthy: 0.90 § 0.18 m/s; p = 0.16) gait speed.

Conclusion: The concussed group with impaired eye tracking reported higher total symptom severity, as well as worse symptom severity across

the 5 PCSS symptom domain profiles. However, eye tracking deficits did not appear to be driven by any particular symptom domain. While not

statistically significant, the slower gait speeds in those with abnormal BOX scores may still be clinically relevant since gait-related impairments

may persist beyond clinical recovery.
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1. Introduction

Concussions are complex injuries that result in a disruption

of normal brain functioning.1 Approximately one-half of the

brain’s circuits are involved with visual pathways, so effects

of concussion on the visual system are routinely observed.2,3

Post-concussion vision disorders are commonly seen in
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adolescents cared for in specialty clinics, with up to 51% dem-

onstrating either accommodative disorders, convergence insuf-

ficiency, or saccadic dysfunction, and 46% presenting with

multiple diagnoses.4,5 Symptom resolution remains one of the

main indicators of concussion recovery, and visual symptoms

have been associated with persistent concussion symptoms.6,7

However, physiological impairments may linger beyond

symptom resolution,8 and it is unknown how visual symptoms

may be associated with other clinical concussion symptoms.

Furthermore, while total symptom scores are frequently used
ociated with symptom severity but not dynamic postural control in adolescents
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in concussion evaluations, the individual symptom domains

can provide important clinical information,9,10 and it is

unknown how the individual symptom profiles may influence

eye tracking visual performance.

Traditionally, concussion evaluations require a multifaceted

approach, consisting of symptom, neurocognitive, and postural

control assessments.1 Horizontal saccades tests have been used

in concussion evaluations and have been associated with other

functional abilities, such as concentration, visual motor speed,

and reaction time, suggesting that vision assessments should

be included in the multifaceted battery.11 Additionally, using a

combination of saccadic eye movements, smooth pursuits,

convergence, vestibular ocular reflex, and visual motion sensi-

tivity, the Vestibular/Ocular Motor Screening assessment has

successfully differentiated between concussion and control

groups with high sensitivity.12 This has allowed clinicians to

provide more targeted treatment following injury since the

Vestibular/Ocular Motor Screening evaluates distinct ocular

and vestibular symptoms.12

Although not as established in the concussion literature, eye

tracking is another visual function that has recently demon-

strated efficiency in assessing both concussion and central ner-

vous system impairments by identifying abnormalities in

oculomotor neural pathways.13�15 Furthermore, emerging

technology has allowed for the objective evaluation of eye

tracking movements in a portable, clinical environment. Due

to algorithms developed to interpret ocular abnormalities, these

eye tracking measures have correctly distinguished between

individuals with a concussion and healthy controls and have

successfully identified vision abnormalities following concus-

sion, even in the absence of pre-concussion eye tracking

data.13,16 Using a metric of pupillary disconjugacy, researchers

have previously identified concussion-related visual

impairment in a pediatric concussion population,14,17 but the

relationship between this approach and other concussion meas-

ures warrants further study.

Vision is a critical component of postural control, and it is

imperative for the stabilization of upright posture because it

allows individuals to detect their motion relative to other struc-

tures in their visual field.18,19 Eye movements appear to play a

large role in this process and have shown to affect posture dur-

ing quiet standing.18,20,21 Visual feedback is also important for

dynamic tasks of postural control, such as locomotion, and

information from the visual system is necessary for locomotor

control regulation.18,22�24 Individuals with visual impairments

who are otherwise healthy have appeared to adopt a more cau-

tious gait strategy, similar to that seen following concussion.22

However, less is known about how vision and gait are related

following concussion, particularly in a population with eye

tracking impairments.

Gait speed is a clinically feasible measure that reflects an

individual’s functional capacity and physiological changes,25

and a conservative gait strategy, evidenced largely by slower

gait speed, has been observed repeatedly following concus-

sion.26,27 Additionally, previous work has reported a signifi-

cantly slower single-task and dual-task gait speed in a group of

adolescent athletes who presented with receded near point of
convergence following concussion relative to uninjured con-

trols, suggesting that vision deficits may be related to motor

dysfunction.5 It is unknown whether motor dysfunction also

exists in a post-concussion adolescent population with abnor-

mal eye tracking abilities. However, both vergence and pursuit

eye movements have anatomical pathways rooted in the cere-

bellum,2 which also largely controls the feedforward control

required during gait.28 Thus, it is possible that those with

impaired eye tracking also demonstrate deficits in dynamic

postural control.

