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Abstract

Motivation: Single cell transcriptional profiling opens up a new avenue in studying the functional role of

cell-to-cell variability in physiological processes. The analysis of single cell expression profiles

creates new challenges due to the distributive nature of the data and the stochastic dynamics of gene

transcription process. The reconstruction of gene regulatory networks (GRNs) using single cell transcrip-

tional profiles is particularly challenging, especially when directed gene-gene relationships are desired.

Results: We developed SINCERITIES (SINgle CEll Regularized Inference using TIme-stamped

Expression profileS) for the inference of GRNs from single cell transcriptional profiles. We focused on

time-stamped cross-sectional expression data, commonly generated from transcriptional profiling of

single cells collected at multiple time points after cell stimulation. SINCERITIES recovers directed

regulatory relationships among genes by employing regularized linear regression (ridge regression),

using temporal changes in the distributions of gene expressions. Meanwhile, the modes of the gene

regulations (activation and repression) come from partial correlation analyses between pairs of genes.

We demonstrated the efficacy of SINCERITIES in inferring GRNs using in silico time-stamped single

cell expression data and single cell transcriptional profiles of THP-1 monocytic human leukemia cells.

The case studies showed that SINCERITIES could provide accurate GRN predictions, significantly bet-

ter than other GRN inference algorithms such as TSNI, GENIE3 and JUMP3. Moreover, SINCERITIES

has a low computational complexity and is amenable to problems of extremely large dimensionality.

Finally, an application of SINCERITIES to single cell expression data of T2EC chicken erythrocytes

pointed to BATF as a candidate novel regulator of erythroid development.

Availability and implementation: MATLAB and R version of SINCERITIES are freely available from

the following websites: http://www.cabsel.ethz.ch/tools/sincerities.html and https://github.com/

CABSEL/SINCERITIES. The single cell THP-1 and T2EC transcriptional profiles are available from

the original publications (Kouno et al., 2013; Richard et al., 2016). The in silico single cell data are

available on SINCERITIES websites.
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1 Introduction

Cell profiling technologies have enabled scientists to measure intra-

cellular molecules (DNA, RNA, proteins, metabolites) at whole-

genome level and down to single cell resolution. Over the last

decade, high-throughput single cell assays have experienced tremen-

dous progress, thanks to advanced microfluidics techniques and

increased sensitivity in cell profiling assays. For example, the

Fluidigm Dynamic Array platform employs integrated fluidics cir-

cuitry to capture single cells (up to 96 cells per run) for transcrip-

tional expression profiling using quantitative RT-PCR (qRT-PCR)

or RNA-sequencing (RNA-seq) (Pieprzyk and High, 2009).

Furthermore, the arrival of barcoding strategies will bring such

approaches to unprecedented resolution (Rosenberg et al., 2017).

The ability to assay individual cells and to examine intra-population

cellular heterogeneity brings great benefits to fields such as stem cell

and cancer biology. In the last few years, single cell analyses have

demonstrated the ubiquity of cellular heterogeneity, even within cell

populations or cell types that have been traditionally perceived as

homogeneous (Buettner et al., 2015; Gupta et al., 2011; Kumar

et al., 2014; Pollen et al., 2014; Shalek et al., 2014). Meanwhile,

many single cell studies have provided evidence for the physiological

roles of cell-to-cell variability in normal and diseased cells (Chang

et al., 2008; Fang et al., 2013; Lee et al., 2014; Kim et al., 2015;

Richard et al., 2016).

Single cell transcriptional profiling overcomes many issues asso-

ciated with population-average or bulk data that mask cellular het-

erogeneity [e.g. Simpson’s paradox (Simpson, 1951)], thereby

presenting new means for understanding biology. Bioinformatics

tools for analyzing single cell expression data have proliferated in re-

cent years (Bacher et al., 2016; Liu and Trapnell, 2016; Stegle et al.,

2015). A class of these algorithms concerns with the deconvolution

of cell populations and tissues to elucidate population substructures

and identify known and novel cell subtypes (Amir et al., 2013;

Buettner et al., 2014; Haghverdi et al., 2015; Pierson et al., 2015;

Xu and Su, 2015). These algorithms often apply or modify existing

clustering and dimensionality reduction algorithms, such as PCA,

tSNE and diffusion maps, to accommodate single cell data. Another

class of algorithms deals with the ordering of cells within the cell

population along a perceived unique transition path between differ-

ent cell states [e.g. Monocle (Trapnell et al., 2014), Wanderlust

(Bendall et al., 2014), SCUBA (Marco et al., 2014) and TSCAN (Ji

and Ji, 2016)]. Such cell ordering produces a trajectory in the state

space of gene expression corresponding to a physiological transition,

such as stem cell differentiation process.

