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Chemotherapy induces dynamic immune
responses in breast cancers that impact treatment
outcome
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To elucidate the effects of neoadjuvant chemotherapy (NAC), we conduct whole tran-

scriptome profiling coupled with histopathology analyses of a longitudinal breast cancer

cohort of 146 patients including 110 pairs of serial tumor biopsies collected before treatment,

after the first cycle of treatment and at the time of surgery. Here, we show that cytotoxic

chemotherapies induce dynamic changes in the tumor immune microenvironment that vary

by subtype and pathologic response. Just one cycle of treatment induces an immune sti-

mulatory microenvironment harboring more tumor infiltrating lymphocytes (TILs) and up-

regulation of inflammatory signatures predictive of response to anti-PD1 therapies while

residual tumors are immune suppressed at end-of-treatment compared to the baseline.

Increases in TILs and CD8+ T cell proportions in response to NAC are independently

associated with pathologic complete response. Further, on-treatment immune response is

more predictive of treatment outcome than immune features in paired baseline samples

although these are strongly correlated.
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Despite tremendous advances in targeted and immuno-
oncology (IO) therapies, cytotoxic chemotherapies
remain the backbone of treatment for many cancers at

different stages of the disease1. Chemotherapy has long been
regarded as immune suppressive due to dose-limiting myelo-
suppression, however, there is mounting evidence that the effi-
cacy of chemotherapies does not only involve cell intrinsic
cytotoxic effects but also relies on activating antitumor immune
responses2. Efforts are underway to combine chemotherapies
with IO therapies to harness the synergistic effects based on the
hypothesis that chemotherapies provide a broad-acting immune
stimulus against cancers3–5. The design of novel therapy as well as
optimal combination strategy require detailed understanding of
the effects of chemotherapies on tumor cell intrinsic biology as
well as tumor microenvironment. To date, the tumor associated
immunomodulatory effects and mechanisms of chemotherapeutic
treatments are mainly studied in mouse models2. There is a lack
of comprehensive and systematic characterization of the effects of
chemotherapy on the tumor immune milieu in the clinical set-
ting, especially on-treatment or post-treatment. Preclinical
observations of drug treatment responses may be discordant with
clinical findings. One study reported immune stimulatory effects
of cyclophosphamide treatment in tumor bearing mice by per-
forming gene and protein expression profiling, and proposed the
optimal timing for combination with IO therapy to be approxi-
mately one day after the initial chemotherapy treatment6. How-
ever, serial expression analyses of breast tumors from patients
receiving neoadjuvant chemotherapies (NAC) in the I-SPY 1 trial
presented contradictory evidence, revealing downregulation of
immune genes after 1–4 days of chemotherapy treatment7.

The challenge of obtaining post-treatment clinical samples is
the main reason for the dearth of molecular profiling data
available for studying tumor responses to standard-of-care
treatments such as chemotherapy8,9. Neoadjuvant treatment
where patients receive systematic therapy before surgical removal
of the tumor is an attractive setting for assessing drug effects on
targets, tumor biology, and identifying molecular markers of
clinical outcome10–12. In breast cancer (BC), particularly the ER-
negative subtypes, neoadjuvant chemotherapy is the preferred
treatment approach for locally advanced cancers with pathologic
complete response (pCR) being the primary endpoint associated
with improved prognosis13–16. The combination of anthracy-
clines and taxanes with the addition of trastuzumab for the HER2
+ subtype has been the backbone regimen in BC in the adjuvant
and neoadjuvant setting for years17–19. Despite successes of IO
therapies in the treatment of many cancers, including the meta-
static TNBC20, identifying beneficial treatment regimens for BC
patients that take advantage of IO therapies remains a challenge.
Checkpoint inhibitors targeting the programmed cell death pro-
tein 1 (PD1) and PD1 ligand 1 (PDL1) are clinically validated21

and form the foundation for IO combination strategies, where the
design is guided by markers such as PDL1 expression and
immune pathway specific mRNA profiles22. Histological analyses
of pre-treatment and post-treatment tumor specimens from 25
BC patients have revealed correlation between the development of
tumor infiltrating lymphocytes (TILs) after neoadjuvant paclitaxel
chemotherapy and clinical response23. Several studies have
reported clinical implications for baseline TIL counts and PDL1
positivity after evaluation of pre-treatment and post-treatment
samples in the NAC settings using immunohistochemistry and
gene expression profiling24–26. However, these studies mainly
focused on tumor biopsies taken before and after the NAC
treatment, but did not sufficiently characterize the changes that
occur in tumor tissues during treatment. A recent expression
profiling study of 97 sequential samples from a cohort of 50
breast cancer patients, who had been treated by NAC reported

that on-treatment biomarkers can improve prediction of NAC
response but did not identify any changes in immune gene
expression27.

We hypothesized that comprehensive profiling of serial tumor
biopsies taken before, during and after neoadjuvant treatment can
delineate the impact of NAC on the immune microenvironment
and may guide the selection of IO therapies and rational design of
combination22. In this study, we perform whole transcriptome
profiling coupled with histopathology analyses of serial samples at
three time points from 146 breast cancer patients undergoing
neoadjuvant chemotherapy treatment. We then perform sys-
tematic analyses to identify NAC induced changes in gene
expression profiles and immune microenvironment, as well as
examined associations between molecular attributes and clinical
outcome. Here, we report that the first cycle of neoadjuvant
chemotherapy induces an immune stimulatory response in
tumors, that is independently associated with pathologic com-
plete response and more predictive of treatment outcome than
baseline immune features. Our findings suggest that the effec-
tiveness of neoadjuvant chemotherapies may be improved by
combining with immunomodulatory therapies in the early stage
of the treatment while assessing tumor-associated immune
responses during treatment can help identify patients likely to
benefit from the IO combination.