The purpose of our investigation was to (1) examine the

relationship between self-reported symptoms and concussion

related eye tracking impairments, and (2) compare single-task

and dual-task gait speed between (a) adolescents with a con-

cussion who have normal eye tracking, (b) adolescents with a

concussion who have abnormal visual tracking abilities, and

(c) healthy controls. We hypothesized that those adolescents

with a concussion and abnormal eye tracking would have

higher symptoms on the Post-Concussion Symptom Scale

(PCSS) and slower single-task and dual-task gait speed com-

pared to those with a concussion and normal eye tracking and

healthy controls.
2. Methods

2.1. Study design and participants

We conducted a cross-sectional study to evaluate eye track-

ing, symptoms, and gait performance in both concussed indi-

viduals and healthy controls. Concussion participants were

patients who presented to a sport concussion clinic within a

tertiary care regional children’s hospital. Following injury,

patients self-presented or were referred from an emergency

department or their regular healthcare provider. They were

diagnosed and evaluated by a sports medicine physician in

accordance with the most recent International Consensus on

Concussion in Sport definition.1 Similar to previous work,17,29

healthy controls were individuals reporting to the injury pre-

vention center for personal training sessions or injury preven-

tion evaluations, or were the children of hospital employees.

We included participants who were between the ages of 8 and

18 years and agreed to participate within the first 10 days of

injury (concussion group). We excluded participants who had

a current lower extremity orthopedic injury that may have

affected normal gait, participants with sensory deficits (deaf-

ness or blindness), and participants with diagnosed psychiatric

disorders. Institutional review board approval was obtained

from the Boston Children’s Hospital’s Ethical Committee

prior to the start of the study, and all participants provided

written informed assent or consent (if �18 years old) to partic-

ipate before enrollment. Consent was obtained from the

parents/guardians if the participant was younger than 18 years

old.
2.2. Eye tracking protocol

During the eye tracking trials, participants watched a brief

(220 s) video that moved around the screen while their eye
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movements were recorded. An Eyelink 1000 eye tracker (SR

Research Ltd., Mississauga, Ontario, Canada) recorded contin-

uous eye movements at a fixed distance of 55 cm between the

computer monitor and the participants’ eyes, and eye position

data were recorded at 500 Hz. The video occupied approxi-

mately one-ninth of the computer screen and moved clockwise

around the outer edges of the computer monitor as it played.

During the procedure, participants sat in a height-fixed chair

and placed their chin on a chin rest fixed on a height-adjustable

table. This procedure has been described previously in detail

and has successfully identified post-concussion vision prob-

lems, as well as demonstrated an acceptable level of test�ret-

est reliability in healthy adolescents.13,16,17,29 All eye tracking

was binocular, and no spatial calibration was performed to

allow for the independent analysis of both pupils for the dura-

tion of the trial.

2.3. Gait protocol

Gait speed was measured using 3 triaxial accelerometers

(Opal Sensors, APDM Inc., Portland, OR, USA) placed on the

dorsal surfaces of each foot and around the L5 vertebra of the

spine. The accelerometers have been demonstrated to be reli-

able when compared to force plates and to be valid for use in

both neurological and healthy populations.30�32 Participants

were instructed to walk, at a self-selected pace, down a 10-m

walkway, turn around at a specified end point, and return to

the starting line. All participants completed 5 trials of single-

task gait (i.e., walking without any other task completion) and

5 trials of dual-task gait. During the dual-task condition, indi-

viduals simultaneously answered cognitive questions while

walking. As with prior work,33,34 the cognitive tasks were

mini-mental-style questions that consisted of either spelling

5-letter words backwards, counting backwards by 6 s or 7 s

from a specified number, or reciting the months of the year in

reverse order. The order of the cognitive tasks was random-

ized. Participants were not given any practice trials or prioriti-

zation instructions on the motor task or the cognitive task.

