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ABSTRACT
In 2005, a chikungunya virus outbreak devastated the tropical island of Reunion,
infecting a third of the total population.Motivated by the Reunion Island case study, we
investigate the theoretic potential for two intervention measures under both voluntary
and mandatory protocols to control a vector-borne disease when there is risk of the
disease becoming endemic. The first measure uses insect repellent to prevent mosquito
bites, while the second involves emigrating to the neighboring Mauritius Island to
avoid infection. There is a threshold on the cost of using repellent above which both
voluntary and mandatory regimes find it optimal to forgo usage. Below that threshold,
mandatory usage protocols will eradicate the disease; however, voluntary adoption
leaves the disease at a small endemic level. Emigrating from the island to avoid infection
results in a tragedy-of-the-commons effect: while being potentially beneficial to specific
susceptible individuals, the remaining islanders paradoxically face a higher risk of
infection. Mandated relocation of susceptible individuals away from the epidemic is
viable only if the cost of this relocation is several magnitudes lower than the cost of
infection. Since this assumption is unlikely to hold for chikungunya, it is optimal to
discourage such emigration for the benefit of the entire population. An underlying
assumption about the conservation of human-vector encounter rates in mosquito
biting behavior informs our conclusions and may warrant additional experimental
verification.

Subjects Mathematical Biology, Epidemiology, Infectious Diseases
Keywords Chikungunya, Epidemiology, Game theory, Herd immunity, Nash equilibrium,
Reunion Island

INTRODUCTION
Reunion Island is a tropical island located in the Indian Ocean 500miles east ofMadagascar
and approximately 150 miles southwest of Mauritius. The island was devastated by a major
chikungunya outbreak in 2005–2006, when approximately 266 thousand of the 785
thousand inhabitants were infected, causing over 200 deaths (Yakob & Clements, 2013). In
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the aftermath of that outbreak, the chikungunya virus spread from Africa to Europe, USA,
and Australia, and although the incidence levels of this disease remain low, its potential to
cause future outbreaks in these areas is cause for concern. In this paper, we investigate the
viability of voluntary participation in personal protective measures (mosquito repellent
and emigration) against diseases like chikungunya on Reunion Island by constructing
a game-theoretic model in which individual strategic payoffs are compared against the
average population payoff.

Chikungunya virus (CHIKV) is an Alphavirus in the Togaviridae family, similar to
Dengue fever and Zika virus (Leao et al., 2018; Prow et al., 2018; Pile et al., 1999). It is
a vector-borne virus spread through bites by the females of Aedes aegypti and Aedes
albopictus mosquitoes. After a bite, there is a latency period for both humans and
mosquitoes: it can take between 2 to 6 days for symptoms to develop and for an individual
to become infectious (Fourie & Morrison, 1979). The major symptoms associated with
CHIKV are fever, rash, arthritis, headache, and nausea (Fourie & Morrison, 1979). The
defining characteristic of CHIKV is the persistence of arthritis for years after the initial
infection (Leao et al., 2018). A small percentage of people infected with CHIKV, however,
never develop symptoms of the disease (Darrigo, De Sant’Anna Carvalho & Machado,
2018). Humans are no longer infectious about a week and a half after the initial infection,
but may still be symptomatic. Recovered individuals acquire lifelong immunity from
future infections (Centers for Disease Control and Prevention, 2018b). There is no vaccine to
prevent or medicine to treat chikungunya virus (Centers for Disease Control and Prevention,
2018b). The most effective way to prevent infection from CHIKV is to prevent mosquito
bites, for example, by using insect repellent (Centers for Disease Control and Prevention,
2018a).

Chikungunya was first isolated in 1952–1953 in Tanzania (Robinson, 1955). The name
translates to the native term for ‘‘that which bends up’’ (Seneviratne, Gurugama & Perera,
2007). There were limited outbreaks between the initial discovery of the disease and
a worldwide outbreak that occurred in 2004–2005 (Darrigo, De Sant’Anna Carvalho &
Machado, 2018). This outbreak started in Kenya and spread to the surrounding islands
including Mauritius, Rodrigues, The Seychelles, Mayotte, Madagascar and Reunion
Island (Renault et al., 2012). From these islands, it spread to other regions of the world—
chikungunya virus is now present on every continent except Antarctica—most likely
carried by tourists. The disease impacted Reunion Island most severely: a third of the
population became infected, unusually severe forms were present, and the first occurrences
of maternal-neonatal transmission were documented (Borgherini et al., 2008). This severity
of impact may be attributed to an increase in travel between islands and the climate of the
region at the time of the epidemic (Borgherini et al., 2008; Thiberville et al., 2013).

While the severity of the Reunion chikungunya outbreak may seem like an isolated
event, vector-borne diseases such as malaria and dengue are becoming an increasingly
prevalent public health issue in today’s society. In the United States there has been a
23-fold increase of vector-borne disease cases in the past ten years (Rosenberg et al., 2018).
There are now 16 vector-borne diseases widely distributed in the United States, all of which
are resistant to control, and only one of these (Yellow Fever) has an FDA-approved vaccine
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(Rosenberg et al., 2018). Even though there are limited cases of CHIKV in the United States
and its territories, the disease is becoming more persistent: the number of national cases
and distribution are increasing, and the range of the mosquitoes that transmit CHIKV has
spread to 38 states as of 2016 (Rosenberg et al., 2018).