Results
Overview of study design and data. Over a period of 2.5 years, we
recruited 210 patients diagnosed with invasive breast carcinoma
who were treated with standard neoadjuvant chemotherapy (NAC)
protocol of 4 cycles of Anthracycline and Cyclophosphamide fol-
lowed by four cycles of Docetaxel (T) or Docetaxel plus Trastuzu-
mab for HER2+ diseases. Tumor biopsies were collected for each
patient at three time points—pre-treatment (T1), three weeks after
the first cycle of NAC (T2) and at the time of surgery (T3) for
patients who did not achieve pCR (Fig. 1a). We successfully con-
ducted whole transcriptome sequencing (WTS) and histopathology
analysis on 281 tumor samples from 146 cases including 110
longitudinal pairs (Fig. 1 and Supplementary Data 1). Of these
patients, 55 (38%) achieved pCR while 91 (62%) harbored residual
disease (RD). RNA-Seq was performed on 227 tumor samples from
136 patients, consisting of 17 triplets (T1–T2–T3) and 57 pairs
(T1–T2, T1–T3, or T2–T3) with coverage for all paired samples
(Fig. 1b). T1 baseline samples were profiled for 112 patients con-
sisting of 42 pCR cases (37.5%) and 70 RD cases (62.5%). Paired T1
and T2 samples were profiled for a subset of 68 patients consisting
of 21 pCR cases and 47 RD cases. Hematoxylin and eosin (H&E)
stained slides were available for 271 tumor samples from 146
patients. We classified all RNA-Seq profiled samples into four
subtypes—ER+ /HER2−, ER+ /HER2+, HER2+ /ER− and triple
negative (TN) mainly based on immunohistochemistry (IHC)
analyses of ER, PR, and HER2 markers. According to subtype
classification of pre-treatment samples, 22% (30/136) of the
cohort were ER+ /HER2−, 20% (27/136) were ER+ /HER2+, 20%
(27/136) were HER2+ /ER− and 38% (52/136) were TN
(Supplementary Table 1).

Differential regulation of cancer hallmark pathways during
NAC. Global differential expression (DE) analysis identified three
consensus clusters of 1987 DE genes that form contrasting DE
patterns over treatment times and enriched in cell cycle (C1),
epithelial mesenchymal transition (EMT), and extracellular
matrix (ECM) (C2) and immune (C3) pathways that are major
cancer hallmarks (Supplementary Fig. 1a and Supplementary
Data 2). Using the GSVA algorithm28 to calculate gene expression
signature scores, we confirmed that pathways significantly
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enriched in the DE gene and clusters as well as representative
genes in these pathways also exhibited consistent expression
patterns over time (Fig. 2a, b and Supplementary Data 3). We
further examined the differential expression patterns of key genes
and pathways mapped to the DE clusters in different breast
cancer subtypes (Supplementary Figs. 1, 2). In all subtypes, the
first cycle of NAC treatment induced downregulation of cell-cycle
genes exemplified by pathways related to cell growth and pro-
liferation, such as the Hallmark E2F targets signature. However,
cell cycle related gene expressions rebounded to higher levels in
residual tumors at surgery time, with the most striking increases
observed in HER2+ and TNBC (Fig. 2). On the other hand, the
first cycle of NAC induced upregulation of immune and EMT/
ECM-related pathways in all subtypes. These pathway expres-
sions then decreased to below baseline levels at end of treatment
in HER2+ and TN subtypes (Fig. 2). These dynamic patterns of
upregulation and downregulation seemed to be driven by changes

in tumor cellularity reflecting the clinical observation, that che-
motherapies initially elicit tumor shrinkage yet cancers remain
refractory in most patients following treatment.

Differential expression patterns enriched in the three cancer
hallmarks appeared to be consistent across subtypes but were
more clearly exhibited in the HER2+ and TN subtypes than the
ER+ subtype (Fig. 3). We performed an in-depth comparison of
DE patterns between different breast cancer subtypes based on
the correlations of the statistical significance of the DE events and
observed concordant trends at both gene and pathway level
(Supplementary Fig. 3). Early DE events (T1 vs. T2) were strongly
correlated at the pathway level among subtypes with Spearman
correlations of 0.633, 0.744, and 0.633 when comparing ER+ vs.
HER2+, ER+ vs. TN, and HER2+ vs. TN, respectively
(Supplementary Fig. 3a). In particular, DE patterns of cell cycle
related pathways were more strongly correlated than EMT/ECM
and immune pathways. On the other hand, late DE pathways (T2
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vs. T3) were weakly correlated among subtypes, exhibiting
Spearman correlations of 0.114, 0.080, and 0.404 for comparisons
of ER+ vs. HER2+, ER+ vs. TN and HER2+ vs. TN
(Supplementary Fig. 3b). During this stage, the DE patterns in
the ER+ subtype diverged from those in the HER2+ and TN
subtypes. For instance, DE events in the ER+ subtype were
negatively correlated with those in TN at both gene (rho=−0.09)
and pathway level (rho=−0.047) (Supplementary Fig. 3b, e).
Notably, DE events from the baseline vs. residual comparison (T1
vs. T3) were anti-correlated between ER+ tumors and HER2+
and TN tumors (ER+ vs. HER2+ : rho=−0.479, ER+ vs. TN:
rho=−0.179) (Supplementary Fig. 3c, f). In fact, cell cycle
related pathways were down regulated in residual vs. baseline

tumors in the ER+ subtype but up regulated in the HER2+ and
TN subtypes, indicating that NAC exerted variable effects on
growth and proliferation in different subtypes. Hence,
chemotherapy-induced molecular responses were largely similar
during early stages of treatment but became more distinctive
among different breast cancer subtypes at end-of-treatment.