The third class of algorithms considers gene regulatory network

(GRN) inference. A GRN is a network graph, where the nodes of

this graph represent genes and the edges represent gene-gene inter-

actions. The most common gene networks created from single cell

transcriptional data have undirected edges [see for example

(Kouno et al., 2013; Pina et al., 2015; Richard et al., 2016)], where

such edges indicate associations among genes, for example co-

expression or co-regulation relationships. In contrast, the focus of

our work is inferring GRNs with directed edges, where an edge

pointing from gene i to gene j implies that the protein product(s) of

gene i directly or indirectly regulates the expression of gene j (e.g.

gene i encodes a transcription factor of gene j). The edges may also

have signs, representing the modes of the gene regulation: positive

for activation and negative for repression. In comparison to the

other two classes of algorithms, there have been lesser algorithmic

developments on the inference of such GRNs from single cell tran-

scriptional profiles, possibly because of the extreme difficulty in

this task (Bacher et al., 2016; Liu and Trapnell, 2016; Stegle et al.,

2015).

One of the challenges in using single cell expression data for

GRN inference is the zero-inflated characteristic of the dataset, re-

sulting from both technical dropouts (mainly in RNA-seq data) and

the stochastic bursty dynamics of the gene expression process

(Bacher et al., 2016; Coulon et al., 2010; Liu and Trapnell, 2016;

Stegle et al., 2015). In addition, single cell profiling techniques such

as qRT-PCR and RNA-seq use cell lysates. Consequently, the result-

ing data provide only cross-sectional information of the cell popula-

tion. A few GRN inference methods have previously been proposed

based on Boolean network model (Chen et al., 2015; Lim et al.,

2016; Moignard et al., 2015), stochastic gene expression model

(Teles et al., 2013) and a combination of machine learning and non-

linear differential equation model (Matsumoto et al., 2017; Ocone

et al., 2015). However, none of these methods use time point infor-

mation of the cells directly in the GRN inference. In general, tem-

poral data possess more information than static or single time-point

data, especially for the determination of causal networks (Bar-

Joseph et al., 2012). For these reasons, here we consider time-

stamped cross-sectional single cell transcriptional profiles, i.e. the

expression profiles of single cells taken at multiple time points after

cell stimulation. Such type of dataset is commonly generated in stud-

ies of cell differentiation process, where cells are induced to differen-

tiate at the beginning of the experiment and are then collected at

multiple time points for single cell analysis (Chu et al., 2016; Kouno

et al., 2013; Richard et al., 2016).

In this work, we created a network inference algorithm, called

SINCERITIES (SINgle CEll Regularized Inference using TIme-

stamped Expression profileS). The GRN inference was formulated

as regularized linear regressions based on temporal changes of the

gene expression distributions. The modes of the gene regulations,

i.e. the signs of the edges, were determined using partial correlation

analyses. We demonstrated the efficacy of SINCERITIES using in

silico time-stamped single cell expression profiles, as well as time-

stamped cross-sectional transcriptional profiles of THP-1 human

myeloid monocytic leukemia cells (Kouno et al., 2013) and T2EC

chicken erythrocytes (Richard et al., 2016). We also compared

SINCERITIES to existing GRN inference algorithms developed for

time series expression data, namely TSNI (Bansal et al., 2006) and

JUMP3 (Huynh-Thu and Sanguinetti, 2015), and to a tree-based

GRN inference algorithm GENIE3 (Huynh-Thu et al., 2010). The

case studies illustrated the efficacy of SINCERITIES in extracting

accurate GRN, by taking advantage of temporal information in

time-stamped single cell expression data.

2 Materials and methods

2.1 Gene regulatory network inference using

SINCERITIES
Figure 1 illustrates the main steps of the gene regulatory network in-

ference in SINCERITIES. In the following, let m be the number of

genes, n be the number of measurement time points, and sk be the

number of cells in the kth time point sample (k¼1, 2, . . ., n). The

time-stamped cross-sectional dataset (see Fig. 1A) comprises n data

matrices Esk�m, where the matrix element Eik ;j is the transcriptional

expression value of gene j, i.e. the amount of mRNA molecules of

gene j in the ith cell at the kth time point. SINCERITIES is based on

the assumption that changes in the expression of a transcription fac-

tor (TF) will alter the expression of the target genes. Thus, in the

first step of SINCERITIES (see Fig. 1B), we quantify the temporal
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changes in the expression of each individual gene by computing the

distance of the marginal gene expression distributions between two

subsequent time points. While the most obvious distributional dis-

tance (DD) metric is the mean difference, the transcriptional regula-

tion of a gene could alter the gene expression distribution beyond its

first moment (Altschuler and Wu, 2010; Vallejos et al., 2016). In

SINCERITIES, we make use of the information contained in the sin-

gle cell gene expression dataset, particularly changes in the gene ex-

pression distributions, for the purpose of GRN inference. In the

current implementation of SINCERITIES, we have chosen the

Kolmogorov–Smirnov (KS) distance, i.e. the maximum absolute dif-

ference between two cumulative density functions, as the DD metric

(Massey, 1951). However, if desired and whenever appropriate,

other DD metrics, such as the mean difference, Anderson-Darling

(AD) statistics (Anderson and Darling, 1952) and the Cramér–von

Mises (CM) criterion (Anderson, 1962), could also be used in place

of the KS distance (see also Section 2.2).

In order to establish directed edges in the GRN, we adopted the

Granger causality concept (Granger, 1969), where the direction of

an edge indicates predictive causality, i.e. past data have the infor-

mation for predicting the future observations. More specifically, in

SINCERITIES, we formulated the GRN inference problem, in which

the changes in the expression of TFs in a given time window are

used to ‘predict’ the shifts in the gene expression distributions of the

corresponding target genes in the next time window. Since the time

windows may not necessarily be uniform, the DD values are normal-

ized by the time step size. As shown in Figure 1C, the GRN inference

in SINCERITIES involves solving m independent linear regressions.