Due to the transmission patterns of mosquito-borne diseases and the lack of sufficient
vector control to eradicate such diseases, individuals often have to rely on voluntary
participation in personal protection measures. Unfortunately, individual self-interest
in protection against an infectious disease does not necessarily correspond to the desired
outcome for society (Galvani, Reluga & Chapman, 2007), namely eradication of the disease.
The effect of potentially selfish human behavior on the spread of infectious diseases
only recently begun to receive attention, forming a new field of behavioral epidemiology ;
seeManfredi & D’Onofrio (2013) for a review of behavioral epidemiology.

Originally designed for the field of economics (Von Neumann & Morgenstern, 1944),
game theory has since been used to model many biological phenomena (Maynard
Smith, 1982;Hofbauer & Sigmund, 1998; Cressman, 2003; Vincent & Brown, 2005; Broom &
Rychtář, 2013), including individual-level vaccination decisions (Bauch & Earn, 2004). In a
vaccination game, a selfish individual seeks to maximize its benefit, or rather to minimize
the potential loss resulting from either employing a potentially costly protective measure
or facing the consequences of the disease. As the likelihood of contracting the disease is
dependent upon the behavior of others within the at-risk population, the resulting strategic
interactions between individuals can be modeled using game theory. Game-theoretic
frameworks have been adopted to studying optimal individual vaccination strategies for
smallpox (Bauch, Galvani & Earn, 2003), influenza (Galvani, Reluga & Chapman, 2007;
Shim et al., 2012a), rubella (Shim, Kochin & Galvani, 2009), measles (Shim et al., 2012b),
toxoplasmosis (Sykes & Rychtář, 2015), Ebola (Brettin et al., 2018), cholera (Kobe et al.,
2018), meningitis (AMartinez, JMachado, E Sanchez, I Erovenko, 2019, unpublished data),
hepatitis B (Chouhan et al., 2020), monkeypox (Bankuru et al., 2020), poliomyelitis (Cheng
et al., 2020), and typhoid fever (Acosta-Alonzo et al., 2020). It has also been applied to other
personal protective measures such as insecticide-treated cattle (Crawford et al., 2015),
mosquito repellent (Dorsett et al., 2016), insecticide-treated bed nets (Broom, Rychtář
& Spears-Gill, 2016), clean water (Kobe et al., 2018), and clean injecting equipment (K
Scheckelhoff, A Ejaz, I Erovenko, 2019, unpublished data). For an extensive review of
behavior-linked vaccination models, seeWang et al. (2016).

In this paper, we investigate the potential effects of voluntary and government-mandated
participation in utilizing the insect repellent as a protectivemeasure against a disease such as
chikungunya on Reunion Island. We also analyze the effect of emigration to a neighboring
island (Mauritius) on the spread of chikungunya among the remaining population of
Reunion Island. We find that the latter protocol has a paradoxically worsening of outcomes
for the non-participating population potentially as a consequence of the non-responsiveness
in the mosquitoes feeding behavior to decreases in the human population relative to other
blood sources.
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METHODS
We adopt a version of the epidemiological model of the chikungunya outbreak on
Reunion Island by Yakob & Clements (2013) by adding population dynamics (birth
and death demographic processes) for both humans and mosquitoes and strategically-
linked parameters so that the disease potentially may establish itself endemically. This
assumption then permits us to use the framework of Dorsett et al. (2016), Amaku et al.
(2014), and Bauch & Earn (2004). All human inhabitants of the island (N ) are divided into
5 compartments: individuals susceptible to chikungunya (S); exposed individuals (E), who
had been bitten by an infected mosquito and acquired the disease; symptomatic infectious
individuals (I ), who developed the symptoms of the disease and became infectious to biting
mosquitoes; asymptomatic infectious individuals (Ia), who became infectious but did not
develop symptoms; and recovered individuals (R), who recovered from chikungunya and
acquired immunity. The mosquito population is divided into 3 compartments: susceptible
mosquitoes (X); exposed mosquitoes (Y ), who bit an infected human and were exposed to
the pathogen; and infectious mosquitoes (Z ), who may infect humans by biting susceptible
individuals. We did not consider in this model the full life-cycle of mosquitoes, such as egg
and larval stages, because we did not incorporate mosquito population control as one of
the measures to fight chikungunya.

New individuals enter the susceptible part of the population at a rate31 due to birth or
immigration; there is a natural per capita human mortality µ1. Similarly, new mosquitoes
are recruited into the susceptible compartment at a rate 32, and there is a natural per
capita mosquito mortality µ2. We disregard the human disease-induced mortality because
it is low, and doing so allows us to compute endemic equilibria analytically.