NAC induced dynamic changes in tumor infiltrating lympho-
cytes (TILs). The dynamic changes in the immune gene expres-
sions suggested that NAC treatment exerted a major impact on
tumor infiltrating lymphocytes (TILs), which play an important
role in mediating the efficacy of immunomodulatory therapies.
To further investigate NAC induced effect on tumor-associated
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immunity, we quantified the density of TILs by performing digital
image analyses of H&E slides and analyzed changes over time
(Fig. 4 and Supplementary Data 4, Supplementary Table 2). The
majority of tumors exhibited an increase in TIL density at three
weeks after the first cycle of NAC followed by a drop to below
baseline levels at surgery, with the pattern of change varying
across subtypes and pCR status (Fig. 4a). TIL density increases

from T1 to T2 were observed in the pCR cohorts across all
subtypes, including 80% of cases (12/15) in TN and 64% of cases
(14/21) in non-TN subtypes (Fig. 4b, c and Supplementary
Table 3). However, among patients with residual disease, TIL
densities increased on-treatment in 85% (15/18) of TN cases but
decreased in 62% (27/44) of non-TN cases. Pathologists visually
inspected the H&E images of TN cases to derive a stromal TIL
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score based on international standard29, and corroborated the
up–down pattern of TIL changes over three time points observed
in TN (Fig. 4d and Supplementary Fig. 4a). Multiplex IF analysis
using a panel of TIL markers on a subset of cases also demon-
strated that T cell populations expanded in TNBC upon initial
NAC treatment while contracting among non-TNBC cases
(Fig. 4e, f).

Gene expression signatures have been reported to predict
response to anti-PD1 inhibitor, including a T cell-associated
inflammatory signature and an expanded immune signature
consisting of individual components that encompass multiple
immunomodulatory functions30. TN patients with residual
disease have significantly shorter overall and post-recurrence
survival than non-TN patients16,31. We found that NAC induced
remarkable on-treatment increases in these IO predictive
signatures among TN patients with residual diseases, pointing
to a promising approach of combining NAC and checkpoint
inhibitors for addressing this unmet medical need (Supplemen-
tary Fig. 4b, c).

Profound impact of NAC on the immune landscape. To gain
insights into the NAC induced effects on different TIL sub-
populations, we performed a deconvolution analysis of bulk-
tumor gene expression32 to infer the relative fractions of ten
immune cell types among tumor infiltrating leukocytes in each
tumor. Strong positive correlations vs. CYT score, a measure of
cellular cytolytic activities defined as the geometric mean of
GZMA and PRF1 expressions33, revealed immune stimulatory
roles for CD8+ T, CD4+ memory T cells, and M1 macrophages.
Conversely, negative correlations vs. CYT scores indicated that
M2 macrophages and mast cells were immune suppressive
(Supplementary Fig. 5a). There were significant increases in the
relative fractions of CD4+ memory T cells (p= 3.18e−06) and
CD8+ T cells (p= 0.0072) after the first cycle of NAC (Supple-
mentary Fig. 5b and Supplementary Table 4) followed by a
decrease in the fractions of CD4+ memory T cells and M1
macrophages between on-treatment and surgery. On the other
hand, cell fractions of mast cells and M2 macrophages increased
in residual tumors compared to on-treatment samples (Supple-
mentary Fig. 5c). Hence, the first cycle of NAC treatment
appeared to induce a stimulatory immune microenvironment in
the tumors while the residual tumors harbored a more immune
suppressed microenvironment compared to the baseline tumors.

Unsupervised integrative clustering of immune expression
signatures and immune cell fractions clearly classified all samples
into three distinct immune states: cold (C), warm (W), and hot
(H) (Fig. 5a and Supplementary Data 4). The H state marks an
immune stimulated microenvironment harboring higher frac-
tions of CD4+, CD8+ T cells, and M1 macrophages as well as
elevated TIL abundance compared to the two other states. The C
state marks an immune suppressed microenvironment with
higher fractions of M0, M2 macrophages and mast cells than
other immune states while the W state appears to be an

intermediate between the H and C states (Supplementary
Fig. 6a, b). The immune states are significantly associated with
subtype (p= 1.7e−03), treatment times (p= 9.4e−06) and
treatment response (p= 8.5e−04) (Supplementary Fig. 6c–e and
Supplementary Table 5). We observed frequent changes in tumor
associated immune states during the course of treatment with
77% of baseline tumors (20/26) classified as W turning into H at
T2 and 91% of H tumors (10/11) at T2 switching to W or C at T3
(Fig. 5b). The patterns of immune state transition are significantly
associated with breast cancer subtype (p= 7.98e−4) (Supple-
mentary Table 6). At baseline, the majority of ER+/HER2−
tumors (56%, 9/16) were immune cold and 78% (7/9) of these
cases remained immune cold on-treatment. On the other hand,
all TN tumors switched to a more immune stimulated state on-
treatment (71%, 17/24) or remained immune hot at both stages
(29%, 7/24). Immune state transition is also linked to pathologic
response (p= 0.097). None of the ten patients with tumors that
remained immune cold at T1 and T2 achieved pCR compared to
45.8% (11/24) of the cases that changed to a more immune
stimulated state on-treatment.

Despite variability over time, the immune features appeared to
be strongly correlated between paired on-treatment and baseline
samples with a significant association of the immune states
between T1 and T2 (p= 7.79e−06) (Fig. 6a and Supplementary
Fig. 6f). CYT scores were also significantly correlated between
paired on-treatment and baseline samples (rho= 0.59, p= 2.8e
−07) (Fig. 6b). In addition, CYT scores were positively correlated
between T1 and T2 samples in different subtypes with significant
correlations in HER2+ (rho=0.69, p= 0.012) and TN (rho=
0.52, p= 0.012) (Fig. 6c). Consistently, TIL densities in T1 and
T2 samples were also positively correlated overall and within
subtypes (Fig. 6d, e). Hence the capacity for a tumor to initiate a
robust immune response during NAC treatment appears to be
predetermined by baseline immune features.

