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Abstract

In survival analysis, researchers often encounter multivariate survival time data, in which failure 

times are correlated even in the presence of model covariates. It is argued that because 

observations are clustered by unobserved heterogeneity, the application of standard survival 

models can result in biased parameter estimates and erroneous model-based predictions. In this 

article, the author describes and compares four methods handling unobserved heterogeneity in 

survival analysis: the Andersen-Gill approach, the robust sandwich variance estimator, the hazard 

model with individual frailty, and the retransformation method. An empirical analysis provides 

strong evidence that in the presence of strong unobserved heterogeneity, the application of a 

standard survival model can yield equally robust parameter estimates and the likelihood ratio 

statistic as does a corresponding model adding an additional parameter for random effects. When 

predicting the survival function, however, a standard model on multivariate survival time data can 

result in serious prediction bias. The retransformation method is effective to derive an adjustment 

factor for correctly predicting the survival function.

Keywords

Clusters; Correlated data; Hazard rate models; Survival analysis; Unobserved; Heterogeneity

Introduction

Most regression models are performed by assuming conditional independence of 

observations in the presence of specified model parameters. With regard to survival data, an 

individual’s event time T is generally assumed to follow a univariate distribution, with 

heterogeneity of event occurrences primarily accounted for by the effect of a number of 

measurable individual or contextual factors [1–6]. In certain circumstances, however, failure 
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times are correlated even in the presence of specified model parameters, so that the 

independence hypothesis can be violated. Such internally clustered survival data are 

generally referred to as survival time data with unobserved heterogeneity. Empirical 

examples of the multivariate survival data structure include repeated events [1,7], twin 

survival patterns [8,9], the occurrence of vision loss in the left and right eyes [10], parental 

history of a given disease on the incidence in the offspring [11], and mortality of married 

couples at older ages [12]. Because observations may be clustered by unobserved 

heterogeneity, the application of standard survival models can result in biased parameter 

estimates and an erroneous model-based prediction.

Over the years, statisticians and other quantitative methodologists have developed a variety 

of statistical models to handle survival time data with unobserved heterogeneity. 

Nevertheless, there is a lack of consensus regarding how to apply these survival models in 

different situations. Most of the survival models on unobserved heterogeneity are built upon 

biomedical settings characterized by the randomized clinical trial design with small sample 

size or by a lack of measureable predictors on survival processes. As a result, these 

methodologically advanced techniques are relatively unfamiliar to researchers of other 

disciplines who base their analyses on observational data. For example, given the 

complexity of social events, social scientists often perform regression analysis in the context 

of a conceptual model, specifying various causal associations as guided by existing theories 

or specific research interests. Large-scale survey data are regularly collected and used in 

empirical analyses to ensure the statistical power in constructing and estimating a complex 

causal model. Given such a unique perspective, techniques borrowed from biostatistics must 

be verified, evaluated, and modified before they can be utilized effectively in those applied 

sciences. The statistical models handling survival data with unobserved heterogeneity are no 

exception.

In this article, four families of regression modeling on survival time data with unobserved 

heterogeneity are described and compared: the Andersen and Gill [13] approach, the robust 

sandwich variance estimator [14], the hazard model with individual frailty [15,16], and the 

retransformation method [17]. Other survival models in this regard are more or less the 

extensions of the above four families. The focus of this study is placed upon the 

applicability of these survival models in analyzing large-scale survey data. For this reason, 

an empirical illustration is provided on the application of the aforementioned survival 

models, using data of a large-scale longitudinal, multidisciplinary, and U.S. population-

based survey.

Multivariate Survival and Hazard Functions

In the multivariate survival data, lifetime variables T1, T2, …․, Tq are associated within a 

specific level-2 unit i with q ≥ 2. According to probability theory, the multivariate 

cumulative distribution function (c.d.f.) over a series of time (t1, …․, tq), denoted by F(t1, 

…․, tq), is

(1)
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Defined as the probability that no event occurs from time 0 to time series (t1, …․, tq), the 

multivariate survival function, denoted by S(t1, …․, tq), is

(2)

It may be mentioned that when q>1, F and S are no longer complementary of each other.

Likewise, the multivariate density function, given its intimate association with the survival 

function, is given by

(3)

The marginal hazard functions at time t for q members of a given cluster, denoted by {λ1(t), 

…․, λq(t)}, are given by

(4)

The hazard rates for the members of a cluster are associated because they share some 

common characteristic. Therefore, it is plausible to assume that for those clustered members, 

one’s failure time predicts that of another, and so is the reverse. Given this assumption, a 

common random effect within a cluster, regularly denoted by a multiplicative term θ, can be 

specified to indicate the extent to which {T1, …․, Tq} are associated. Varying over clusters, 

θ is a random effect between clusters, but it is fixed within a cluster. If θ=1 within a cluster, 

the marginal hazard rates {λ1(t), …․, λq(t)} are independent of each other thus suggesting 

the absence of an association between {T1, …․, Tq}. If θ>1, the failure times for the q 

members are positively associated; and neglect of this term can lead to biased parameter 

estimates on the hazard rate due to the violation of the independence hypothesis. When the 

condition θ>1 is considered in a statistical model, observations within the cluster are thought 

to be conditionally independent, so that more efficient parameter estimates can be derived. 