Susceptible humans who are bitten by infectious mosquitoes become exposed. The force
of infection f1, which is the rate at which susceptible individuals move to the exposed class,
depends on the density of susceptible humans S/N (i.e., the probability that an infectious
mosquito bites a susceptible individual), the number of infectious mosquitoes Z , and
the mosquito-to-human transmission coefficient β1. We assume that mosquitoes have a
consistent average number of encounters with humans over a given time span, and that
repellent usage directly decreases the force of infection by deterring biting upon encounter.
Similarly, susceptible mosquitoes who bite infectious humans become exposed. The force
of infection f2, which is the rate at which susceptible mosquitoes move to the exposed
compartment, depends on the the density of infectious humans (I + Ia)/N (i.e., the
probability that a mosquito bites an infectious individual), the number of susceptible
mosquitoes X , and the human-to-mosquito transmission coefficient β2.

Exposed humans become infectious (after a latency period) at a rate λ1; a proportion
φ of infectious individuals develop symptoms of the disease. Exposed mosquitoes become
infectious at a rate λ2.

Infectious humans (both symptomatic and asymptomatic) recover at a rate γ and
acquire immunity from future infections. The lifespan of a mosquito is too short to
recover; an infectious mosquito remains as such until it dies.
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Figure 1 The compartment model of chikungunya virus transmission on Reunion Island. The human
population is divided into five compartments: susceptible (S), exposed (E), symptomatic infectious (I ),
asymptomatic infectious (Ia), and recovered (R). The mosquito population is divided into three compart-
ments: susceptible (X), exposed (Y ), and infectious (Z ). The forces of infection on human and mosquito
populations, f1 and f2, respectively, are population frequency-dependent functions of the state variables.

Full-size DOI: 10.7717/peerj.10151/fig-1

Table 1 Summary of the model parameters.

Symbol Meaning Value Source

β0
1 Mosquito-to-human transmission 0.37 Dumont, Chiroleu & Domerg (2008)
β2 Human-to-mosquito transmission 0.37 Dumont, Chiroleu & Domerg (2008)
γ Human recovery rate 0.14 Yakob & Clements (2013)
31 Human birth rate 3.58 Assumed
32 Mosquito birth rate 4.76×103 Assumed
λ1 Rate of humans becoming infectious 0.5 Yakob & Clements (2013)
λ2 Rate of mosquitoes becoming infectious 0.5 Yakob & Clements (2013)
µ1 Human natural death rate 3.58×10−5 Assumed
µ2 Mosquito natural death rate 0.05 Yakob & Clements (2013)
φ Proportion of hosts that develop

symptoms
0.97 Yakob & Clements (2013)

Figure 1 shows a diagram for the chikungunya transmission model on Reunion Island.
The parameters of the epidemiological model are summarized in Table 1. The table includes
the baseline value of the mosquito-to-human transmission parameter, denoted by β0

1 . Later
this parameter will be affected by an intervention measure (insect repellent), and hence it
will become a function of the level of insect repellent usage, given by (7).

The dynamics of the compartment model in Fig. 1 is described by the following system
of differential equations:

dS
dt
=31−

β1SZ
N
−µ1S,
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dE
dt
=
β1SZ
N
−λ1E−µ1E,

dI
dt
=φλ1E−γ I−µ1I ,

dIa
dt
= (1−φ)λ1E−γ Ia−µ1Ia, (1)

dR
dt
= γ (I+ Ia)−µ1R,

dX
dt
=32−

β2X(I+ Ia)
N

−µ2X ,

dY
dt
=
β2X(I+ Ia)

N
−λ2Y −µ2Y , and

dZ
dt
= λ2Y −µ2Z .

The disease-free equilibrium (DFE) of this system is given by(
S0,E0,I 0,I 0a ,R

0,X 0,Y 0,Z 0)
=

(
31

µ1
,0,0,0,0,

32

µ2
,0,0

)
. (2)

To compute the basic reproduction number R0, we use the next-generation matrix
approach (Van den Driessche & Watmough, 2002). To simplify this computation, we
temporarily combined the symptomatic and asymptomatic infectious compartments
into one infectious compartment I + Ia: individuals in both I and Ia compartments have
identical contributions to the dynamics of chikungunya. We order the compartments that
contribute to new infections as follows: E , I+ Ia, Y , and Z . Then the vector of the rates of
appearance of new infections in these four compartments F and the vector of the rates of
transfer of existing infections between these four compartments V are given by

F =


β1SZ
N
0

β2X(I+ Ia)
N
0

 and V =


λ1E+µ1E

−λ1E+γ (I+ Ia)+µ1(I+ Ia)
λ2Y +µ2Y
−λ2Y +µ2Z

. (3)

The matrices F and V are the Jacobians of F and V respectively, evaluated at DFE; they
are given by

F =


0 0 0 β1

0 0 0 0

0
32β2µ1

31µ2
0 0

0 0 0 0

 and V =


λ1+µ1 0 0 0
−λ1 γ +µ1 0 0
0 0 λ2+µ2 0
0 0 −λ2 µ2

. (4)

The basic reproduction number is the spectral radius of the matrix FV−1; it is given by

R0=
1
µ2

√
32β1β2µ1λ1λ2

31(γ +µ1)(λ1+µ1)(λ2+µ2)
. (5)
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If R0> 1, then the system converges to the endemic equilibrium (EE) given by