Virtual microdissection analysis differentiated tissue com-
partments. We observed lower tumor purity, a measure of the
tumor proportions of the bulk tumor, in the immune hot state
compared to the other states and during on-treatment compared
to the baseline (Supplementary Fig. 7). To address the tumor
cellularity as potential confounder in pre-treatment and post-
treatment analysis, we included tumor purity as a covariate in our
model for differential expression analysis (see “Methods” section).
Further, to investigate whether the observed dynamics in immune
responses were solely a passenger effect of the tumor composi-
tional changes caused by NAC treatment, we performed virtual
microdissection analysis to deconvolute bulk tumor expression
profiles into multiple factors analogous to expression signatures
that are attributable to distinct tissue compartments of the bulk
tumor (see “Methods” section). Besides a composite tumor
intrinsic factor, we also identified three factors that represent
tumor extrinsic compartments (TME)—tumor infiltrating leu-
kocyte (TIL) factor F13, stromal factor F12, and a composite

Fig. 3 Comparing differential expression patterns across subtypes. a Aggregate expression patterns of three DE gene clusters in the overall cohort and
subtypes. Gray lines represent individual gene expressions and red lines represent the summarized scores (GSVA) for each cluster. The ER+/HER2+
subtype was excluded due to a lack of T3 samples. “ER+ combined” includes ER+ and ER+/HER2+ subtypes. “HER2+ combined” includes ER+/HER2+
and HER2+ subtypes. Error bars represent the standard deviation of the scaled log2TPM value at each time point. Sample sizes used in the analysis are the
following. All: n = 112 (T1), n = 88 (T2), n = 27 (T3); ER+: n = 26 (T1), n = 18 (T2), n = 7 (T3); ER+ Combined: n = 49 (T1), n = 36 (T2), n = 8 (T3);
HER2+: n = 19 (T1), n = 17 (T2), n = 5 (T3); HER2+ Combined: n = 42 (T1), n = 35 (T2), n = 6 (T3); TN: n = 44 (T1), n = 35 (T2), n = 14 (T3). Source
data are provided as a Source Data file. b Aggregate expression patterns of pathways mapped to the three DE clusters in the overall cohort and subtypes.
Gray lines represent individual gene signatures (GSVA scores) and red lines represent the averages for each sample group. Error bars represent the
standard deviation of the scaled GSVA score at each time point. Sample sizes used to derive statistics are the same as in Fig. 2a. Source data are provided
as a Source Data file.
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Fig. 4 Tumor infiltrating lymphocyte density increased during treatment then decreased below baseline at surgery time. TIL density distributions over
three time points were compared between tumors from pCR and RD patients in the overall cohort (a), TN (b), and non-TN subtypes (c). d Distribution of
stromal TIL scores over time in TN tumors stratified into pCR and RD groups. Asterisks indicate statistical significance based on linear mixed effects
regression (LMER) adjusting for tumor purity and subtype as covariates. *0.01 < p < 0.05; **0.001 < p < 0.01; ***p < 0.001. See Supplementary Table 2 for
exact p-values. For all box-and-whisker plots, the box is bounded by the first and third quartile with a horizontal line at the median and whiskers extend to
the maximum and minimum value. Source data are provided as a Source Data file. e, f Multiplex immunofluorescence (IF), H&E and PD-L1 IHC images
showing the same regions of tumors taken at T1 and T2 from a TNBC patient—BR294 (e) and a HER2+ patient—BR308 (f). Markers include CD45RO,
CD3, CD4, CD8, PD-L1, and Pan-CK. Chromogenic IHC and multiplex IF assays were only performed once on tumor biopsy samples following assay
optimization. Scale bars in the lower-left corner of the micrographs show 200 μm.
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normal tissue factor by pathway enrichment analyses and com-
paring factor weight distributions across different breast cancer
and normal tissue cohorts (Supplementary Data 5). Tumor purity
is positively correlated with the tumor intrinsic factor, and
negatively correlated with the TME factors in the overall cohort
or within specific subtypes (Supplementary Fig. 8a). Further, the
TME factor assignment is supported by patterns of correlation vs.
published expression signatures of tumor, stromal, normal tissue
and immune cells34 (Supplementary Fig. 8b). The TIL factor was
strongly correlated with the CYT score as well as various immune
signatures. On the other hand, the normal tissue factor was
strongly correlated with non-immune signatures derived from
blood vessels or normal tissues. The stromal factor was strongly
correlated with the Hallmark EMT and TGFβ signatures (Sup-
plementary Fig. 8b, c).

The TIL factor is more significantly enriched in the immune
hot state than the normal factor (Kruskal–Wallis test: p < 2e−16
vs. p= 0.0025), demonstrating that the classification of immune
states were driven by changes in the TIL compartment
(Supplementary Fig. 9a). All three TME factors increased
from T1 to T2 and then decreased from T2 to T3, suggesting
that NAC treatment initially induced relative increases in all
tumor-extrinsic components that regressed at end-of-treatment
(Supplementary Fig. 9b). However, differential distribution of the
TIL factor is more significant than the normal or stromal
factors (Kruskal–Wallis: p= 9.6e−07 vs. p= 0.02 and p= 1.5e
−4). Most importantly, only the TIL factor is significantly
associated with pCR at baseline (Wilcoxon: p= 0.0024) and on-
treatment (Wilcoxon: p= 0.00061) with a consistent pattern
of association across all subtypes (Supplementary Fig. 10).
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Hence, treatment-induced immune response appeared likely to
exert a functional impact.