The scenario θ<1 is a condition that rarely occurs in reality, so that it is not discussed in this 

study.

Assuming that all members of a given cluster share the same θ, then this within-cluster fixed 

effect can be factored out from the specification of multivariate processes. For example, the 

multivariate survival function can be mathematically written by

(5)

In Equation (5), the joint survival function is simply expressed as the product of q marginal 

survival functions multiplied by θ. As a consequence, the correlation of any two survival 

times within the cluster is under control if θ is known.

Liu Page 3

J Biom Biostat. Author manuscript; available in PMC 2014 December 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In the multivariate regression analysis, much of the between-clusters random effect θ is 

statistically addressed by specifying theoretically related covariates. More technically, θ can 

be parameterized by a parameter vector θ. If the elements specified in θ can fundamentally 

explain the association among survival times {T1, …․, Tq}, there is no sufficient space 

remaining for supporting further parameterization in residuals. Consequently, the baseline 

hazard rates are conditionally independent thus can be viewed as following a univariate 

distribution. Many researchers contend, however, that the hazard rates for some members 

may be associated because they share some genetically common but unobservable 

characteristic. If observed covariates do not considerably reflect the information of such 

unobserved factors, the parameter estimates can be statistically inefficient and inconsistent.

Andersen-Gill Model

Given flexibility of the counting process formulation and the powerful martingale theory 

[1,4], counting processes are used in much of the literature of statistical modeling on 

survival time data with unobserved heterogeneity. In this system, the hazard function for a 

level-1 unit j at time t, given an underlying hazard function λ0, is

(6)

where β is a M×1 vector of regression parameters, and the covariate vector Zj represents 

covariates for observation j.

Andersen and Gill [13] consider it statistical feasible under certain conditions to extend the 

above specification to the regression analysis on the intensity of a repeated event, which 

follows a multivariate distribution of T within an individual. From parameter estimates 

obtained from maximizing the complete or the partial likelihood function, the integrated 

intensity processes, denoted by Λ(t) in counting processes, can be obtained by a linear 

interpolation between failures times:

(7)

where δj is the 0/1 (1=event, 0=censored) censoring indicator and R(ti) is the risk set at a 

specific survival time.

Equation (7) is flexible to permit multiple events up to time t as its computation is not 

restricted to a single event. Let Ni ≡ {Ni (t),t ≥ 0}be the number of observed events 

experienced over time t for individual i with Ni (0) = 0 and the sample paths, or trajectory, of 

the counting process be right continuous step functions. Then, as an alternative definition in 

terms of counting processes, a joint likelihood function L(β, Λ) is proposed to model the 

intensity rate given the past event history:

(8)
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where β0 is the true parameter vector. The term Ft−. is the σ-algebra generated from the 

process history prior to t about survival, censoring, and covariates; substantively, it indicates 

what has been experienced in terms of counting processes before a given observed time. The 

covariate vector Z(t) is defined as time-dependent for reflecting the influences of previous 

events on future recurrences. So, in the context of repeated events, an individual is a cluster 

and  represents .

If Z(t) reflects information of clustering, the regression coefficient β can be flexibly 

estimated over the multivariate survival data of repeated events. Let the count Y denote the 

number at risk just at t for failing in an infinitesimal interval (t, t+dt), and  is 

the risk set for the occurrence of each jump (the first and the recurrent events). Then, the 

partial likelihood for n independent triples {Ni, Yi, Zi (t)}, where i=1,…․,n, is analogous to 

the standard Cox formulation but using a different terminological system. After some 

algebra, the log partial likelihood function can be written by

(9)

Given score function Ũ(β) = (∂logLp/∂β1,…․,∂logLp/∂βM), the total score statistic at time t is

(10)

where the second term within the brace represents the expected covariate vector over a given 

risk set:

In the martingale theory, dN(t) is a submartingale [1,4], and therefore, the score function 

with respect to β0 can be expressed in terms of a function of martingales:

(11)

where

is the difference over (0, t) between the observed number of events for individual i and the 

expected value of the cumulative intensity rate derived from a regression model.
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Given Equation (11), the score function can be conveniently expressed in terms of a 

permutation test based on residuals computed for the regression on covariates, rather than on 

the regression coefficients [18]. The {M1(․),…․,Mn(․)} series are defined as martingales if 

the Mi(t) increment in any t is independent and if any two Mi, Mi’ at any t, where i≠i’, are 

uncorrelated with each other. A differentiated martingale, in many ways, behaves like an 

ordinary residual of linear regression models with mean 0 and without autocorrelation [1]. 

Statisticians have developed the martingale central limit theorem for mathematically proving 

the stochastic property in martingales [1,4,19]. While mathematically complex in its 

derivation, the martingale central limit theorem literally states that when jumps of a 

martingale converge to a multivariate normal distribution, its trajectory tends to an 

asymptotically transformed Wiener process with mean 0 and variance-covariance V(t). 