More specifically, for each gene j, we formulate a linear regression

using the normalized DDs of this gene at time windows lþ1,

denoted by dDDj;lþ1 (l ¼ 1; 2; . . . ; n� 2), as the response (depend-

ent) variable, while setting the normalized DDs of all other

genes from the previous time window l (dDDp;l; p ¼ 1; 2; . . . ;m) as

the regressor (independent) variables. The linear regression is thus

given by:

dDDj;lþ1 ¼ a1;j
dDD1;l þ a2;j

dDD2;l þ � � � þ am;j
dDDm;l (1)

where ap, j is the regression coefficient describing the influence of

gene p on gene j. The least square solution vector a�j is constrained

to be non-negative since the normalized DDs take only non-negative

values. In formulating the regression problem above, we have fol-

lowed the standard mathematical statement of the Granger causal-

ity, and therefore made a simplification in which the relationship

between the DDs of the regulators and those of the target gene is

linear. While higher order (nonlinear) relationships could be incor-

porated into the regression problem above, the applications of

SINCERITIES to in silico and actual single cell expression dataset

below demonstrated that the linear approximation could provide

reasonably accurate predictions of the GRN structure.

The linear regression above is often underdetermined as the

number of genes typically exceeds the number of time windows. For

this reason, we employ a penalized least square approach to obtain

a�j using an L2-norm penalty, also known as ridge regression or

Tikhonov regularization (see Section 2.3 for more details).

SINCERITIES relies on GLMNET (Friedman et al., 2010) to com-

pute the solution vector a�j for each gene j, using leave-one-out

cross-validation (LOOCV) for determining the weight of the penalty

term. Upon completion, SINCERITIES produces a ranked list of all

possible edges in the GRN (a total of m2 edges) in descending order

of ap, j values (see Fig. 1D). A larger ap, j indicates higher confidence

that the corresponding edge exists (i.e. the edge p ! j). For the

mode (sign) of the gene regulatory edges, SINCERITIES uses partial

correlation analyses on the expressions of every gene pair, control-

ling for the other genes (see Section 2.4). The sign of an edge is set to

the sign of the corresponding partial correlation. In other words, a

A B

D C

Fig. 1. The workflow of SINCERITIES. (A) Input: time-stamped cross-sectional data of gene expression. (B) Step 1: calculation of normalized distribution distance

of gene expression distributions over each time step; (C) Step 2: formulation of the GRN inference as a linear regression problem; (D) Output: edge predictions of

the GRN
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positive (negative) correlation is taken as an indication of activation

(repression).

Presently, SINCERITIES cannot directly handle single cell data

from stem cell differentiation process that produces more than

one cell type (i.e. branching). In such a scenario, a pre-processing

step is needed to group cells into individual cell lineages [for ex-

ample, using time-variant clustering (Huang et al., 2014)], and

SINCERITIES could subsequently be applied to data from each dif-

ferentiation branch. In the case studies, we tested SINCERITIES per-

formance in inferring moderately sized GRNs. While there exist no

technical limitation in applying SINCERITIES to single cell expres-

sion data with many more genes, for example using RNA-seq data,

we expect that network inferability would become the limiting

issue in such an inference (Szederkényi et al., 2011; Ud-Dean and

Gunawan, 2014). Finally, the current implementation of LOOCV in

SINCERITIES requires at least five time points. With n ¼ 5, the re-

gression in Eq. (1) comprises n� 2 ¼ 3 equations, which is the min-

imum number of samples in the LOOCV for computing the average

and standard deviation of the test errors.

2.2 Distribution distance
In SINCERITIES, we used the Kolmogorov–Smirnov distance to

quantify the distance between two cumulative distribution functions

of gene expressions from subsequent time points, according to

DDj;l ¼ max Ftlþ1
Ej

� �
� Ftl

Ej

� ��� �� (2)

where DDj, l denotes the distributional distance of gene j expression

Ej between time points tl and tlþ1 (l¼1, 2, . . ., n�1) and Ftl
Ej

� �
denotes the cumulative distribution function of Ej at time tl. We

also evaluated three additional DD metrics, namely the mean dif-

ference, AD statistics and CM criterion (Anderson, 1962) (see

Supplementary Material and Supplementary Table S1). As shown in

the case study using in silico single cell data, the performance of

SINCERITIES did not depend sensitively on the DD metrics used. In

order to accommodate non-uniformity in the sampling times, we

normalized DDj, l with respect to the time window size, as follows:

dDDj;l ¼
DDj;l

Dtl
(3)

where dDDj;l denotes the normalized distribution distance of gene

j in the time window between tl and tlþ1 with Dtl ¼ tlþ1 � tl.