Immune responses predicts clinical outcome. We examined
whether immune features of tumor biopsies taken at baseline or
during the early stages of treatment could predict pathologic
response at end-of-treatment. Overall TIL intensity and delta TIL
density, the difference in TIL density between T1 and T2, were
associated with NAC response (Supplementary Fig. 11a, b). These
associations were consistent in different subtypes, with more
immunogenic subtypes such as TN and HER2+ exhibiting
stronger associations than ER+ subtypes. In the TN subtype,
NAC response was significantly associated with delta TIL density
(p= 0.038) as well as TIL levels at both T1 (p= 0.0071) and T2
(p= 0.024) (Supplementary Fig. 11c–e). Patients with higher
fractions of immune suppressive cell types in baseline and on-
treatment tumors such as mast cells and M2 macrophages were
more likely to harbor residual diseases. Conversely, patients with
baseline and on-treatment tumors harboring higher fractions of
immune stimulatory cell types such as CD8+ T cells and M1
macrophages were more likely to achieve pathologic complete
response (Fig. 7a). This pattern of association was consistent in
different subtypes (Supplementary Fig. 12a–d), and supported by
CD8+ IHC analysis on a subset of samples (Supplementary
Fig. 12e, f).

Multivariate analyses further revealed that many immune
features at baseline and on-treatment were independently
associated with pCR status after adjusting for subtype and other
clinical features including tumor stage, nodal stage, and tumor
purity (Fig. 7b and Supplementary Data 6). In addition, elastic net
bootstrap analysis revealed that T2 immune features were more
predictive of the pCR status than T1 immune features (Fig. 7c).
For example, T2 TIL density was ranked by elastic net bootstrap
analysis as the most predictive immune feature while TIL density
at T1 was ranked at the eleventh (Fig. 7b and Supplementary
Data 7). It has been demonstrated that intraepithelial TILs are
localized to tumor parenchyma and initiate cytotoxic reactions
only when activated by tumor antigens35. We quantified stromal
TILs located within intratumoral stromal regions and intrae-
pithelial (IE) TILs located within tumor nests for TN samples
through pathologist assessment. While the stromal TILs increased
from T1 to T2 regardless of pCR status, IE TILs increased
only in the pCR group, revealing a link between the intratumoral
localization of TILs and NAC response (p= 4.06e−05) (Fig. 7d, e).
Taken together, our data suggests that NAC treatment induced
robust immune response and increased TIL infiltration into
tumor nests in a subset of breast cancers, contributing to
antitumor killing and favorable clinical outcome.

Discussion
Through multidimensional characterization of 281 tumor biop-
sies taken before, during and after NAC from 146 breast cancer
patients, we have shown that NAC induced dynamic changes in
the tumor immune microenvironment that varied by breast
cancer subtype and pCR status. Tumors from the pCR cohort or
the more immunogenic TN subtype exhibited a surge in TIL
abundance after only one cycle of chemotherapy followed by a
drop to levels below the baseline after a full course of treatment.
Among different breast cancer subtypes, TN appears to be the
most prone to immune stimulation while ER+/HER2− is the
least immunogenic. The NAC induced immune-stimulated states
harbored increased abundance of CD4+ and CD8+ T cells and
up-regulation of T cell inflamed signatures known to predict
responses to checkpoint inhibitors, suggesting that NAC had
created a window of opportunity by priming the tumors for

responding to IO therapies. During this window, patients with
more immune stimulated tumors achieved better outcome than
those with more immune suppressed tumors. Both gene expres-
sion and histopathology characterization indicated that residual
tumors post-NAC tend to be immune suppressed with lower TIL
abundance, decreased fractions of immune stimulatory cell types
and increased fractions of immune suppressive M2 macrophages
compared to on-treatment or baseline tumors. Hence, tumors
heavily pretreated by chemotherapies tend to be immune sup-
pressed and impaired in its antitumor cytotoxic activity, con-
sistent with reports that response rates to immune checkpoint
inhibitors are better in first-line treatment than in subsequent
lines and that prior chemotherapy treatment in the metastatic
setting is associated with lower CD8+ TILs36.

Recently two Phase III clinical trials have demonstrated that
chemotherapy in combination with checkpoint inhibitors sig-
nificantly increased pCR rate and prolonged progression-free
survival in patients with triple negative breast cancers20,37.
However, there was still limited understanding about the mole-
cular basis of the clinical benefit and whether this benefit would
extend to other combinations. Furthermore, how to best combine
chemotherapy with immunotherapy in terms of timing and
sequencing remains an open question. Our study provides clini-
cally derived molecular evidences that chemotherapies are
immune potentiating and underscored the roles of TILs as both
effector and marker of the clinical benefit conferred by the
combination. Our findings suggest that combination with
immunomodulatory therapies is more effective if administered
during the early stage of chemotherapy, before the second cycle
for instance, rather than after the end of treatment. Moreover, IO
combination probably improves outcome only for a subset of
patients whose tumors are immunogenic at the outset. Hence, it
will become increasingly important in the future to develop
therapeutic approaches that reinstate immunological surveillance
for cancers that are immune quiescent or immune suppressed in
the post-treatment setting.