Therefore, in the Andersen-Gill model the correlation of repeated events is reflected in Z(t), 

and consequently, {M1(․),…․,Mn(․)} series are conditionally independent.

Provided that {M1(․),…․,Mn(․)} are martingales, the Fisher information matrix, denoted by 

I(β,t) and defined as the minus second partial derivatives of the log partial likelihood 

function with respect to β, can be readily derived by using the standard procedure. Andersen 

and Gill [13] proved that statistically, the process  tends to converge in 

probability to a normal vector with mean 0 and the covariance matrix I−1 (β̂,t) for large 

samples. If this inference holds, the score, the Wald, and the likelihood ratio test statistics 

are well defined under the null hypothesis that all regression coefficients be zero.

The Andersen-Gill model stipulates that the large sample behavior follows if the correlation 

of repeated events is reflected in covariates and the semi-parametric baseline hazard 

function. The specification of time-dependent covariates or theory-based interaction terms 

can considerably mitigate correlation of clustered data thereby making potential dependence 

of residuals insignificant. Technically, the Andersen-Gill intensity rate model does not differ 

significantly from a standard Cox model [20]. Therefore, if its underlying hypothesis holds, 

the Andersen-Gill approach on repeated events can be applied to all types of survival data 

with unobserved heterogeneity, as long as the specified fixed effects and the underlying 

hazard function reflect much of unobserved heterogeneity.

The Robust Sandwich Variance Estimator

According to Andersen and Gill [13], the observed Fisher information matrix given β̂, 

denoted by I(β̂,t), tends to converge in probability to the nonsingular deterministic matrix. 

Given this statistical property, the asymptotic limit of (β̂−β) is 0 as long as censoring is 

independent of Z [21]. Therefore, the point estimates of regression coefficients in the 

Andersen-Gill approach or the standard Cox model are asymptotically unbiased, even with 

the existence of strong unobserved heterogeneity in failure times [22].

Wei, Lin, and Weissfeld [14] contend, however, the joint distribution of the score function 

 cannot be statistically viewed as local martingales if 

correlation among failure times exists. Because of the condition cov(Mj,Mj′) ≠ 0 in the 

presence of unobserved heterogeneity, where j ≠ j′, the martingale central limit theorem does 

not apply to the series {M1,…,Mq}. As a result, the inverse of the observed information 
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matrix Î−1 (β̂) does not provide an adequate variance estimator of β̂. A robust covariance 

matrix for β̂ is thus needed to account for covariance in 

for satisfying the condition . Accordingly, WLW have 

developed the robust sandwich variance estimator for addressing unobserved heterogeneity 

in correlated survival data.

The robust sandwich variance method does not specify the pattern of dependence among 

correlated failure times, either; rather, it constructs a robust variance-covariance estimator 

externally to account for the within-clusters covariance thus yielding consistent and 

asymptotically normal parameter estimates. Let

(12)

where, in the context of repeated events, i represents cluster i (i=1, …․, n), Σ̂ is the score 

statistic variance estimator, and Ũi (β) consists of {Ũi1 (β),…․,Ũiq (β)}. Then the asymptotic 

covariance matrix of the estimated regression coefficients is given by

(13)

Equation (13) is the so-called “sandwich” variance estimator. As a result of such an 

adjustment, the random vector  is asymptotically normal with mean 0 and a 

covariance matrix that can be estimated by V̂ (β̂) [21], from which the valid Wald score can 

be derived for testing the null hypothesis on β̂. As both β̂ and I (β̂) can be obtained from the 

standard Cox model, this robust variance estimator does not involve additional statistical 

inference as long as the underlying clustering factor can be identified. Therefore, the robust 

“sandwich” variance estimator is an external method only dealing with the standard error 

estimation, not for the parameter estimation. Given its attachment to the standard Cox model 

and flexibility to adjust for the biased variance matrix, this “sandwich” approach has 

tremendous appeal in biostatistics [5]. When the Andersen-Gill model is correctly specified, 

however, correlation among failure times is much mitigated thus leading to the condition V̂ 

(β̂) ≈ Î−1 (β̂). If this approximation holds, the use of the sandwich variance estimator 

becomes unnecessary.

Hazard Models with Individual Frailty

Some methodologists attempt to analyze correlated survival data by defining a quantity 

termed “frailty,” a convenient notion used most frequently by mathematical biologists and 

demographers [16,23]. Here, frailty may refer to a broad range of dimensions, such as 

genetic predisposition, physiological senescence parameters, economic capability, family 

history of disease, and the like [24,25]. In the frailty theory, individuals in a random sample 

have different levels of frailty, and the frailer ones tend to die sooner than do the others. 

Consequently, the existence of an unobserved “frailty” effect can alter patterns of general 

mortality and mortality differences. There are numerous reports in recent years that age-

specific mortality rates of different subpopulations cross in ways that are unanticipated [26–
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28]; biological explanations of this phenomenon are based on the frailty theory assuming the 

intersecting mortality functions to represent heterogeneous populations that differ in frailty 

[16,29].