2.3 Ridge regression
As shown in Figure 1C and Eq. (1), for each gene j, we solved a lin-

ear regression problem of the form: y ¼ Xa, where y denotes the n-2

vector of dDD distances of gene j corresponding to time windows Dt2
to Dtn-1, and X denotes the (n-2)�m matrix of dDD distances corres-

ponding to time windows Dt1 to Dtn-2, for all genes. To obtain the

solution vector a, we performed a ridge regression penalized least

square optimization as follows:

minaky�Xak2
2 þ

1

2
kkak2

2 (4)

with the constraint that ai � 0. We used GLMNET algorithm

(MATLAB) to generate the regularization path, i.e. the solution a as

a function of different k values (Friedman et al., 2010). In addition

to ridge regression, we also tested SINCERITIES with two other

penalty functions: the ‘Least Absolute Shrinkage and Selection

Operator’ (Lasso) L1-norm penalty (Tibshirani, 1996) and the

elastic-net penalty (Zou and Hastie, 2005). These alternative penalty

functions however led to less accurate GRN predictions than the

ridge regression (for further details, see Supplementary Material and

Supplementary Table S2).

The optimal weight factor k above is typically data dependent.

Here, we performed a leave-one-out cross validation (Kohavi, 1995)

to determine the optimal weight factor k. In LOOCV, we allocated

one row of y and X as the test dataset and the remaining as the train-

ing dataset. Then, we generated the regularization path for the train-

ing dataset using GLMNET, and computed the error of predicting

the test dataset as a function of k . We repeated this exercise for

every permutation of test and training dataset assignment, and se-

lected the optimal k that minimized the average prediction error.

Finally, we ran GLMNET on the full dataset and took the solution

a* that corresponded to the optimal k value above.

2.4 Partial correlation analysis
In order to determine the mode (sign) of gene regulatory relation-

ships, we performed the Spearman rank partial correlation analysis.

More specifically, for every pair of genes, we calculated the

Spearman rank partial correlation coefficient of the combined ex-

pressions from all time points, while controlling for the other genes.

The sign of the regulatory edge pointing from gene i to gene j was

set equal to the sign of the partial correlation coefficient. Note that

by using correlation, the sign of the edge pointing from gene i to

gene j is equal to the sign of the edge pointing from gene j to gene i.

2.5 In silico data generation
For testing the performance of SINCERITIES, we used GeneNetWeaver

(GNW) to randomly generate 10-gene and 20-gene random subnet-

works of Escherichia coli and Saccharomyces cerevisiae (yeast) GRNs.

After removing self-regulations, we simulated in silico single cell expres-

sion data using the following stochastic differential equation (SDE)

model of the mRNA (Pinna et al., 2010):

dxj tð Þ ¼ V b
Yn
i¼1

1þ Ai;j
xi tð Þ

xi tð Þ þ 1

� �
� hxi tð Þ

 !
dt þ rxj tð ÞdW tð Þ

(5)

where xj describes the mRNA level of gene j, Ai, j denotes the regula-

tion of the expression of gene j by gene i, b denotes the basal tran-

scriptional rate, h denotes the mRNA degradation rate constant, and

r and V are scaling parameters. The term dW(t) denotes the random

Wiener process, simulating the intrinsic stochastic dynamics of gene

expression (Wilkinson, 2009). We set Aij to 1 for gene activation,

�1 for gene repression, and 0 otherwise. For the main dataset in the

case study, we set the parameters to the following: V¼30, b¼1,

h¼0.2 and r¼0.1.

We simulated the SDE model above using the Euler-Maruyama

method (Higham, 2001) with an initial condition xj(0) set to 0 for

every gene, until the gene expression reached steady state (t¼3 arbi-

trary time unit). For each GRN structure, we generated 100 stochas-

tic trajectories for each time point (a total of 8�100¼800

independent trajectories for 8 time points), representing 100 single

cells. The simulations above mimicked the scenario where single

cells are lysed for gene expression profiling. To test the robustness of

SINCERITIES with respect to the intrinsic noise in gene expression

and to the number of sampling time points, we further generated

two additional datasets from the 10-gene E.coli and yeast gold

standard GRNs, by varying r parameter between 0.1 and 0.4 with a

step of 0.1 (see Table 1A) and by selecting the first n time points

from the following set t¼0.51, 0.60, 0.74, 1.2, 1.3, 1.5, 1.8, 2.2,

2.6, 3, where n is between 6 and 10. The time points were selected

to exclude the time period during which the mRNA level rose
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quickly from the initial concentration. This initial increase was a

consequence of starting the simulations from xj(0)¼0, and did not

necessarily reflect the gene regulatory actions.

3 Results

3.1 Evaluation of SINCERITIES using in silico data
To evaluate the efficacy of SINCERITIES, we simulated in silico

time-stamped single cell expression datasets using 10-gene and 20-

gene gold standard GRNs. The gold standard GRNs comprised 40

random subnetworks of E.coli and S.cerevisiae GRNs, i.e. ten net-

works for each size and from each species (see Supplementary File),

generated using GeneNetWeaver (Schaffter et al., 2011). For the

main dataset, we simulated single cell gene expression data for 100

cells at 8 unevenly spaced time points using a stochastic differential

equation model (see Section 2.5). In order to test the robustness of

SINCERITIES with respect to the number of sampling time points

and to the degree of stochasticity in the gene expression, we further

generated additional datasets using the 10-gene GRNs above, for

varying degrees of intrinsic noise (by changing r parameter) and dif-

ferent numbers of sampling time points (see Section 2.5). In the gold

standard GRNs, we assumed that there exist no self-regulatory

edges, since some of the existing algorithms used in the comparison,

namely GENIE3 and JUMP3, could not identify such edges.