2.4. Clinical symptoms

To evaluate concussion symptoms, we used the PCSS,

which is a standard form that records the presence and severity

of 22 concussion symptoms at the time of testing.35 The PCSS

is part of the 5th version of the Sport Concussion Assessment

Tool36 and requires participants to rate their concussion symp-

toms from 0 to 6, where 0 equates to “no symptom” and 6

equates to “severe symptoms”. In addition to total PCSS score,

we also evaluated the individual symptom profiles, as previ-

ously published.10 The profile breakdown was somatic (head-

ache, pressure in the head, neck pain, nausea or vomiting,

sensitivity to light, and sensitivity to noise), vestibular-ocular

(blurred vision, balance problems, and dizziness), cognitive

(don’t feel right, confusion, feeling like in a “fog”, difficulty

concentrating, and difficulty remembering), emotional (more

emotional than usual, irritable, sadness, and nervous/anxious),

and sleep (feeling slowed down, drowsiness, fatigue, and trou-

ble falling asleep).
2.5. Outcome variables and statistical analysis

From the eye tracking protocol, our outcome variable was

the BOX score, which is a metric of pupillary disconjugacy

that has been reliably used for diagnostic purposes in a pedi-

atric concussion population.13,14,17 We classified the concus-

sion group into those with a normal BOX score of <10 and

those with an abnormal BOX score of �10, based on existing

standards.13 Our outcome variables from the gait protocol

were single-task and dual-task gait speed, and our symptom

variable was the total score from the PCSS. The average gait

speed across the 5 trials was measured by the accelerometers

and calculated within Mobility Lab as the average stride

velocity for left and right feet across all gait cycles in each

trial.37,38

Demographic variables are presented as mean § SD and

were compared using one-way analyses of variance, with the

exception of sex, which was compared using a x2- analysis of

variance test. Normality was determined using a Shapiro�
Wilk test. Total PCSS scores, PCSS symptom profiles, and

BOX scores were also compared using one-way analyses of

variance. We conducted linear regressions to examine the

relationships between BOX scores and both total PCSS scores

and specific PCSS symptom profiles (somatic, vestibular-

ocular, cognitive, emotional, and sleep)10 in the concussion and

control groups. Our secondary analysis was a two-way mixed

effects analysis of variance followed by a Tukey post hoc to

examine the effect of group (abnormal BOX, normal BOX,

and healthy control) on single- and dual-task gait speed. We

used an a level of p < 0.05, and statistical analyses were per-

formed with Stata (Version 15.1; Stata Corp., College Station,

TX, USA).

3. Results

A total of 30 concussed participants (age: 14.4 § 2.2 years,

50% female) and 30 controls (age: 14.2 § 2.2 years, 47%

female) completed eye tracking and gait assessments. There

were no significant differences between groups for age, height,

or mass (Table 1). There was a significant association between

total PCSS score and BOX score in the concussion group but

not in the control group (Fig. 1). There were no significant

associations between the PCSS symptom profiles and BOX

scores in the concussion or control groups (Table 2).

The total PCSS and individual symptom profile scores were

significantly higher for both concussion groups relative to the

control group (Table 1). The BOX score was significantly

higher in the abnormal eye tracking concussion group com-

pared to the normal eye tracking concussion group and healthy

controls (Table 1). However, the healthy controls had a signifi-

cantly higher BOX score than the concussion group with nor-

mal eye tracking. The concussion group with impaired eye

tracking (abnormal BOX score) reported the highest total

PCSS score, the highest individual PCSS symptom profile

score, and highest BOX score compared to the normal eye

tracking concussion group and healthy controls (Table 1).

Single-task gait speed (p = 0.63) and dual-task gait speed

(p = 0.89) were both normally distributed. There was not a



Fig. 1. There was a significant association between total PCSS scores

and BOX scores in the concussion group (b = 0.16, p = 0.004, 95%CI:

0.06‒0.27) but not in the control group (b = 0.21, p = 0.08, 95%CI:

�0.03 to 0.45). CI = confidence interval; PCSS = Post-Concussion Symp-

tom Scale.

Table 1

Demographic characteristics (mean § SD).

Concussion: abnormal

BOX (n = 9)

Concussion: normal

BOX (n = 21)

Healthy controls

(n = 30)

p

Age (year) 14.4 § 2.7 13.9 § 2.0 14.2 § 2.2 0.79

Sex (F/M) 7/2 8/13 14/16 0.13

Height (cm) 165.8 § 13.0 158.5 § 13.1 159.9 § 12.2 0.34

Mass (kg) 60.4 § 16.3 54.3 § 15.3 52.3 § 14.8 0.39

Concussion history 1.1 § 1.2 (range 0‒3)* 0.9 § 1.0 (range 0‒3)* 0.2 § 0.4 (range 0‒1) 0.001

Days since injury 6.6 § 2.7 6.7 § 2.6 — 0.88

Total PCSS score 51.1 § 16.3* 31.4 § 19.3* 3.7 § 8.6 <0.001

Somatic 16.6 § 5.9*# 9.4 § 5.2* 0.7 § 2.4 <0.001

Vestibular-ocular 6.1 § 3.7*# 4.3 § 3.5* 0.5 § 1.2 <0.001

Cognitive 12.7 § 4.9*# 8.1 § 6.5* 1.1 § 2.7 <0.001

Emotional 4.9 § 5.4*# 3.4 § 5.2* 0.4 § 1.3 0.002

Sleep 10.8 § 5.0*# 6.1 § 5.1* 0.9 § 1.8 <0.001

BOX score 15.9 § 3.6*# 4.7 § 3.0 7.8 § 5.6# <0.001

* p < 0.05, compared with health controls; # p < 0.05, compared with normal concussion group.