The original frailty model assumes a heterogeneous lifetime pattern to address the latent 

frailty effect [15,16,23]. Specifically, the unobserved frailty factor can be represented by an 

unobservable random effect, which impacts the baseline hazard function multiplicatively:

(14)

where zi is the frailty score for individual i (individual here is the level-1 unit), with values 

varying around the grand mean of this variable. Hence, the frailty model specified by 

Equation (14) is basically a random-effects proportional hazard model. This model has 

tremendous appeal because the hazard function with frailty is expressed as the regular 

proportional hazard model plus a multiplier representing the random disturbances. Given the 

nonnegative nature of the hazard rate, an individual z is also nonnegative, presumed to 

follow a given parametric distribution. Conditional on the random effect z and other 

specified parameters, survival times are assumed to be independent of each other, so that 

more efficient estimates of β can be derived.

The distribution of the random effect z determines how a frailty factor affects the value of 

the hazard rate. Vaupel et al. [16] recommend that given its flexible mathematical 

properties, a gamma distribution should be used to reflect frailty at birth, with parameters η 

and ν, where η>0 is the scale parameter and ν>0 is the shape parameter. The mean and 

variance of the gamma distribution are well defined, given by

(15a)

(15b)

Equation (14) specifies a conditional hazard model as it parameterizes the conditional 

distribution of T given and the observed covariates. As the frailty effect is unobserved, 

researchers generally desire estimates of covariates’ effects on the hazard rate of specific 

subgroups. Therefore, it is perhaps more appropriate to specify the gamma-distributed frailty 

model in terms of the marginal mean, given by

(16)

where the error distributional function F is the cumulative density function.

If both gamma parameters are free, the frailty model is not identifiable [1]; therefore the 

mean of z’s must be set at one by imposing the conditions that η=ν and var(z)=1/ν=1/η. 

There are a variety of Bayes-type techniques for approximating the integral of the likelihood 
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over the frailty effect, such as the expectation-maximization estimator [30] and the Gaussian 

quadrature algorithm [31]. While these estimators sometimes yield different parameter 

estimates on the hazard function, in non-pathological cases such differences are generally 

negligible.

Some scientists [12,15,24] comment on the use of a gamma distribution for the frailty factor 

z. Despite its mathematical attractiveness given its simple densities, the gamma distribution 

has some specification weaknesses [15,18]. Aalen [15] suggests that the nature of the frailty 

effect must be derived from biological knowledge and theoretical assumptions about the 

known risk factors the frailty factor represents. He provides an example in terms of the 

effect of blood pressure and serum cholesterol on the incidence of myocardial infarction 

among middle aged men, contending that both factors are approximately normally 

distributed with some skewness to the right. It follows that the relative risk due to these 

factors should be approximately lognormally distributed.

Taking log values on both sides of equation (14) gives rise to

where log[λ0(t)] can be viewed as the intercept in the linear predictor, and εi is log(zi). If z is 

lognormally distributed, then ε is normally distributed with mean 0 and variance σ2, thereby 

leading to a typical generalized linear regression model with a normally distributed error 

term.

Given a transformed error term with normal distribution, the mean and variance of the frailty 

factor z are

(18)

and

(19)

Obviously, the lognormal specification for the frailty factor is a more convenient, 

parsimonious choice than a gamma distribution if the lognormal distribution of the random 

term is reasonably assumed. In the frailty theory, however, the assertion of lognormality is 

considered empirically too strong given the impact of the “survival of the fittest” process.

The various frailty models have proven an efficient, valid statistical perspective to handle 

unobserved heterogeneity in many occasions. Sometimes, the applications of frailty models 

may encounter certain specification problems in analyzing large-scale survey data [18]. The 

multiplicative effect of the unobserved frailty factor, independently drawn from a parametric 

distribution, is assumed to be orthogonal to inferences about other parameters. In reality, an 

individual’s frailty should be closely interacted with observed factors, and some researchers 
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even use an observable covariate as the proxy for measuring an individual’s level of frailty 

[32]. When the risk set at a given observed failure time contains a decent number of 

individuals with covariates scaled at many levels, unobserved heterogeneity from the latent 

“frailty” factor can be considerably reflected in the fixed effects and the underlying hazard 

function thereby making the addition of a random term statistically redundant [2,33]. Given 

these arguments, research into large sample behavior of frailty models is ongoing.