S∗=
31− (λ1+µ1)E∗

µ1
,

E∗=
3132β1β2µ1λ1λ2−3

2
1µ

2
2(λ1+µ1)(λ2+µ2)(γ +µ1)

32β1β2µ1λ1λ2(λ1+µ1)+31β2µ1µ2λ1(λ1+µ1)(λ2+µ2)
,

I ∗=
φλ1E∗

γ +µ1
,

I ∗a =
(1−φ)λ1E∗

γ +µ1
,

R∗=
γ λ1E∗

µ1(γ +µ1)
, (6)

X∗=
3132(γ +µ1)

β2µ1λ1E∗+31µ2(γ +µ1)
,

Y ∗=
32β2µ1λ1E∗

(λ2+µ2)(β2µ1λ1E∗+31µ2(γ +µ1))
, and

Z∗=
32β2µ1λ1λ2E∗

µ2(λ2+µ2)(β2µ1λ1E∗+31µ2(γ +µ1))
.

In the game-theoretic models constructed in the next section, we will be assuming that
the system has reached an endemic equilibrium. In particular, we will use the values from
(6) for relevant compartment sizes.

RESULTS
We consider two intervention measures to fight the chikungunya outbreak on Reunion
Island: (1) using insect repellent to prevent mosquito bites; and (2) emigrating to the
neighboring Mauritius Island.

Optimal levels of voluntary insect repellent usage
We adopt a modeling approach of Bauch & Earn (2004) and Dorsett et al. (2016). The
strategy of an individual is the proportion of the day r ∈ [0,1] the individual is protected
from mosquito bites; the protection is granted by insect repellent. We assume that the
repellent provides complete protection from mosquito bites while it is active. Since
mosquitoes cannot bites humans while they are protected by the insect repellent, the
mosquito-to-human transmission coefficient β1 becomes a function of r . If no protection
is used (r = 0), then β1(0) is at its base value β0

1 (given in Table 1). If humans are protected
at all times (r = 1), then mosquitoes cannot bite these humans at all, and hence they cannot
infect humans: β1(1)= 0. We therefore assume that the mosquito-to-human transmission
coefficient is a linear function of r given by

β1=β
0
1 (1− r). (7)

If all susceptible humans in the population adopt the same strategy rpop, then the basic
reproduction number becomes a function of rpop by substituting the expression (7) for
β1 into (5). The graph of the basic reproduction number as a function of the population
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Figure 2 The graph of the basic reproduction number as a function of the population protection level
rpop. The basic reproduction number is at its maximum value—given by (5)—when no insect repellent is
used by susceptible individuals (r = 0), and it becomes zero if the population employs complete protec-
tion from mosquito bites (r = 1). The threshold for disease eradication (R0 = 1) is achieved at the herd
immunity protection level rHI.

Full-size DOI: 10.7717/peerj.10151/fig-2

strategy rpop is shown in Fig. 2. The herd immunity protection level rHI is the population
protection level that reaches the threshold R0= 1 for disease eradication.

We define the utility function (expected payoff) of a susceptible individual using strategy
r in a population that adopted strategy rpop as

E(r,rpop)=−π(r,rpop)Ci− rCp, (8)

where Ci is the cost of infection, Cp is the cost of complete protection through insect
repellent, andπ(r,rpop) is the probability of infection. The latter depends on the individual’s
strategy r because it determines how often mosquitoes may bite the individual, and on the
population strategy rpop because it affects the prevalence of the disease (e.g., the number
of infected mosquitoes). The outcome of a game does not change if the utility function is
scaled, so we divide the right-hand side of (8) by Ci to obtain

E(r,rpop)=−π(r,rpop)− rC, (9)

where C =Cp/Ci is the cost of complete protection relative to the cost of infection.
We next compute the probability of getting infected and becoming symptomatic

as the transition probability from the susceptible compartment S to the symptomatic
infectious compartment I . This probability is the product of the probability that a
susceptible individual becomes exposed f1/(µ1+ f1) multiplied by the probability that
an exposed individual becomes symptomatically infected φλ1/(µ1+φλ1+ (1−φ)λ1)=
φλ1/(µ1+λ1):

π(r,rpop)=
(

f1(r,rpop)
µ1+ f1(r,rpop)

)(
φλ1

µ1+λ1

)
, (10)
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where

f1(r,rpop)=β0
1 (1− r)

Z∗

N ∗
(11)

is the force of infection, which depends on the individual protection level r and on the
population protection level rpop. The individual protection level r determines the rate at
which mosquitoes bite the individual β0

1 (1−r). The population protection level rpop affects
the prevalence of the disease in the population; it determines the size of the compartment
Z∗ via the substitution of the expression β0

1 (1− rpop) for β1 into (6). In particular, Z∗ and
N ∗ do not depend on the individual protection level r .

To find the Nash equilibrium population protection level, we attempt to maximize the
utility function (9) of a focal individual. Observe that

f1(r,rpop)= (1− r)f1(0,rpop), (12)

and hence
∂

∂r
f1(r,rpop)=−f1(0,rpop). (13)

It follows that

∂2

∂r2
E(r,rpop)=

2µ1f1(0,rpop)2

(µ1+ f1(r,rpop))3
> 0. (14)

Consequently, the utility function is a convex function of r , and thus it attains its maximum
value at one of the endpoints: r = 0 or r = 1.