Most studies focused on characterization of treatment naïve
tumors for identifying determinants of tumor immunogenicity and
predicting response to IO therapies38,39. Evidence is emerging that
one can obtain valuable information by characterizing immune
response during treatment. It has been reported that increased ratio
of CD8+ TILs over FOXP3+ TREG cells after anthracycline-based
chemotherapy is predictive of pathologic complete response and
survival in breast cancers40,41. Another study concluded that on-
treatment TILs, but not baseline TILs, are independently associated
with pathologic response following chemo-free anti-HER2 therapies
in HER2+ breast cancers42. In our study, baseline TIL abundance
was associated with pCR status consistent with earlier reports43.
More importantly, we found that immune response quantified by
TIL abundance on-treatment is a superior predictor of treatment
outcome than baseline TIL abundance. Further, expansion of
intraepithelial TILs during early response only among patients who
achieved pCR indicates that TILs not only increased in numbers but
also mediated anti-tumor activities that led to favorable clinical
outcome for those patients. Our observations of breast cancer
associated immune states undergoing dramatic changes during
neoadjuvant chemotherapy treatment underscored the dynamic
nature of tumor-host immune interactions. Immune responses to
chemotherapies appeared to be strongly influenced by pre-existing
immune features in untreated tumors, indicating that tumor
immunogenicity is largely an intrinsic property although the phe-
notype is more apparent in the on-treatment than pre-treatment
tumor. Hence, monitoring tumor immune dynamics over time
during chemotherapy and other anticancer treatment could enable
early prediction of therapeutic response with better accuracy than
baseline characterization alone.
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Methods
Patient enrollment and sample collection. This study was reviewed and
approved by the Institutional Review Board (IRB) of Samsung Medical Center
(SMC), Seoul, Korea (IRB No. 2014-11-015) with informed consents from the
patients for the research use of clinical and genomic data. Clinical study was
registered with www.clinicaltrials.gov (NCT02591966). All patients were diagnosed
with histologically confirmed invasive breast cancer and treated at SMC. Patients
were treated with a standard neoadjuvant chemotherapy [AC-D(H)] protocol of
four cycles of doxorubicin plus cyclophosphamide (AC) combination che-
motherapies followed by four cycles of docetaxel (T) chemotherapy. In accordance
with ASCO guidelines, HER2+ BC patients were treated with docetaxel plus
trastuzumab after AC. For each patient, tumor core biopsy and matched blood

were prospectively taken before treatment (T1). A second core biopsy was taken
three weeks after the first cycle of AC (T2) while a third tumor sample was taken at
surgery following 6 months of treatment (T3).

Fresh frozen tissue specimens were collected from 201 of the 210 recruited
patients. All the biopsy samples were processed immediately or within 15 min after
acquisitions. Samples at surgery (T3) were grossly examined and taken at the
operating table just after the removal of the specimen. We excluded specimens that
were invisible, had very small, scattered tumors or contained mostly necrotic or
fibrotic scar-like tissue at the time of gross examination. Most of the samples after
breast conserving surgeries were sent for specimen mammography to ensure the
clips were located at the central area of the tumors before the neoadjuvant
chemotherapy according to the protocol of SMC.
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Fig. 7 Impact of immune response on treatment outcome. a Forest plot showing the associations of different immune cell fractions vs. NAC response
combined T1 and T2 samples. The x-axis shows the log odds ratio of % cell fractions in pCR vs. RD. Asterisks indicate statistical significance based on
multiple regression adjusting for subtype as a covariate: *p = 0.038, **p = 0.008, ***p = 0.0008. b Independent associations between clinical factors
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Tumor purity estimates. H&E slides of 5-μm thickness were prepared and ana-
lyzed by two pathologists (YLC, SYC) to determine the presence and percentage of
tumor cells. Tumor-rich areas were marked for manual macro-dissection whenever
necessary and large areas of necrosis were avoided. Tumor purity was estimated as
the percentage of tumor cells among all cells (tumor cells, lymphocytes, and normal
cells) in the marked tumor area by microscopy. We excluded 55 cases from next-
generation sequencing (NGS) due to low tumor purity and low DNA/RNA yield or
quality (Fig. 1b). We also computationally inferred tumor purity using FACETS44

(Supplementary Data 1) and excluded five samples from downstream analyses with
low tumor purity (<20%) based on both computational and pathologist estimates.
NGS data QC analyses excluded another four samples due to insufficient read
coverage or an outlier expression pattern. FACETS derived tumor purity estimates
were used as covariates in regression analyses.

Whole transcriptome sequencing. For RNA-Seq, sequencing libraries were pre-
pared using TruSeq RNA Sample Preparation kit v2 (RS-122-2001 and RS-122-
2002, Illumina). Sequencing of the RNA libraries was performed on an Illumina
HiSeq2500 in 100-bp paired-end mode of the TruSeq Rapid PE Cluster kit and the
TruSeq Rapid SBS kit. RNA-Seq was analyzed using the RSEM45 pipeline with
hg19 as the genome reference.

Breast cancer subtype classification. The IHC subtypes were determined by IHC
assays for ER, PR, and HER2 and used in clinical diagnoses and treatment. For
confirmation, we also predicted PAM50 subtypes using Genefu46 from the gene
expression data. The following rules were used to map IHC subtypes with
PAM50 subtypes: ER+ (Luminal A and Luminal B), ER+/HER2+ (Luminal B and
Her2), HER2+ (Her2) and TN (Basal). In cases of disagreement between IHC and
PAM50, we chose a subtype by examining individual markers including ERBB2,
ESR1, and PGR gene expression and ERBB2 copy number47.

Differential expression and pathway analysis. We applied linear mixed effects
model to identify genes differentially expressed over NAC treatment time points
while adjusting for the confounding effects of breast cancer subtypes and tumor
purity. DE analyses were performed separately for three pairwise comparisons (T1
vs. T2, T2 vs. T3, and T1 vs. T3) in different sample groups, including the overall
cohort and three subtypes—ER+, HER2+ and TN. The ER+ /HER2+ subtype was
excluded due to insufficient sample size at T3. An aggregate list of significant DE
genes were selected by requiring p-value < 0.01 and absolute fold-change > 2 from
all pairwise comparisons and sample groups. K-means based consensus cluster-
ing48 was performed on expression profiles of the significant DE genes from each
sample group to identify three clusters per group.