Retransformation Method

Although parameterization of random effects does not necessarily impacts the estimation of 

model parameters, it does not mean that the standard proportional hazard model yields 

robust and consistent estimators on nonlinear predictions given the existence of unobserved 

heterogeneity. Random disturbances cannot be overlooked in predicting the hazard or the 

survival function. First, we cannot assume that the error term is zero for each observation, 

which implies an exact linear dependence of unobserved heterogeneity on the covariate 

vector Z. Second, it is equally misleading to assume that the expected value of the error term 

in a linear predictor is zero when predicting the hazard rate. Consider, for example, the case 

of a lognormal distribution: when one retransforms a normal distribution of random errors to 

a lognormally distributed function, the expected value of the multiplicative random effect is 

not unity given the properties of a lognormal distribution. Even if the true parameters β are 

known, the function λ0(t)exp(Z′β) is not the correct estimate of E[λ(t)], such that

Equations (18) and (19) specify basic properties of a lognormal distribution. In those 

equations, σ2 is the mean square error; and its mode, median and moments all have the same 

functional form [34]. Whereas the median of exp(ε) is simply exp[E(ε)] that implies a 

multiplicative effect of one, the positive skewness of the lognormal distribution mandates 

that the median lies below the mean, with equality holding if and only if σ2 = 0. Thus, 

neglect of retransforming the error term in estimating any log-linear equation with a reduced 

form leads to a median function, rather than a mean function. Consequently, unbiased and 

consistent quantities on the log(hazard) cannot be retransformed into unbiased and 

consistent quantities on the hazard rate without considering retransformation of random 

components.

Provided that ε is normally distributed and uncorrelated with λ0(t) and Z, the expected value 

of the hazard rate given unobserved heterogeneity can be written by

(20)

where Φ=exp(σ2/2) is an adjustment factor in the mean for the retransformation in the 

hazard function assuming ε to be normally distributed with mean zero and variance σ2.

While the hazard rate is unobservable, the variance of random errors can be either derived 

from a likelihood function integrated over the individual-level random effect or estimated 
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externally. In the literature of generalized linear mixed models, there is a variety of 

approximation methods proposed to derive Bayes-typed parameter estimators given random 

effects [35–37]. Though generally working well in longitudinal data analysis, these 

integration techniques are often found ineffective in analyzing large-scale survival data 

given the specification of an underlying stochastic process in T [2,38]. Thus, the external 

perspective seems to be a more appropriate choice for nonlinear predictions. Among the 

external approaches in this area, the most popular method is perhaps the “threshold concept” 

approach [39]. In the logistic regression, random errors are assumed to follow a standard 

logistic distribution with mean 0 and variance π2/3, while for a probit regression random 

errors are assumed to follow a standard normal distribution with mean 0 and variance 1. 

This approach, however, is not practicable for survival models because all hazard models, 

no matter how many covariates are considered, would have exactly the same variance of 

random disturbances. As McCullagh and Nelder [40] comment, the assumption of a 

continuous latent distribution is a rough model requirement, though providing a useful 

concept for generalized linear modeling.

Another convenient approach to obtain the expected value of random errors uses the 

empirical data. Specifically, the researcher can recognize the predicted hazard rates obtained 

from a “full” model as an unbiased and consistent set of λi to calculate s2, a sample estimate 

for σ2. If random errors in a well-specified full model are truly ignorable after appropriate 

justification, Φ can be approximated from the standard formula on variance between the full 

model and a corresponding reduced-form equation [17]. In performing this approach, a 

fraction of random disturbances from omitting one or more significant predictors may be 

absorbed into the intercept. As a result, the intercept needs to be fully specified in the 

calculation of Φ. Consequently, the Cox model and the partial likelihood estimator are 

inappropriate for the application of this method.

When the assumption of normality for ε cannot be satisfied, the factor [exp(σ2/2)] is not the 

correct adjustment in the mean for retransformation from the logarithmic scale to the 

untransformed hazard rate, so that this estimator can lead to incorrect nonlinear predictions 

of the hazard rate. In this situation, Duan’s [41] smearing estimate can be applied.

First, assuming the vector Z to have full rank and ε is not normally distributed, we have

(21)

where Ψ is the multiplicative random effect exp(ε).

When the error distribution function F is unknown, this cumulative density function F can 

be replaced by its empirical estimate F̂
n, referred to as the smearing estimate [41]:
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(22)

where β̂ can be obtained by employing the maximum likelihood procedure without 

considering unobserved heterogeneity given the martingale central limit theorem [7,13,14].

A consistent estimate of the hazard rate given covariate vector Z can be obtained by

(23)

where

(24)

where Y is the vector of covariates incorporated in the full model but not in the reduced-

form model, α is the vector of regression coefficients for Z in the full model, and γ is the 

vector of regression coefficients for Y in the full hazard model. Analytically, Equations (23) 

and (24) are meant to estimate an unknown error distribution by the empirical c.d.f. of the 

estimated regression residuals. This “smearing” effect does not completely eliminate bias 

when the true distribution of random errors is unknown; but the overall prediction bias is 

negligible if a large sample is used to find a nonparametric distribution. This nonparametric 

retransformation method predicts the longitudinal health data accurately [38,42].

Illustration

In this illustration, an empirical example is provided on mortality differences between 

American older veterans and nonveterans. The observation range is a four–five year interval 

from 1993/94 to the end of 1997. Given a single data set, the applicability of various 

survival models on unobserved heterogeneity is assessed and examined.