We assessed the performance of SINCERITIES by evaluating the

areas under the Receiver Operating Characteristic (AUROC) and

the Precision-Recall curve (AUPR). Higher AUROC and AUPR val-

ues indicate more accurate GRN predictions. For this purpose, we

computed the numbers of true positive (TP), true negative (TN),

false positive (FP) and false negative (FN) edges by comparing the

regulatory edges in the gold standard network with the top q edges

from the ranked list output of SINCERITIES. When considering

GRNs with signed edges, a true positive prediction referred to the

correct prediction of an edge and its sign. The ROC curve was con-

structed by plotting the true positive rates (TPR¼TP/(TPþFN))

versus the false positive rates (FPR¼FP/(FPþTN)) for increasing q

(q ¼ 1; 2; . . . ;m2). Similarly, the precision (TP/(TPþFP)) versus re-

call (TP/(TPþFN)) curve was plotted for increasing q.

Figure 2 shows the AUROC and AUPR values of SINCERITIES

predictions for the main dataset, respecting the signs of the gene regu-

latory edges. As expected, the larger GRNs (20-gene) were more diffi-

cult to infer than the smaller GRNs (10-gene), as indicated by the

lower AUROC and AUPR values. GRNs with a larger mean or max-

imum distance among the genes (nodes) were also more difficult to

infer (see Supplementary Fig. S6). As we have shown previously (Ud-

Dean and Gunawan, 2014), an indirect regulation of a gene by an-

other (i.e. a network distance of 2 or higher) is often predicted as a

direct regulation, leading to a false positive error. Meanwhile, Table 1

gives the mean AUROC and AUPR values of SINCERITIES for the

additional single cell dataset. In general, the performance of

SINCERITIES decreased slightly with increasing intrinsic stochastic-

ity. On the other hand, decreasing the number of time points did not

appreciably change the performance of SINCERITIES.

We further compared the performance of SINCERITIES to three

other network inference methods, namely TSNI (Bansal et al., 2006),

GENIE3 (Huynh-Thu et al., 2010) and JUMP3 (Huynh-Thu and

Sanguinetti, 2015). TSNI (Time Series Network Inference) is a GRN

inference algorithm developed for time series gene expression data,

relying on a linear ordinary differential equation model of the gene

transcriptional process (Bansal et al., 2006). Meanwhile, GENIE3

(GEne Network Inference with Ensemble of trees) employs on a tree-

based ensemble strategy using either random forest or extra-trees

algorithms (Huynh-Thu et al., 2010). GENIE3 was among the top

performers in DREAM 4 and DREAM 5 network inference chal-

lenges (Marbach et al., 2009, 2012). Recently, GENIE3 has also been

applied to single cell data as a preliminary step to obtain the skeleton

of the GRN (Ocone et al., 2015). Lastly, JUMP3 uses a hybrid strat-

egy combining non-parametric decision trees approach with dynam-

ical ON/OFF modelling, to infer GRNs from time series expression

data (Huynh-Thu and Sanguinetti, 2015). Since TSNI and JUMP3 re-

quire time series (longitudinal) data, we applied these methods to the

(population) averages of the single cell gene expression data from

each time point. Among the three previous methods, only TSNI gen-

erates GRN predictions with signed edges.

Figure 3 compares the AUROC and AUPR values of

SINCERITIES and the three other methods mentioned above. The

AUROC and AUPR values for TSNI and SINCERITIES were com-

puted by respecting for the signs of the edges. However, for unsigned

GRN predictions from GENIE3 and JUMP3, the AUROC and

AUPR values were based only on the existence of the regulatory

edges (ignoring signs). The results showed that SINCERITIES sig-

nificantly outperformed all of these methods (P-value<0.05, paired

t-tests) (see Supplementary Table S3).

3.2 Inferring GRN driving THP-1 differentiation
In the following, we applied SINCERITIES to infer the GRN that

drives the differentiation of monocytic THP-1 human myeloid

Table 1. Robustness of SINCERITIES to (A) intrinsic stochastic

noise and (B) number of time points

10-GENE NETWORK

AUROC AUPR

r A

0.1 0.78 6 0.11 0.34 6 0.17

0.2 0.76 6 0.10 0.33 6 0.16

0.3 0.66 6 0.10 0.22 6 0.10

0.4 0.60 6 0.10 0.17 6 0.07

Time points B

10 0.78 6 0.16 0.32 6 0.17

9 0.79 6 0.11 0.39 6 0.22

8 0.78 6 0.11 0.34 6 0.17

7 0.80 6 0.10 0.36 6 0.20

6 0.78 6 0.11 0.37 6 0.20

Fig. 2. Performance of SINCERITIES in inferring gold standard GRNs. The

AUROC and AUPR values are given in Supplementary Table S1
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leukemia cell differentiation into macrophages. The time-stamped

cross-sectional single cell data came from qRT-PCR expression

profiling of 45 TFs in 960 THP-1 cells that were collected at 8 dis-

tinct time points (0, 1, 6, 12, 24, 48, 72, 96 h) after stimulation by

12-myristate 13-acetate (PMA) (Kouno et al., 2013). This dataset

provided a good benchmark inference problem as the GRN of THP-

1 differentiation has previously been constructed using deep

sequencing (deepCAGE) and RNA interference (RNAi) experiments

(Tomaru et al., 2009; Vitezic et al., 2010). More specifically, we

used a previously constructed anti-/pro-differentiation TF network

(Tomaru et al., 2009) as the gold standard network for evaluating

the performance of SINCERITIES and the three existing inference

methods above.