Abbreviations: F = female; M =male; PCSS = Post-Concussion Symptom Scale.

Table 2

Associations between PCSS symptom profiles and BOX scores.

Symptom profile b p 95%CI

Concussion

Somatic 0.42 0.12 �0.11 to 0.95

Vestibular-ocular �0.11 0.78 �0.93 to 0.71

Cognitive 0.24 0.34 �0.27 to 0.75

Emotional �0.55 0.11 �1.22 to 0.12

Sleep 0.49 0.06 �0.02 to 1.01

Controls

Somatic �0.36 0.81 �3.45 to 2.73

Vestibular-ocular 0.48 0.75 �2.52 to 3.47

Cognitive 1.25 0.12 �0.36 to 2.86

Emotional �1.24 0.54 �5.36 to 2.88

Sleep 0.28 0.78 �1.83 to 2.40

Note: No significant associations were found in the concussion or control group.

Abbreviations: CI = confidence interval; PCSS = Post-Concussion Symptom

Scale.

Fig. 2. There was not a significant difference for single-task (F = 2.15,

p = 0.13) or dual-task (F = 1.66, p = 0.20) gait speed. A Tukey post hoc test

revealed no significant differences in single-task gait speed (Abnormal: 1.00

§ 0.14 m/s; Normal: 1.11 § 0.21 m/s; Healthy: 1.14 § 0.18 m/s; p = 0.08) or

dual-task gait speed (Abnormal: 0.77 § 0.15 m/s; Normal: 0.84 § 0.21 m/s;

Healthy: 0.90 § 0.18 m/s; p = 0.16) between the groups. The error bars repre-

sent 95% confidence intervals.
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significant difference in single- or dual-task gait speed between

the groups (Fig. 2).
4. Discussion

The results of our study demonstrate a significant associa-

tion between eye tracking and total PCSS score following con-

cussion, since those with a concussion and abnormal visual

tracking also had the highest symptom scores. However, there

were no significant associations between eye tracking and the

individual PCSS symptom profiles, suggesting that there is no

one symptom domain driving these eye tracking deficits. Addi-

tionally, the concussion group with abnormal visual tracking

walked with a slower gait speed than both the concussion

group with normal eye tracking ability and healthy controls.
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While not statistically significant, this finding still has clinical

implications, because motor deficits have been shown to per-

sist beyond concussion clinical recovery.34

We found a significant association between total symptom

score and eye tracking in adolescents following concussion,

whereby those individuals with abnormal BOX scores also

reported the highest PCSS scores within 10 days of concus-

sion. The concussion group with a BOX score that was consid-

ered to be abnormal self-reported an average total symptom

severity score 20 points higher than the concussion group with

normal eye tracking and 47 points higher than the healthy con-

trols. We did not observe any significant associations between

the 5 PCSS symptom profiles and BOX scores in either the

concussion or control groups. Thus, it does not appear that

abnormal eye tracking is being driven by 1 particular symptom

domain. However, when compared to the concussion group

with normal eye tracking and healthy controls, the concussion

group with eye tracking impairments still had significantly

worse symptom severity across all 5 domains. Dysfunctional

eye movements and visual perception after concussion are

associated with increased concussion symptoms,39 and

changes in visual tracking performance relative to pre-injury

reflected clinical symptoms in individuals tested within 2

weeks following concussion.40 Additionally, adolescent ath-

letes with convergence insufficiency during a near point of

convergence task reported higher total symptom scores than

those with normal near point convergence.41 These findings

suggest that multiple types of visual impairments are related to

symptoms, and further support the use of vision testing as an

objective clinical measure following concussion.

Our total symptom scores, as well as the 5 PCSS symptom

profiles, were higher in our abnormal eye tracking group than

those observed in other studies of visual impairments in

adolescents;9,10,16,41 however, the abnormal concussion group

sample size was the smallest of the 3 groups, so future research

with a larger abnormal sample is warranted to further examine

the relationship between symptoms and eye tracking deficits.