Data

The data used for the analysis come from the Survey of Asset and Health Dynamics among 

the Oldest Old (AHEAD). This longitudinal survey is a nationally representative 

investigation of older Americans conducted by the Institute for Social Research (ISR), 

University of Michigan, as a supplement to the Health and Retirement Study. The Wave I of 

the AHEAD survey was conducted between October 1993 and April 1994. A sample of 

individuals age 70 or older (born in 1923 or earlier) was identified throughout the HRS 

screening of an area probability sample of households in the nation. This procedure 
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identified 9,473 households and 11,965 individuals in the target area range. The Wave I 

respondents have been followed by telephone every second or third year, with proxy 

interviewing designed for those deceased between two successive surveys. By now, 

AHEAD survey registers nine waves of investigation in 1993, 1995, 1998, 2000, 2002, 

2004, 2006, 2008, and 2010. As a longitudinal, multidisciplinary, and U.S. population-based 

study, AHEAD provides a highly representative and reliable data base for the survival 

analysis of older Americans age 70 or older. Survival information throughout the follow-up 

waves has been obtained by a link to the data of National Death Index (NDI). Given the 

purpose of illustration, I randomly select 2,000 persons from the original AHEAD sample 

for the analysis.

Measures

This illustration uses Wave I data (baseline survey) and the survival data in a four-to-five 

year period. Time of death is recorded for those who died between the Wave I interview and 

December 31, 1997. Of 2,000 Wave I respondents, 332 were identified dead during the 

interval. For each of the deceased in this four-to-five year observation period, the duration in 

months from Wave I interview to the time of death is recorded. Other respondents are right 

censored.

The AHEAD survey acquires detailed information on a number of domains, including 

demographic characteristics, health status, health care use, disability, retirement plans, and 

health and life insurance. Given a relatively short observation period, all covariates 

considered in this empirical illustration are time-independent variables with their values 

fixed at Wave I survey. Veteran status, the main explanatory variable in this illustration, is 

measured as a dichotomous variable (veteran=1, nonveteran=0), named “VET” in the 

statistical analysis. Over 90 percent of veterans in the dataset served in the military during 

World War II.

The control variables include age, gender, educational attainment, and marital status. The 

time-independent assumption on marital status might lead to some bias in estimating its 

effect. Other explanatory variables, however, are either stable over time (veteran status, 

gender, and educational attainment) or change simultaneously with time (age) thus not 

posing any threats to the validity of time-independent hypothesis. In particular, age is 

defined as the actual years of age reported by respondents at the time of the Wave I survey. 

As the starting age of the data is 70 years, this variable is rescaled to be centered at age 70 

(actual age–70), termed AGE_70 in the analysis. Given the theoretical hypothesis on the 

trend of mortality convergence and crossover between older veterans and nonveterans, an 

interaction term is created between Vet and Age_70. Statistically, the specification of this 

interaction can absorb massive information on heterogeneous selection of survival.

Gender is indexed as a dichotomous variable (women=1, men=0), and educational 

attainment, an approximate proxy for socioeconomic status, is measured as the total number 

of years in school, assuming the influence of education on mortality to be a continuous 

process [43]. Lastly, marital status is specified as a dummy variable, with currently 

married=1, else=0. For analytic convenience without loss of generality, these three control 

variables are all rescaled to be centered at sample means, termed Female_cnd, Educ_cnd, 
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and Married_cnd, respectively. Empirically, the mean of a dichotomous variable indicates 

the likelihood or propensity of being in the group coded 1; it can also be understood as the 

expected proportion in the population a random sample represents.

The effects of two health factors–physical health conditions and mental disorders–on the 

hazard function are closely examined in the preliminary data analysis. While their effects on 

the hazard rate are very strongly statistically significant in the presence of other covariates, 

in this example these two health factors are purposefully excluded from the final hazard 

model. Therefore, there is definitely additional clustering in the survival data, even in the 

presence of the six covariates considered.

Table 1 displays the mean (or proportion), the standard deviation, and the coding scheme of 

each original covariate and the names of the centered variables.

Survival models on unobserved heterogeneity

The removal of two statistically significant predictor factors from the hazard model 

guarantees that survival data in the regression analysis are conditionally dependent. In this 

illustration, four hazard models are applied–the standard proportional hazard (PH) 

regression, two frailty models, and the retransformation method–with an attempt to compare 

their capabilities for addressing unobserved heterogeneity. The robust sandwich variance 

estimator is not considered in the illustration because, given the present dataset, this method 

does not modify the variance estimates considerably.

Most regression models handling unobserved heterogeneity are designed by parameterizing 

random effects in order to accomplish conditional independence among observations. 

Because the retransformation method requires the specification of a complete likelihood 

function, the Weibull proportional hazard model is used with the addition of a term for 

individual-level random effects. The adjusted Weibull model is given by

(25)

where, within the construct of the Weibull hazard model, λ0 is the scale parameter, p̃ is the 

shape parameter, and z represents the random effect. The vector Z in this analysis contains 

the six covariates mentioned earlier. Empirically, the Weibull hazard model often derives 

identical estimates of covariates’ regression coefficients as does the Cox model [44], so that 

the application of the Cox model would generate the same fixed effects. With the addition of 

a random effect term, the adjusted Weibull hazard function no longer possesses the 

proportional and monotonic properties. In this illustration, however, the quality of the 

parameter estimates is the major concern, so is the potential impact of the random effect, so 

that the shape of a baseline distributional function is not of interest. The arbitrarily assumed 

random effect is not considered in the standard proportional hazard model assuming 

unobserved heterogeneity to be statistically accounted for by incorporating theoretically 

relevant covariates.