We applied SINCERITIES as well as TSNI, GENIE3 and JUMP3

to reconstruct the GRN of THP-1 differentiation using the single

cell expression data above. The AUROC and AUPR values were

evaluated against the gold standard network. We noted that only 20

TFs in the RNAi study overlapped with the set of genes in the single

cell study (Kouno et al., 2013). Therefore, while the GRN inferences

were done for 45 TFs, the calculation of AUROCs and AUPRs was

based on the regulatory edges among the common set of 20 TFs.

Again, for GENIE3 and JUMP3, the AUROC and AUPR values did

not take into account the modes (signs) of the regulatory edges.

Table 2 gives the AUROCs and AUPRs for the four network in-

ference strategies. For SINCERITIES, we reported the AUROC and

AUPR values both with and without the mode (signs) of the gene

regulations. The AUROC and AUPR values of SINCERITIES for the

unsigned GRN prediction were similar to those using in silico data.

As expected, the AUROC and AUPR values for the signed GRN pre-

diction from SINCERITIES was lower, but only slightly. TSNI,

GENIE3 and JUMP3 performed worse than SINCERITIES, and

often did not give much better predictions than a random network

(AUROC¼0.50).

3.3 Inferring novel regulator(s) of T2EC differentiation
In this application, we used SINCERITIES to infer the GRN associ-

ated with the differentiation process of T2EC chicken erythrocytic

cells. The single cell RT-qPCR dataset comprised 90 genes at 0, 8,

24, 33, 48 and 72 h after induction to differentiate (Richard et al.,

2016). The 90 genes were selected based on differential expression

and clustering analysis of time-series bulk RNA-seq data from

induced and uninduced T2EC cells, and included highly significantly

upregulated and downregulated genes as well as non-differentially

regulated genes. Here, there exists no gold standard network against

which we could compare the accuracy of the inferred GRN. The

goal of the analysis was to identify candidate novel genes that drive

the differentiation process. For this purpose, we employed the

inferred GRN from SINCERITIES, accounting for any edges with

non-zero a coefficients, and ordered the genes based of the decreas-

ing ratio between the out- and in-degree (Kouno et al., 2013). More

specifically, for each gene j, we computed the out- and in-degree as

the number of (target) genes that are regulated by gene j and the

number of (regulator) genes those that regulate gene j, respectively.

In the following, we divided the ordered gene list into three

roughly equisized groups: upstream genes (out/in-degree�5.5),

midstream genes (5>out/in-degree�1.1) and downstream genes

(out/in-degree<1.1) (see Supplementary Table S4).

Table 3 shows the enriched gene ontology (GO) terms for the

up-, mid- and downstream genes [using TOPPCLUSTER (Kaimal

et al., 2010)]. We found statistically significant enrichments

(Bonferroni-corrected P-value<0.05) only for the upstream and

midstream genes. Among the enriched GO terms in the upstream

gene list, the sterol and cholesterol biosynthesis have previously

been implicated in the differentiation of T2EC cells (Richard et al.,

2016). In addition, the cell activation process was significantly en-

riched among the upstream genes, while the ERBB2 signaling path-

way was enriched among the midstream genes. A repeat of the GO

enrichment analysis using the top 500 edges from SINCERITIES

produced a similar outcome with sterol and cholesterol biosynthesis

and cell activation being the enriched GO terms among the up- and

mid-stream genes (see Supplementary Table S5). In this case, ERBB2

signaling was not significantly enriched. Below, we thus focused on

the cell activation process.

The genes in the T2EC dataset related to the cell activation com-

prise BATF, BCL11A, BPI, CD44, EGFR, LCP1, PIK3CG, PTPRC

and SNX27. A subset of the genes above has known roles in eryth-

roid development. Particularly, BCL11A is a TF that regulates

Fig. 3. Performance comparison among TSNI, GENIE3, JUMP3 and

SINCERITIES. (A) AUROC and (B) AUPR values for 10-gene gold standard

GRNs. (C) AUROC and (D) AUPR values for 20-gene gold standard GRNs. The

AUROC and AUPR values are given in Supplementary Table S3

Table 2. Performance comparison among TSNI, GENIE3, JUMP3

and SINCERITIES in inferring the GRN of THP-1 cell differentiation

AUROC AUPR

TSNI 0.44 0.11

GENIE3 0.46 0.23

JUMP3 0.52 0.16

SINCERITIES (without sign) 0.70 0.33

SINCERITIES (with sign) 0.64 0.25

Table 3. Gene Ontology Enrichment Analysis of Up-, Mid- and

downstream genes in T2EC differentiation

Enriched GO Biological

Process Terms

�log10(P)