This conclusion can be interpreted as follows. If the population repellent usage is
sufficiently high, then the probability of getting infected is very low. A focal individual
would rather bypass the potentially costly preventive measure and face the low morbidity
risk instead. Hence individuals may improve their payoff by deviating from the population
strategy (they should stop using repellent). On the other hand, if the population repellent
usage is low, then the probability of getting infected is too high, and a focal individual
should prefer to pay the cost of complete protection rather than face the highmorbidity risk.
In this case, individuals may also improve their payoff by deviating from the population
strategy (they should use repellent 100% of the time).

So, if the population repellent usage is too high, then individuals would do better if they
stop using repellent, and hence the population repellent usage will decrease. Conversely,
if the population repellent usage is too low, then individuals would do better if they start
using repellent 100% of the time, and hence the population repellent usage will increase. If
the population repellent usage is ‘‘just right’’ (Nash equilibrium), then individuals cannot
improve their payoffs by using repellent either less frequently or more frequently. We note
that there is a presumption of the population-wide adoption of treatment rates in our
model that is common to ESS-modeling; however, in situations such as (14), there is a
potential implication that the population should in fact separate into distinct groups with
different adoption rates. As it goes beyond the framework discussed here, we leave that
investigation for future research.
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Figure 3 (A) The graph of the optimal level of population repellent usage rNE as a function of the rela-
tive cost of protection. The optimal repellent usage reaches the herd immunity level only when C = 0.
Everyone stops using repellent if its relative cost is too high: larger than the threshold value Cmax. (B)
The graph of the basic reproduction number computed at the optimal population repellent usage level
rNE as a function of the relative cost of protection. When C = 0, the optimal protection level is equal
to the herd immunity threshold, so R0 = 1. When the relative cost of protection exceeds the threshold
value Cmax, the population stops using repellent, and the basic reproduction number reaches its maximum
value.

Full-size DOI: 10.7717/peerj.10151/fig-3

The Nash equilibrium protection level of the population rNE is thus a solution to the
equation

E(0,rNE)= E(1,rNE) (15)

or
f1(0,rNE)

µ1+ f1(0,rNE)
φλ1

µ1+λ1
=C . (16)

The graph of the optimal (Nash equilibrium) repellent usage as a function of the relative
cost of protection C is shown in Fig. 3A. The optimal repellent usage rNE reaches the herd
immunity rHI level only when the cost of the protective measure relative to the cost of
chikungunya infection is negligible (i.e., zero mathematically). The optimal repellent usage
remains very close to the herd immunity level for a range of values of the relative cost C ,
and then drops off sharply. Once the relative cost of protection becomes too large (Cmax),
then everyone stops using insect repellent because its high cost forces individuals to prefer
to risk the cost of infection.

Optimal levels of mandatory insect repellent usage
We now consider a scenario where an organization (e.g., the government) enforces the
use of insect repellent in the population to fight chikungunya. The organization must
balance the cost of prevention of the disease in the population and the cost of treatment of
symptomatically infected individuals. On the one hand, every individual who utilizes insect
repellent 100% of the time results in a cost Cp (same as the cost of voluntary complete
protection). On the other hand, every symptomatically infected individual results in a cost
Ci.
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Figure 4 The graphs of the expected payoff function E given by the Eq. (18). (A) C = 0.0001, (B) C =
0.01. The graphs show two qualitatively different outcomes. If C < 0.00024 then mandating repellent us-
age necessary to reach the herd immunity threshold is most effective. If C > 0.00024 then no insect repel-
lent should be used, and all efforts should be devoted to treating infected individuals.

Full-size DOI: 10.7717/peerj.10151/fig-4

The goal of the mandating organization is to find the repellent usage level for the
population rpop ∈ [0,1] so that the expected payoff (negative of the total cost)

E(rpop)=−CiI ∗− rpopCpS∗ (17)

is maximal. (Note that the equilibrium values I ∗ and S∗ depend on rpop.) Here we analyze
the case where the mandating organization addresses mosquito-to-human transmission
by advising susceptible individuals to spray themselves with insect repellent. One may also
consider an alternative scenario where the infectious individuals are using insect repellent
to reduce the human-to-mosquito transmission.

As before, we scale the payoff function and consider

E(rpop)=−I ∗− rpopCS∗, (18)

where C =Cp/Ci is the relative cost of protection. The graphs of this function for different
values of C are shown in Fig. 4. There are two possible outcomes: (1) the susceptible
individuals should adopt the repellent usage level equal to that of the herd immunity
threshold rHI, leading to the eradication of the disease; or (2) no insect repellent should be
used, and it is more cost-effective to treat symptomatically infected individuals only. The
first outcome occurs for sufficiently low values of C (less than 0.00024), and the second
outcome occurs for greater values of C (greater than 0.00024); the threshold value of C
separating the two outcomes was found numerically.