The crucial part of creating a frailty model is to select a specific distributional function for 

the frailty effect z. In this analysis, two frailty models are fitted with random effects 
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integrated into the likelihood function: (a) the Weibull hazard model with random variable z 

assumed to be lognormally distributed, and (b) the Weibull hazard model with z assumed to 

have a gamma distribution. In fitting the second frailty model, the mean of z’s is set at one 

given the condition that η=ν and var(z)=1/ν, as conventionally applied.

In performing the retransformation method, normality is assumed for the random effects in 

the linear predictor; and the coefficient Φ is estimated externally thereby not impacting the 

estimation of other parameters. The full model, used to calculate empirically-based random 

errors, considers eight covariates–the aforementioned six explanatory variables plus the two 

omitted health factors.

The operational objective of this illustration is three-fold: first, to examine whether the 

likelihood function integrated over the random effect is statistically effective in fitting the 

Weibull hazard model. Here, the model chi-square criterion, given the likelihood ratio 

statistic, is used to test the null hypothesis that the addition of a random term does not fit the 

AHEAD survival data significantly better than does the standard PH model. The second 

objective is to know whether the hazard model with a gamma distributed random effect fits 

the data significantly better than does the model with a lognormal distribution, also using the 

model chi-square criterion on the null hypothesis. The last operational objective is to assess 

whether the retransformation method yields a statistically significant smearing estimate for 

nonlinear predictions. For strengthening this last procedure, two predicted survival curves 

are compared for older persons age 85, one generated from the standard Weibull hazard 

model and one from the retransformation method. Because veteran status is used as a major 

independent variable, those survival curves are created for older veterans and nonveterans 

separately. Given an equal sample size for the estimation of each model, the degree of 

freedom can be well specified, so that these comparisons can be conducted effectively.

The standard Weibull survival function at time t is

(26)

In the retransformation method, the survival function, assuming random effects in the linear 

predictor to be normally distributed, is given by

(27)

All four models are fitted using the SAS PROC NLMIXED procedure. Theoretical 

implications can be summarized by examining different sets of parameter estimates, the 

model fit statistics, and the predicted survival functions.

Results

Table 2 summarizes the results derived from the four hazard rate models on the AHEAD 

data. The first hazard model in the table is the regression specifying a number of fixed 
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effects without a random term, assuming unobserved heterogeneity to be completely 

accounted for by the fixed effects. The next two hazard models are the Weibull functions 

fitted by maximizing an approximation to the likelihood integrated over the unobserved 

random effect, distributed either as a lognormal or as a gamma function. The fourth model is 

the Weibull regression with the smearing effect estimated externally to the maximization of 

the likelihood function.

The estimated regression coefficients in the first two models are almost identical, with trivial 

differences only in some of the standard error estimates and p-values. In both models, the 

regression coefficient of veteran status is negative, while that of the interaction term 

between veteran status and age is positive, which, combined, suggest a typical pattern of 

mortality convergence and crossover between older veterans and nonveterans, and the 

subsequent excess mortality among older veterans. The effect of veteran status is considered 

statistically significant given the statistical significance of the interaction term. The variance 

of the normally distributed random effect, not exactly reported in Table 2, is 0.000006, so 

that the mean frailty effect with a lognormal distribution is exp(0.000006/2)=1.000003. 

Obviously, the integration of a lognormally distributed random term to the likelihood 

function does not impact the estimation of the parameters at all given the specification of a 

flexible baseline hazard function. More important, the value of −2×(log likelihood ratio), 

distributed as χ2 with 1 degree of freedom on the null hypothesis, remains unchanged after 

the addition of the random effect, highlighting the statistical redundancy of this arbitrarily 

assumed random term in this particular data set.

Compared to the first two models, the third Weibull model, assuming gamma distributed 

random effects, derives different parameter estimates. First, the random effect parameter 

var(z) is statistically significant (0.6421; t=10.80, p<0.0001). Second, the estimate of the 

Weibull shape factor is considerably increased, 1.915, compared to 1.265 obtained from the 

first two models given the specification of a different scale factor. Third, absolute values of 

the regression coefficients are much elevated, thanks to the increased amount of the shape 

parameter. Compared to the frailty model with a lognormal distribution, this statistical 

model generates no gain in the model fit because the difference in the value of −2×(log 

likelihood) is negative (4246.7 versus 4250.9). According to the statistical criterion that less 

is better with regard to this statistic, the frailty model with a gamma distribution does not 

improve the model fit compared to the first two models. Consequently, the null hypothesis 

that the integration of a random effect in the likelihood does not significantly improve the 

estimation of the hazard model cannot be rejected. There are some more refined model fit 

indices for handling complex data structures, such as Akaike’s information criterion (AIC) 

and Bayesian information criterion (BIC); in the present comparisons, however, using 

another model fit statistic would probably generate the same conclusion given an equal 

sample size for these models.