Upstream Midstream Downstream

Cholesterol biosynthetic process 5.8428* 2.5237 2.5832

Secondary alcohol biosynthetic

process

5.8428* 2.5237 2.5832

Sterol biosynthetic process 5.6780* 2.4438 2.5032

Cell activation 4.6132* 1.6896 0.3495

ERBB2 signaling pathway 1.2045 4.4906* –

(*) Bonferroni-corrected P-value< 0.05.
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globin gene expression (Sankaran et al., 2009). CD44 is expressed in

erythrocytes, and participates in the cell adhesion function (Telen,

2000). Furthermore, EGFR (Gandrillon et al., 1999) and PIK3CG

(Dazy et al., 2003) have been previously shown to promote

self-renewal state and to inhibit cell differentiation in T2EC. In

agreement with the previous observation, the expression of

EGFR was downregulated during T2EC differentiation process (see

Supplementary Fig. S5).

The remaining genes however have no reported roles in erythroid

differentiation. The possible involvements of BATF, BPI and LCP1

in T2EC differentiation have also been raised in the original analysis

of the dataset (see Supplementary Fig. S8 in Richard et al., 2016). A

TF enrichment analysis of the cell activation gene set above using

Enrichr (ENCODE TF ChIP-seq) (Chen et al., 2013) indicated SPI1,

a repressor of erythroid differentiation (Hoppe et al., 2016), as the

most significant TF. Interestingly, except for BCL11A and PIK3CG,

most of the targets of SPI1 in the gene set, including BPI, CD44,

LCP1 and PTPRC, were downregulated (see Supplementary Fig.

S5). Therefore, excluding the targets of SPI1 and considering only

TFs, we arrived with BATF as the most interesting candidate gene

regulating T2EC differentiation. BATF is a member of the family of

basic leucine zipper transcription factors, and has known function in

the development of numerous cell types involved in the immune re-

sponse (Murphy et al., 2013). But, the possible role of BATF in regu-

lating erythroid differentiation has not been previously reported. An

experimental confirmation of this finding is currently underway.

3.4 Computational runtimes
To assess the computational complexity of our approach, we meas-

ured the runtimes of SINCERITIES for 10- and 20-gene in silico

datasets, and compared these runtimes to those of TSNI, GENIE3

and JUMP3. Table 4 gives the average runtimes (in seconds) for

these methods for the main in silico dataset and for THP-1 differen-

tiation data. Tree-based inference methods (GENIE3 and JUMP3)

were significantly slower than SINCERITIES and TSNI. In particu-

lar, doubling the network size, the runtimes of GENIE3 and JUMP3

doubled and quadrupled, respectively. Meanwhile, the runtimes of

SINCERITIES and TSNI finished almost instantaneously (<1 s) for

these datasets, since these algorithms involved solving linear regres-

sions. Finally, we noted that the regularized linear regressions in

SINCERITIES are independent of each other and are therefore

amenable for parallel computation.

4 Discussion

Advances in single cell transcriptional profiling offer much promise

in elucidating the functional role of cell-to-cell variability across dif-

ferent key physiological processes, such as stem cell differentiation.

In particular, single cell expression data carry crucial information

on the gene regulatory network that governs cellular heterogeneity

and cell decision-making. The challenges of analyzing single cell

transcriptional data have led to the creation of novel bioinformatics

algorithms, including algorithms for GRN inference using single cell

transcriptional profiles (Chen et al., 2015; Matsumoto et al., 2017;

Moignard et al., 2015; Ocone et al., 2015; Pina et al., 2015).

However, the prediction of gene-gene interactions from single cell

transcriptional profiles is complicated by the intrinsic stochasticity

and bursty dynamics of the gene expression process and the loss of

cell identity during high-throughput transcriptional profiling.

A number of algorithms have been developed based on viewing

the single cell gene expressions as binary state vectors, whose state

transition trajectories are governed by a gene regulatory network

with Boolean logic functions. Examples of such algorithms include

SCNS (Moignard et al., 2015), SingleCellNet (Chen et al., 2015)

and BTR (Lim et al., 2016). A general drawback of these algorithms

is that the dimension of the state space of a Boolean network in-

creases exponentially with respect to the number of genes (2m where

m is the number of genes). Consequently, even for a moderately

sized GRN (�50 genes), providing a reasonable coverage of the state

space would require a tremendous number of single cell profiles.

The extremely large state space will also make the inference problem

computationally challenging.

Recently, Ocone et al. used a combination of a machine-learning

algorithm GENIE3 and ODE modelling for GRN inference using

single cell transcriptional data (Ocone et al., 2015). Here, GENIE3

was first applied to produce a skeleton of the GRN. This skeleton

was then refined by fitting an ODE model to pseudo-time trajecto-

ries of the gene expression, produced by applying Wanderlust algo-

rithm to single cell expression data in low-dimensional diffusion

map projection (Coifman and Lafon, 2006). However, there are sev-

eral issues in using pseudo-time trajectories for GRN inference.

First, one makes an implicit assumption that the trajectory reflects

the gene expression changes resulting from the gene regulatory inter-

actions during the physiological process of interest (e.g. cell differen-

tiation). The pseudo-time approach further assumes that the

transition between cell states is deterministic, a hypothesis that is

still hotly debated (Moris et al., 2016).