Optimal levels of voluntary emigration
We are going to operate under the assumption that the chikungunya outbreak on Reunion
Island did not affect the neighboring island of Mauritius Island, located 140 miles to the
north-east of Reunion. Susceptible individuals—and only susceptible individuals, perhaps
identified through a screening or quarantine procedure—may elect to emigrate from
Reunion to Mauritius to protect themselves from the outbreak. To model the emigration
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Figure 5 The graph of R0 as a function of ω. If susceptible individuals emigrate from Reunion Island,
then the remaining inhabitants face an increased spread of the disease.

Full-size DOI: 10.7717/peerj.10151/fig-5

as a potential personal protection measure against chikungunya, we allow residents of
Reunion Island to leave the susceptible compartment of the epidemiological model at
an emigration rate ω. This modification to (1) replaces the first equation describing the
change in the susceptible population with
dS
dt
=31−

β1SZ
N
−µ1S−ωS. (19)

The DFE of the modified system is given by

(S0,E0,I 0,I 0a ,R
0,X 0,Y 0,Z 0)=

(
31

µ1+ω
,0,0,0,0,

32

µ2
,0,0

)
, (20)

and the corresponding basic reproduction number of the disease is

R0=
1
µ2

√
32β1β2λ1λ2(µ1+ω)

31(γ +µ1)(λ1+µ1)(λ2+µ2)
. (21)

The graph of the basic reproduction number as a function of the emigration rate ω
is shown in Fig. 5. It is an increasing function of ω, and hence emigrating susceptible
individuals paradoxically make it worse for the remaining susceptible population. When
the fresh blood supply is reduced due to emigration, susceptible mosquitoes are more
likely to prey upon infectious humans, increasing the disease prevalence in the vector
population. Consequently, the remaining susceptible human population is at an increased
risk of contracting the disease from a mosquito bite. It follows that, while being potentially
beneficial to specific individuals, voluntary emigration may result in a tragedy-of-the-
commons effect for the remaining islanders.

To further investigate the effect of voluntary emigration on the chikungunya epidemic
and whether (selfish) susceptible individuals should emigrate, we compute the EE values
of all compartments in the model with emigration:

N ∗=
31µ1+ω(λ1+µ1)E∗

µ1(µ1+ω)
,
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S∗=
31− (λ1+µ1)E∗

µ1+ω
,

I ∗=
φλ1E∗

γ +µ1
,

I ∗a =
(1−φ)λ1E∗

γ +µ1
,

R∗=
γ λ1E∗

µ1(γ +µ1)
, (22)

X∗=
32(γ +µ1)(31µ1+ω(λ1+µ1)E∗)

d+µ2(γ +µ1)(31µ1+ω(λ1+µ1)E∗)
,

Y ∗=
32β2µ1λ1(µ1+ω)E∗

(λ2+µ2)[d+31µ1µ2(γ +µ1)+µ2ω(λ1+µ1)(γ +µ1)E∗]
, and

Z∗=
32β2µ1λ1λ2(µ1+ω)E∗

µ2(λ2+µ2)[d+31µ1µ2(γ +µ1)+µ2ω(λ1+µ1)(γ +µ1)E∗]
,

where

d =β2λ1µ1(µ1+ω)E∗, (23)

and E∗ is the solution to the quadratic equation

aE2
+bE+ c = 0 (24)

with coefficients

a=−µ2ω(λ1+µ1)2(λ2+µ2)[β2µ1λ1(µ1+ω)+µ2ω(λ1+µ1)(γ +µ1)],

b=−32β1β2µ
2
1λ1λ2(λ1+µ1)(µ1+ω)−231µ1µ

2
2ω(λ1+µ1)2(λ2+µ2)(γ +µ1)

−31β2µ
2
1µ2λ1(λ1+µ1)(λ2+µ2)(µ1+ω), and (25)

c =3132β1β2µ
2
1λ1λ2(µ2+ω)−32

1µ
2
1µ

2
2(λ1+µ1)(λ2+µ2)(γ +µ1).

The biologically meaningful root of this equation is given by

E∗=
−b−

√
b2−4ac
2a

. (26)

Figure 6 shows the graphs of the number and proportion of symptomatically infectious
individuals in the population as functions of the emigration rate ω. As more individuals
leave the island, the overall population level declines, and hence there are fewer infected
individuals. However, the infection spreads faster among the remaining inhabitants,
resulting in a greater proportion of infected individuals in the population. The proportion of
symptomatically infectious individuals grows with the migration rate, but it asymptotically
approaches the value

lim
ω→∞

I ∗

N ∗
=

φµ1λ1

(γ +µ1)(λ1+µ1)
. (27)

We next consider a game-theoretic model of individual migration decisions. Suppose
that the population adopted the emigration rate ωpop. A focal susceptible individual is
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Figure 6 The graphs of the (A) number and (B) proportion of symptomatically infectious individuals
in the population as functions of the emigration rate ω. Increased migration levels result in fewer infec-
tious individuals overall but a greater proportion of infectious individuals in the population.