Clearly, the integration of an arbitrarily assumed random term to the likelihood function is 

not statistically supported in this example, as the flexible, monotonic Weibull baseline 

function and the fixed effects absorbs substantial information of the random effects. Thus, 

the retransformation method, an external approach to generate unbiased estimates of 

functionals of the regression parameters when random effects are present, can serve as an 
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alternative for estimating the random effects. The last two columns of Table 2 display the 

results of the fourth hazard model. As Φ is estimated empirically, other parameter estimates 

and the model fit statistic are exactly the same as those estimated for the standard PH model. 

The value of Φ is 1.271, very strongly statistically significant.

Figure 1 plots the evolution of the survival functions predicted from the standard 

proportional hazard model and the retransformation method, respectively. In Panel A, which 

compares the predicted survival curves among older nonveterans, there is a distinct and 

systematic separation between the two curves. At each time point following the origin of 

time, the predicted probability of survival obtained from the standard hazard model is 

considerably higher than from the retransformation method. In Panel B, the two survival 

curves decline more sharply thereby indicating faster mortality acceleration among older 

veterans than among nonveterans; however, the separation between the two predicted curves 

remains the same as in Panel A. The substantive meaningfulness of such separations is 

governed by the statistical significance of Φ derived from the retransformation method.

Conclusions

This study displays that parameterization of random effects in the hazard model does not 

necessarily function effectively for capturing unobserved heterogeneity in analyzing large-

scale survey data. According to Andersen and Gill [13], if correlation in survival data is 

reflected in the covariates, the large sample behavior follows thereby making the parameter 

estimates asymptotically unbiased. The flexibility of the baseline hazard function in the 

parametric Weibull or the semi-parametric Cox model can usually mitigate the impact of 

unobserved heterogeneity and therefore loose the assumption on the frailty term. 

Occasionally, serious bias in the variance estimator of β̂ arises while the point estimates are 

asymptotically unbiased; in such situations, the variance-covariance estimates can be easily 

adjusted by applying the robust sandwich variance estimator. Even so, the standard PH 

model can result in serious prediction bias. In the illustration presented in this study, for 

example, inherent random disturbances exist in survival data due to removal of two 

theoretically important, statistically significant predictor factors. As the two frailty models 

are not shown to be effective for capturing the effect of additional clustering, the application 

of the retransformation method is useful for deriving an adjustment factor for nonlinear 

predictions of lifetime processes.

It must be emphasized that the results displayed in this study do not suggest that frailty 

models, particularly the model with a gamma distribution, are not useful. The results 

presented above just demonstrate that for this particular example with this particular data 

set, the application of two frailty models does not significantly improve the quality of 

parameter estimates and the likelihood ratio statistic when random effects are present. Under 

different patterns regarding unobserved heterogeneity and other factors such as sample size, 

the performance of the four models may differ significantly. In behavioral science, empirical 

data often come from large-scale observational surveys, from which a large quantity of 

variables are available for the specification of complex conceptual frameworks. If a 

theoretical model is correctly specified for guiding data analysis, the impact of unobserved 

heterogeneity on parameter estimates can be immensely mitigated by specified fixed effects 
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thereby making additional parameterization redundant [2,13,33,38]. Here, the desirable 

large-sample behavior is effective because a stochastic time-to-event process, particularly in 

the Cox model, can largely wash out the impact of unobserved heterogeneity [2]. In these 

occasions, the incorporation of an additional frailty factor in the PH model is not supported 

by large-sample theory [18] therefore is misspecified. Such a statistical advantage is usually 

not pertinent in biomedical studies, which regularly use survival data either of a small 

sample size or with a lack of measurable variables. In those situations, the frailty theory and 

its attaching models are highly valuable for addressing unobserved heterogeneity. The 

example given in this study does not derive general directives by using a single data set, and 

some other empirical works show that ignoring unobserved heterogeneity can lead to 

incorrect estimates. Therefore, ignorability of random effects in the survival model must be 

carefully assessed and justified from situation to situation, using the likelihood ratio test or 

other more refined statistical criteria. Large scale simulation is needed to investigate general 

patterns of unobserved heterogeneity under different conditions.
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Figure 1. 
Predicted survival curves for veterans and nonveterans from the standard approach and the 

retransformation method.
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Table 1

Mean or proportion, standard deviation, coding scheme of covariates: Older Americans (n=2,000).

Explanatory
Variable

Mean or
proportion

Standard
deviation

Coding
Scheme

Variable name
in analysis

Veteran status (proportion) 0.19 – 1=veteran, 0=nonveteran Vet

Age (mean) 75.79 6.59 Actual number of years from birth Age_70

Female (proportion) 0.67 – 1=yes, 0=no Female_cnd

Education (mean) 11.11 3.55 Actual years attending school Educ_cnd

Currently married (proportion) 0.55 – 1=yes, 0=no Married_cnd

Note: In the analysis, age_70=(actual age–70); the rest of the covariates, except vet, are mean-centered variables.
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