In our experience, the success of cell ordering in reproducing the

gene expression trajectory depends sensitively on the cell sampling

strategy, that is, being able to sample the right cells at the right time

point or stages. For example, the application of Wanderlust to the in

silico time-stamped single cell dataset from yeast led to cell ordering

that was incongruent with the sampling times, especially for latter

time points (see Supplementary Figs S1 and S2). Meanwhile, Kouno

et al. showed by using multiple dimension scaling that the THP-1

cell differentiation follows a rather irregular temporal dynamics in

the low-dimensional (2D) projected space (see also Supplementary

Fig. S3 for PCA, t-SNE and diffusion map analysis). As in the case of

in silico dataset, Wanderlust ordering of THP-1 single cell expres-

sion data showed little correlation with the cell time stamps (see

Supplementary Fig. S4). A similar situation was also reported for

the T2EC dataset, where cell ordering using several pseudo-time

algorithms led to incongruous outcomes (Richard et al., 2016).

But, if the pseudo-time of the single cells could be generated,

SINCERITIES could still be used with the pseudo-time replacing

the time stamp. For this purpose, the cells should be first binned

according to their pseudo-times. Subsequently, one can apply

SINCERITIES using the pseudo-times of bin centers as the time

stamps. Such a strategy is particularly appropriate when the cell dif-

ferentiation progression is asynchronous.

SINCERITIES could overcome the issues of large dataset

requirement, high computational complexity, and difficult cell

ordering, as the network inference involves numerically efficient

Table 4. Computational times comparison among TSNI, GENIE3,

JUMP3 and SINCERITIES

Average runtime (*) TSNI GENIE3 JUMP3 SINCERITIES

10-gene networks 0.04 s 16 s 6 s 0.32 s

20-gene networks 0.06 s 40 s 24 s 0.74 s

THP-1 differentiation data 0.33 s 41 s 43 s 0.83 s

(*) All timings were measured on an 8-GB RAM, 1.6 GHz dual-core Intel

core i5 computer.
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regularized linear regression and directly use time-stamped cross-

sectional data. SINCERITIES relies on the dynamical changes in the

gene expression distributions via DDs to establish a directed GRN

graph based on the Granger causality concept. Here, the directed

edges imply a predictive causality, where the DDs of the regulators

over a given time window have the information for predicting the

DDs of the target gene one time window ahead. In comparison to

our previous algorithm SNIFS (Sparse Network Inference For Single

cell data) that employed Lasso (Papili Gao et al., 2016),

SINCERITIES provides predictions for the mode of the gene regula-

tions (i.e. the sign of the edges), and accommodates unevenly spaced

time points—a common characteristic of time-stamped single cell

datasets. When the time intervals are short, SINCERITIES formula-

tion may miss gene regulations due to delayed gene responses.

However, as the time windows in the single cell analysis typically

differ by hours, such an issue may not be prominent. In addition,

given enough time points, one could modify the GRN inference to

include additional DDs beyond one time window lag.

SINCERITIES produces a ranked list of edges based on the values

of the coefficients a. Many GRN inference algorithms generate similar

outputs, including TSNI, GENIE3 and JUMP3. As mentioned earlier,

the magnitude of a coefficients indicates the confidence that a regula-

tory interaction exists. We allow the end-users to decide the cut-off

value for a above which regulatory edges should be included in the

GRN. Here, one could adopt a variable selection procedure, where the

regulatory edges are added sequentially in decreasing magnitude of a
coefficients, until a pre-selected criterion is satisfied. Examples of such

a criterion include Akaike information criterion, Bayesian information

criterion and Mallow’s Cp criterion (Yanagihara and Satoh, 2010).

Finally, SINCERITIES formulation in Eq. (1) does not include

any combinatorial regulatory interactions—the regulation of the ex-

pression of a gene by two or more regulators together. To account

for such combinatorial regulations, one could modify the linear re-

gression problem to include the time-changes in the joint gene ex-

pression distribution of multiple regulators among the set of

regressors [i.e. in the right hand side of Eq. (1)]. For this purpose,

one could use the multi-dimensional extension of KS distance

(Fasano and Franceschini, 1987; Justel et al., 1997). The computa-

tional cost of performing ridge regression would obviously increase,

an issue that could be mitigated using parallel computing (through

GLMNET parallel option). However, the calculation of KS dis-

tances beyond bivariate distributions (i.e. more than two regulators)

poses a considerable algorithmic challenge, for which several numer-

ically efficient approximations have been proposed (Fasano and

Franceschini, 1987; Justel et al., 1997; Xiao, 2017).

5 Conclusion

In this work, we developed SINCERITIES for GRN inference using

time-stamped cross-sectional single cell expression data, a common

type of dataset generated by transcriptional profiling of single cells

at multiple time points. SINCERITIES is based on the premise that

changes in the gene expression distribution of a transcription factor

in a given time window would cause a proportional change in the

transcriptional expression distributions of the target genes in the

next time window. The network inference involves numerically effi-

cient ridge regression problem. In comparison to network inference

algorithms for population average time series data (TSNI and

JUMP3) and to a tree-based machine learning algorithm (GENIE3),

SINCERITIES could provide significantly more accurate GRNs

based on AUROCs and AUPRs.
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