Full-size DOI: 10.7717/peerj.10151/fig-6

presented with a choice to either migrate or not migrate. Each of the two strategic choices
carries a corresponding payoff: Em for migrate and Enm for not migrate, given by

Em(ωpop) =−Cb−ωpopCs, and

Enm(ωpop) =−π(ωpop)Ci, (28)

where Cb is the base (fixed) cost of migration, Cs is the scaling cost of migration, Ci is the
cost of the (symptomatic) chikungunya infection, and π(ωpop) is the probability of getting
infected given the population emigration rate ωpop. We assume that the cost of emigration
is an increasing function of the migration rate because of the limited immigration potential
of Mauritius: the more individuals migrate to Mauritius, the harder it becomes to find
housing and jobs. For simplicity, we model the increasing emigration cost as a linear
function of the migration rate. The probability of getting infected and incurring the cost
of a symptomatic chikungunya infection if remaining on Reunion Island is the transition
probability from the susceptible class S to the symptomatically infectious class I :

π(ωpop)=
f1(ωpop)

µ1+ f1(ωpop)
φλ1

µ1+λ1
. (29)

This probability is an increasing function of the emigration rate because each of the
remaining susceptible individuals faces a higher risk of infection (cf. Fig. 5); the graph is
shown in Fig. 7.

To find conditions when a focal susceptible individual should emigrate to Mauritius or
remain on Reunion, we scale the payoffs in Eq. (28) by 1/Ci and obtain

Em=−C̃b−ωpopC̃s, and

Enm=−π(ωpop), (30)

where C̃b and C̃s are relative base and scaling costs of emigration, respectively. A susceptible
individual should emigrate when the relative cost of doing so is less than the probability of
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Figure 7 The probability of symptomatic chikungunya infection for a susceptible individual on Re-
union Island is increasing with the emigration rate ω.

Full-size DOI: 10.7717/peerj.10151/fig-7

getting infected: C̃b+ωpopC̃s<π(ωpop), and the individual should remain on the island
otherwise. The regions in the (C̃b,ω)-parameter space corresponding to the best choice
for a focal individual for several values of C̃s are shown in Fig. 8. If the scaling cost of
emigration Cs is negligible (i.e., the cost of emigration does not depend on the number
of emigrating individuals), then the best strategy of a susceptible individual is to emigrate
as long as the relative base cost of emigration C̃b is sufficiently small (Fig. 8A). On the
other hand, as the relative scaling cost of emigration C̃s grows, the individual’s decision to
emigrate starts to depend on the emigration decisions of other individuals (Figs. 8B–8C),
until it becomes unprofitable to emigrate regardless of the relative base cost of emigration
if the emigration rate is too high (Fig. 8D).

Optimal levels of mandatory emigration
Finally, we consider the potential impacts on the chikungunya epidemic on Reunion
Island of coordinated emigration efforts. A mandating organization attempts to minimize
overall costs, which are comprised of the cost of treatment of symptomatically infected
individuals and the relocation costs of emigrating individuals. To estimate the number of
emigrating susceptible individuals, we consider the difference between the total population
size at equilibrium without emigration (N ∗ =31/µ1) and the total population size at
equilibrium given the population migration rate ω (this expression is given in the first
equation of (22)); we denote this difference by N ∗ω .

The payoff of the emigration policy with migration rate ω is given by

E(ω)=−I ∗− C̃mN ∗ω, (31)

where C̃m =Cm/Ci is the cost of migration relative to the cost of infection. The graphs
of this function for several values of C̃m are shown in Fig. 9. There are three qualitatively
different outcomes:
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Figure 8 The regions in the (C̃b,ω)-parameter space showing whether a focal susceptible individual
should emigrate to Mauritius or remain on Reunion. Color code: white—emigrate, gray—stay. (A) C̃s =

0, (B) C̃s= 0.1, (C) C̃s= 1, (D) C̃s= 10.
Full-size DOI: 10.7717/peerj.10151/fig-8

1. For very low relative migration cost (C̃m≤ 0.00022), higher migration rates result in
smallest overall costs; however, the near-optimal costs are quickly achieved by small
values of migration rate (ω= 0.01)—see Fig. 9A.

2. There is a small interval of the relative migration cost values (0.00023≤ C̃m≤ 0.00025)
where the optimal cost is achieved in the interior for very small values of the migration
rate (ω< 0.002)—see Figs. 9B and 9C.

3. For all sufficiently large values of the relative migration cost (C̃m≥ 0.00026), it is best
not to allow individuals to emigrate from the island—see Fig. 9D.
In practice, however, the cost of emigration (such as relocation from Reunion to

Mauritius) is usually comparable to or higher than the cost of the symptomatic chikungunya
infection. Therefore, the scenario shown in Fig. 9D is the most realistic one: it is best not
to allow susceptible individuals to leave the island during the outbreak.

DISCUSSION
We investigated potential implications of both voluntary and mandatory intervention
measures to fight the chikungunya outbreak on Reunion Island. Susceptible individuals
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Figure 9 The overall cost of the mandated emigration policy as a function of the migration rate ω. (A)
C̃m= 0.00022, (B) C̃m= 0.00023, (C) C̃m= 0.00024, (d) C̃m= 0.00026.