Hypergeometric tests were performed on each cluster of significantly DE genes
to identify enrichment with known cancer related pathways, derived from three
collections of curated gene sets from MSigDB v5.149—HALLMARK, KEGG, and
REACTOME. We calculated gene expression signature scores for curated MSigDB
pathways and major immune and tumor associated cell types34 using the GSVA
algorithm28. A pathway was mapped to a DE gene cluster if it is enriched with
FDR < 20% and has a differentially expressed expression signature with a FDR < 5%
in the same sample group for at least one pairwise comparison (T1 vs. T2, T2 vs.
T3, and T1 vs. T3). To further resolve immune cell mixtures and discriminate
closely related cell types, we implemented an in silico immune cell deconvolution
using a nu-support vector regression (nuSVR) method32 to infer the relative
fractions of 13 immune cell subtypes among all leukocytes present in each tumor
using RNA-Seq data.

Identifying differentially distributed features over time. The distributions of
molecular features including voom50 normalized gene expression, gene signatures,
and inferred immune cell fractions were compared across different treatment times
to identify significant differences. Let ωj represent the data set containing the
random variable observations yij for feature j along with clinical information (pi, si,
ti, di, and ri) for the N samples (i), where feature yij information was available, such
that ωj ¼ fyij; pi; si; ti; di; rigi¼1;¼ ;N . Since features are assumed to be mutually
independent and treated in a univariate fashion, the feature index j is omitted
further in this section for simplicity. Clinical information includes sample tumor
purity (p), which describes percent of tumor tissue present in a given sample,
consensus subtype (s), which lists the modal tumor subtype per patient, collection
time (t), which represents the treatment time each sample was obtained, the patient
donor (d) for each sample, and the pathologic response status (r) for the donor
patient.

NAC induced feature changes over time were modeled using linear mixed-
effects regression model such as

yi ¼ β0 þ β1pi þ β2si þ β3ti þ bd þ εi; ð1Þ
where β0 is the overall feature value (intercept), β1 is the tumor purity effect on
feature values, β2 estimates the feature differences due to subtypes, β3 describes the
treatment time effects on feature values, bd is a normally distributed random
variable with mean zero representing the deviation from the overall mean of the
mean feature value for the dth donor patient (between-patient residuals), and εi is a
normally distributed random variable with mean zero accounting for the within-

patient residuals. The reduction in the residual sum of squares given by β3 was
assessed by Chi-squared tests and features were retained for further investigation, if
the addition of the time covariate was shown to be statistically relevant for the
model goodness-of-fit (FDR51 < 0.05). A similar approach was applied to identify
subtype specific NAC induced feature changes over time but now with the
exclusion of the term β2si from Eq. (1). The lmerTest R package52 was used for
these analysis.

Multiplexed immunofluorescence (IF) and immunohistochemistry (IHC).
Multiplexed IF staining was performed using the Opal 7 Solid Tumor Immunology
Kit (PerkinElmer). According to the manufacturer’s protocol, formalin-fixed par-
affin-embedded tissue slides were deparaffinized with xylene and rehydrated
through an ethanol gradient ending with a distilled water wash. Antigen retrieval
was performed using AR9 (for PD-L1, CD4, and CD8) or AR6 (for CD45RO, CD3,
and pan-cytokeratin) buffer and microwave treatment. The first antibody PD-L1
(clone E1L3N) was incubated, followed by secondary antibody incubation using
Opal Polymer HRP. Opal-620 dye was then applied for visualization of PD-L1, and
microwave treatment was performed to remove primary and secondary antibodies.
The process was repeated with antibodies/fluorescent dye in the following order:
CD4 (clone EP204)/Opal-520, CD8 (clone 4B11)/Opal-570, CD45RO (clone
UCHL1)/Opal-650, CD3/Opal-540, pan-cytokeratin (clone AE1/AE3)/Opal-690.
After applying DAPI for visualization of nuclei, slides were mounted, and cover
slipped. Multiplexed slides were imaged using PerkinElmer Vectra Polaris quan-
titative slide scanner, and images were analyzed using Inform software (Perki-
nElmer, Ver. 2.4.1). Immunohistochemistry for CD8 was conducted in FFPE
tissues using a CONFIRM-anti-CD8 (SP57) rabbit monoclonal primary antibody
without dilution with Ventana BenchMark XT via the OptiView DAB IHC
Detection Kit.

TIL quantification based on digital H&E image analysis. Using CRImage53, a
pathologist marked 273 cells as lymphocytes and 189 cells as non-lymphocytes
from H&E diagnostic breast cancer tiles from Samsung Medical Center at 20×
magnification. Parameters used for segmentation were otsu threshold, minShape =
50, failureRegion = 2000, and maxShape = 800. CRImage generates 36 parameters
using EBImage54, which were used to train the support vector machine classifier to
label the cells and output coordinates and features of each cell. The SVM model
was generated by the e1071 svm function with parameters type = “C”, kernel =
“radial”, probability = TRUE. Using a Wilcoxon rank sum test on each separate
parameter, 30/36 parameters had a p-value < 1e−05 between lymphocyte and non-
lymphocyte classes showing that the univariate parameters were very significant.
We tiled 20× H&E images into 2050 × 2050 pixel tiles using “vips dzsave”. Tiles
were segmented with the same parameters as the training set and classified with the
SVM model. Output files for each tile were consolidated to reconstruct the global
coordinates of the features by calculating the offset from the tile’s relative position
and pixel size. The SVM generated a score from 0 to 1 to indicate confidence in
each class. Cells labeled lymphocytes were filtered to be 60–150 in size and have a
minimum SVM score of 0.97. Cells labeled non-lymphocytes had a SVM score ≤
0.1. Large cells were defined as cells not labeled lymphocyte and having a size ≥ the
third quartile of all cells >200 in size. The tissue areas from H&E images were
calculated using VisiopharmTM (Visiopharm, Hoersholm, Denmark) using a cus-
tom algorithm. The lymphocyte density from H&E images was then calculated by
dividing the lymphocyte count obtained from CRImage by the estimated tissue area
for each patient. The data was fit with a linear model and R2 calculated using lm.