The abnormal group was also largely female, so we cannot

rule out the influence of sex differences since both female

youth and adolescent athletes have been shown to report

greater symptom severity, particularly in the somatic domain,

but the literature on this point remains mixed.10,38,42 While our

data only provided a cross-sectional look among a sample of

adolescents, visual system dysfunction has also shown to pre-

dict prolonged concussion recovery in youth and adult popula-

tions.6,43 Furthermore, a higher initial somatic and vestibular-

ocular symptom burden has been associated with prolonged

symptom duration in adolescent athletes.9 Therefore, future

research should address whether individuals with abnormal

eye tracking take longer to recover than individuals with nor-

mal eye tracking.

Unsurprisingly, and consistent with prior eye tracking

research in a youth population,16 both concussion groups

reported significantly higher total symptom severity and indi-

vidual symptom profile severity than the healthy controls. The

BOX scores were also significantly different between groups.

For the purpose of our investigation, we divided the
concussion group based on whether their BOX score was con-

sidered to be normal or abnormal; however, when combined

into 1 group, both the mean and median BOX scores were con-

sistent with what has been reported in a similar population.16

The healthy controls had a higher BOX score than the concus-

sion group with normal eye tracking, but both scores still fell

below the score threshold of 10. Scores of �10 are considered

to be abnormal.

In addition to higher symptom and BOX scores, those with

a concussion and impaired eye tracking also walked with a

slower gait speed compared to both the concussion group with

normal eye tracking and the healthy controls. The mean differ-

ence in single-task gait speed between the concussion group

with impaired eye tracking and healthy controls was approxi-

mately 0.14 m/s, which is double that of the minimum detect-

able change (0.074 m/s) previously established for average

walking speed in the literature.44 This demonstrates a mean-

ingful biological difference between the group with impaired

eye tracking and the other groups, despite a lack of statistical

significance. A slow gait speed is evidence of a conservative

gait strategy, which has been observed in multiple populations

following concussion.26,27 While the difference in gait speed

between the 3 groups did not reach statistical significance,

there may still be clinical implications. Gait impairments fol-

lowing concussion have been observed beyond symptom reso-

lution in numerous populations, suggesting that motor deficits

may linger beyond clinical recovery.45�47 Additionally, a link

between conservative gait strategy and subsequent lower

extremity musculoskeletal injury has been recently identified,

which provides further evidence that motor dysfunction may

persist beyond return to play following concussion.48

Impaired eye tracking is not the only ocular deficit present

in individuals with a conservative gait strategy. When adoles-

cents with a concussion were divided into 2 groups based on

receded or normal near point convergence and compared to a

healthy control group, those with abnormal vergence findings

walked with a significantly slower single-task and dual-task

gait speed that was comparable to the gait speeds within our

investigation.5 These findings suggest that deficits in smooth

pursuit eye movements, not just vergence, may play a role in

motor system dysfunction. The anatomical pathways responsi-

ble for vergence and pursuit movements are largely controlled

by the cerebellum, which also produces the feedforward con-

trol required for gait.2,28,49 Because the physiological control

of pursuit eye movements and motor function has the same

foundation, individuals with impaired eye tracking abilities

may also be more likely to have motor deficits. Future research

should further explore this possibility.

Our study had several limitations. First, we recruited our

population from a single specialized sport concussion clinic

affiliated with a regional tertiary care children’s hospital.

Therefore, our results cannot be generalized to other popula-

tions. Second, our sample size of individuals with an abnormal

BOX score was limited and predominantly female. We do not

believe this factor influenced our visual results, because eye

tracking did not previously appear to be associated with sex in

a youth concussion population.13 However, it could have
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potentially influenced symptom severity, and future research

should examine the role of sex differences in eye tracking with

a larger abnormal group. Last, we did not ask participants if

they required glasses or corrective devices and will make a

point to do so in future studies.

5. Conclusion

There appears to be an association between eye tracking

and clinical symptoms following concussion, but it does not

appear that abnormal eye tracking is influenced by a single

symptom domain. The concussion group with abnormal eye

tracking ability had worse overall total symptom severity and

higher scores on each of the 5 symptom profiles than those

with normal eye tracking and healthy controls. Additionally,

the abnormal eye tracking group walked with slower single-

and dual-task gait speeds, although the difference was not sta-

tistically significant. Regardless, eye tracking appears to be a

clinically useful tool for identifying ocular and motor deficits

following concussion, and further research is needed to deter-

mine if eye tracking can assist clinicians in monitoring those

individuals at risk for prolonged concussion recovery.
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