Full-size DOI: 10.7717/peerj.10151/fig-9

may either prevent the infection by using insect repellent and hence reduce the frequency
of mosquito bites, or leave Reunion Island and emigrate to neighboring Mauritius. We
adopted a version of a previous epidemiological model of the chikungunya transmission
on Reunion Island by Yakob & Clements (2013). The epidemiological model informed the
payoff functions in the game-theoretic models of individual and centralized decisions on
the level of adoption of the protective measures. We found that the two protocols resulted
in qualitatively different predictions concerning optimal allocations, with the lattermeasure
creating an additional hazard for non-participants.

Voluntary participation in the two interventionmeasures produced opposite population-
level effects. The more susceptible individuals spray themselves with insect repellent, the
less likely the infectious mosquitoes generate new human infections before they die.
Consequently, higher adoption levels of insect repellent usage in the population resulted
in lower basic reproduction number values for the disease. Individuals using repellent
provide (near) herd-immunity-effect benefits to the entire population. In contrast, if
susceptible individuals vacated the island, then susceptible mosquitoes were more likely to
bite infectious humans as a percentage of the remaining population, thus increasing the
disease prevalence among mosquitoes. The remaining susceptible individuals subsequently
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faced an increased risk of contracting the infection from a mosquito bite. Increased
migration levels resulted in drastically elevated basic reproduction number values. Thus,
the impact of voluntary emigration is similar to the tragedy-of-the-commons effect: while
being potentially beneficial to specific individuals, it hurts the remaining islanders.

The mandated repellent usage protocol resulted in the same outcome as the voluntary
(i.e., selfishly rational) compliance scenario if the cost of the preventive measure relative to
the cost of the disease was too high: it was best to bypass the repellent usage altogether. But
if the relative cost of protection was sufficiently low, so that repellent usage was warranted,
then the two scenarios effected different outcomes. In the voluntary compliance case,
the population repellent usage fell short—albeit not by much—of the herd immunity
threshold. In the mandated protocol case, reaching the herd immunity usage level and thus
eradicating the disease was most effective.

That voluntary adoption of preventative measures against an infectious disease falls
short of the herd immunity threshold has also been observed in other studies (Geoffard
& Philipson, 1997; Bauch & Earn, 2004; Dorsett et al., 2016). Yet looking at a mandated
repellent usage scenario revealed that a mandatory protocol might have eliminated the
epidemic if the relative cost of the preventive measure was sufficiently low.

Mandatory emigration from Reunion Island demonstrated that this preventive measure
made sense for the public benefit only when the cost of relocation was significantly lower
than the public cost of infection. Since this mathematical assumption is not likely to hold in
practice, the model predicted that it was best to avoid migration of susceptible individuals
from the island. The potentially high cost of relocating susceptible individuals away from
the epidemic was not compensated by the minimal decrease in the number of infected
individuals.

The qualitative differences in optimal behavior under the two alternative treatment
protocols invite further examination of our model’s behavior and assumptions. Both
evacuation/emigration of the human populace and the use of repellent reduce the pool
of potential blood hosts for the mosquito population; however, they produce contrasting
effects on the force of infection. A base assumption in the model is that each insect has a
consistent average number of encounters with humans over a given time span. Repellent
usage directly decreases the force of infection by deterring biting upon encounter—it
is this feature of ‘‘wasted’’ encounters that permits the development of herd immunity.
In contrast, reduction in the size of the standing human population elevates the force
of infection by increasing the number of encounters an individual human experiences.
Secondarily, this results in increased prevalence of the disease in the vector-population
as their blood hosts are more likely to be infected. We hypothesize that distinct protocol
results depend upon the presence of (1) a distinct vector population; (2) an assumption of
constant predation encounters for vectors; (3) the proportional allocation of encounters
across humans; (4) an inability of vectors to pre-judge encounters and thereby shift towards
more palatable hosts; and (5) a secondary food source to support constant recruitment
of new vectors. An experimental study may be warranted to verify the validity of our
assumptions. We also propose a followup study to this paper that focuses specifically on
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the dynamic analysis of the force of infection as these assumptions are introduced or
removed.

CONCLUSIONS
There are several additional directions in which our model can be improved. First, we
are assuming that individuals possess complete information regarding the prevalence of
the disease and the costs of protection relative to infection. But individuals rarely have
access to the exact disease prevalence data, and hence they may only guess the relevant
numbers. Second, the cost of intervention (such as using insect repellent) and the cost of
the disease must be estimated individually. These costs include both direct costs such as
paying for repellent or medical treatment, and indirect costs such as potentially harmful
side effects of the chemicals in repellent or morbidity risks of the infection. Additionally,
different individuals may have various opinions about the risk of using repellent or getting
infected with chikungunya virus. Building these uncertainties into the model should allow
a broader outlook at different strategies to combat such outbreaks.

Moreover, our model assumes that the population has reached an equilibrium with
respect to the disease dynamics. But reaching this equilibrium usually occurs on a different
timescale compared to individual preventive actions. For example, individuals could be
more likely to participate in preventive efforts when the epidemic is at its peak rather
then when the disease reached the endemic state. A dynamic model where susceptible
individuals inform their preventive decisions on the current state of the prevalence of the
disease which, in turn, affects the dynamics of the disease transmission, should present a
more realistic analysis of selfish individual decisions to prevent the infection.
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