Immune state classification. We used iCluster55 to cluster and classify samples as
a joint multivariable regression of multiple data types including immune gene
expression and immune cell fractions with reference to a set of common latent
variables that represent the underlying immune states. The optimal number of
clusters was determined based on Bayesian information criterion. The association
of immune states with immune features (Yi) was calculated using ANOVA by
solving the following equation:

Yi ¼ β0 þ β1pi þ β2si þ ϵi;

where β0 is the overall feature value (intercept), β1 is the tumor purity effect on
feature values, β2 estimates the feature differences due to immune states. The lm
function from the stats R package was used to estimate the coefficients.

Virtual microdissection analysis. We performed virtual microdissection analysis
using the non-negative matrix factorization (NMF) algorithm to separate bulk
tumor expression into factors representing distinct tissue compartments56. NMF
was applied on a compendium of RNA-Seq gene expression that included the
current cohort (NAC) and 1678 samples from TCGA, CCLE, GTEx, and the SMC
YBC cohorts47. The NMF algorithm factorizes the gene expression matrix V of g
genes and s samples into two non-negative matrixes of k factors: gene factor matrix
W of n gene weights for k factors and sample factor matrix H of m sample weights
for k factors. W represents the expression pattern of the k parts and H represents
the respective contribution of k parts in each sample or bulk tumor57. NMF was
performed on log transformed gene expression matrix V, log2(TPM+1), of the
combined cohorts using the R package NMF which used the “brunet” algorithm58.
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We performed 30 runs of NMF and chose the factorization that achieved the lowest
approximation error for subsequent analyses. To extract exemplar genes for each of
the k factors, a score for each gene g was first calculated representing how factor-
specific it is based on an entropy measure59. Two criteria were then used for
selecting the genes. First, the gene score has to be greater than �μþ 3�σ, where �μ and
�σ represents the median and the median absolute deviation (MAD) of the scores
respectively. Second, the maximum contribution to a basis component of the
feature has to be greater than the median of all contributions. Pathway enrichment
analyses were performed on the exemplar genes for each factor using the Fisher’s
exact test and the MSigDB v5.2 pathway gene sets. To determine the optimal k, we
compute the cophenetic coefficient and choose k = 14 that maximize the coeffi-
cient score58. To attribute NMF factors to different tissue compartments, we
examined the distribution of sample factor weights in sample groups with known
labels and examined the enriched pathways based on the exemplar genes. We
identified four tumor intrinsic factors including F14 for the TN subtype, F2 for
HER2+, and two ER+ factors—F1 and F4. We also identified four factors that
represent tumor extrinsic compartments (TME)–TIL factor F13, stromal factor F12
and two normal tissue factors F3 and F7. F3 was overweight in tumor adjacent
tissue while F7 was more enriched in healthy normal tissue from the GTEx study.
Tumor intrinsic and normal tissue factor weights were summed to create two
composite factors—F-Tumor and F-Normal.

Multivariate analysis. We performed multiple regression analyses with adjust-
ment for confounder variables to assess the associations between immune features
and clinical features. Seven clinical variables were evaluated—pathologic response
status (pCR vs. RD), subtype TN (yes vs. no), subtype HER2+ (yes vs. no), tumor
stage (early vs. late), nodal stage (early vs. late), and tumor purities at T1 and T2.
Three types of immune features from tumor biopsies taken at T1 and T2 were
evaluated: histopathology analysis (TIL density), immune cell fractions (e.g., %
CD8+ T cells, % CD4+ memory T cells, % Mast cells) and gene expression
signatures (e.g., cytotoxic cells, NK cells, and CD8+ T cells). Logistic regression
was applied if the immune feature was a binary variable and regular linear
regression was applied for continuous variables. For multiple linear regression
analyses, we solved the function Y ¼ β0 þ β1X1 þ β2X2 þ ¼ þ βpXp þ ε where βj
quantify the association between variable j with the response. R function “lm” from
“stats” package was used to estimate the regression coefficients β0, β1,… βp and
corresponding p values. For logistic regression analyses, we solved the

functionlogð pðxÞ
ð1�pðxÞÞÞ ¼ β0 þ β1X1 þ β2X2 þ ¼ þ βpXp þ ε, where p xð Þ ¼ PrðY ¼

1jXÞ and Y was the binary response variable. R function “glm” from “stats” package
was used to estimate the regression coefficients β0, β1,… βp and corresponding
p values.

Elastic Net60 is a penalized regression approach to variable selection that
identifies linear combinations of unique variables that contribute to a response
variable such as pCR status. Elastic Net performs variable selection by minimizing a
regularized cost function. Immune features subject to multivariate analysis includes
24 bindea immune signatures34 and estimated cell fractions for 13 immune cell
types. Features were ranked based on the number of times each feature was selected
over 10,000 bootstrap iterations using a penalty factor of 1.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-Seq based gene expression data are deposited in GEO under accession code
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EGAS00001003354. The raw data is available under controlled access. Data access can be
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remaining data are available within the Article, Supplementary Information or available
from the authors upon request. Source data are provided with this paper.
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