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Abstract: Pathological changes in the cortical lamina can cause several mental disorders. Visualiza-
tion of these changes in vivo would enhance their diagnostics. Recently a framework for visualizing
cortical structures by magnetic resonance imaging (MRI) has emerged. This is based on mathe-
matical modeling of multi-component T1 relaxation at the sub-voxel level. This work proposes a
new approach for their estimation. The approach is validated using simulated data. Sixteen MRI
experiments were carried out on healthy volunteers. A modified echo-planar imaging (EPI) sequence
was used to acquire 105 individual volumes. Data simulating the images were created, serving as
the ground truth. The model was fitted to the data using a modified Trust Region algorithm. In
single voxel experiments, the estimation accuracy of the T1 relaxation times depended on the number
of optimization starting points and the level of noise. A single starting point resulted in a mean
percentage error (MPE) of 6.1%, while 100 starting points resulted in a perfect fit. The MPE was
<5% for the signal-to-noise ratio (SNR) ≥ 38 dB. Concerning multiple voxel experiments, the MPE
was <5% for all components. Estimation of T1 relaxation times can be achieved using the modified
algorithm with MPE < 5%.

Keywords: cortical layers; mathematical modeling; MR imaging; optimization algorithm; brain imaging

1. Introduction

The highest functions of the brain are enabled by the complex functional architecture
of the cerebral cortex. Therefore, it is no surprise that pathological malformations within
the cortex can lead to various disorders. These pathological changes occur at resolutions
significantly lower than the ones available to the current neuroimaging hardware, causing
an obstacle to their direct diagnosis in vivo.

The structure of the cerebral cortex was first extensively examined ex vivo [1],
resulting in a description of its laminar architecture, commonly separated into six cortical
layers [2]. However, the sub-millimeter thickness of the cortical lamina prevents equivalent
visualization in vivo. First attempts to circumvent this limitation focused on anatomically
distinct formations within the cortex. Such a structure is the stria of Gennari—a strongly
myelinated stripe located within layer IV of the primary visual cortex. Positioning the
imaging slices perpendicular to the region of interest allowed Clark et al. [3] to capture the
stria in black contrast, using field strengths of 1.5 T. Additional work followed targeting
this cortical landmark. The researchers employed higher field strengths of 3 T and the
acquisition of multiple images of the same subject. These were used for averaging, which
was necessary to achieve an appropriate signal-to-noise ratio (SNR) needed for visual-
ization [4–7]. Further development was needed to decrease the total imaging duration

Diagnostics 2022, 12, 24. https://doi.org/10.3390/diagnostics12010024 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12010024
https://doi.org/10.3390/diagnostics12010024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-8862-2001
https://orcid.org/0000-0002-4027-6568
https://orcid.org/0000-0002-9102-1872
https://orcid.org/0000-0002-9876-1072
https://orcid.org/0000-0002-7261-0022
https://doi.org/10.3390/diagnostics12010024
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12010024?type=check_update&version=2


Diagnostics 2022, 12, 24 2 of 12

caused by the image averaging and improve the image contrast. These goals were accom-
plished using magnetization-prepared rapid gradient-echo (MPRAGE) and gradient-echo
(GE) sequences at field strengths of 7 T [8–10]. While the imaging of cortical layers began
with a focus on primary visual cortex V1, additional areas of cortical lamina followed.
Researchers focused on the motion-sensitive area V5 [11] and the auditory cortex [12],
acquiring T1-weighted images at 3 T. Due to the sub-millimeter resolutions possible at
7 T, the focus of the research community shifted to image acquisition at the highest field
strengths. Multiple Brodmann areas of the cortex were measured using a magnetization-
prepared fluid-attenuated inversion recovery sequence. The result was several intensity
profiles, which exhibited a multiple-layer appearance similar to the patterns of the cortical
lamination [13]. Different contrasts resulting from a modified magnetization-prepared
rapid acquisition GE sequence were combined to create intercortical maps related to myelin
content. Subsequent clustering yielded a delineation of the auditory area [14]. Laminar
profiles resembling the lines of Baillarger were also revealed in the images resulting from
a modified T1-weighted MPRAGE sequence [15]. Magnetization-prepared sequences of
two rapid acquisition gradient-echoes (MP2RAGE) were used to acquire high-resolution
T1-weighted images. The cortical gray matter was segmented out of the volume and then
segmented further, revealing four cortical layers [16]. A conceptually different approach
was used to visualize cortical layers without the necessity of sub-millimeter image resolu-
tion. A fast spin-echo (SE) sequence with several different IR times at 3 T captured several
images with corresponding contrasts. The dataset was then fitted to an exponential decay
function to estimate the T1 relaxation times individually for each voxel. The estimated
values served as the basis for the classifications of individual voxel into five or six groups,
corresponding to the cortical layers [17]. Using a similar imaging protocol, a series of
low-resolution echo-planar images (3 mm) were acquired with the contrast based on a set
of varying IR times. A modified fitting procedure allowed for the estimation of multiple
T1 relaxation times related to individual voxel components, thus capturing several layers
within a single voxel [18]. The above-mentioned imaging procedure was also made to better
reflect the natural curvature of the cerebral cortex. This was accomplished via sub-sampling
of individual voxels and their mapping onto a grid of virtual spheres, spanning the cortical
gray matter [19]. The works presented so far show two emerging pathways in the imaging
of whole-brain cortical lamination. The first approach is focused on acquisitions of high-
resolution images at higher field strengths (7 T respectively) [14–16]. Although utilized in a
variety of research endeavors, this approach is not without limitations, the most notable
being the partial volume effect (PVE). This is the occurrence of multiple tissue types within
a single voxel, which manifest in the obtained voxel intensity [20]. In the context of cortical
laminations, this effect persists even at 7 T [18]. An alternative approach to imaging the
cortical layers is based on the acquisition of a multitude of images—surprisingly—with
lower resolutions at lower field strengths. The low-resolution images are subjected to
a complex modeling and visualization pipeline resulting in high-detail maps of cortical
lamination. This approach is limited due to the need for estimation of T1 relaxation times,
the process of which is a tradeoff between computational complexity, time constraints, and
estimation accuracy [18,19].

In this paper, we use the existing low-resolution approach to imaging cortical layers.
We endeavor to increase the accuracy of the mathematical modeling, which forms an
integral part of the overall method. More specifically, we investigate whether the Trust
Region algorithm is able to estimate the T1 values of several components within a single
voxel image using the pulse sequence proposed in [18]. A dataset with known values of T1
times is generated to assess the validity of the method. This is achieved via simulations of
MRI images and individual voxels. Simulations are carried out using signal equations and
an established simulator MRiLab, with a custom sequence and an imaging phantom.

The remainder of the paper is organized as follows. In the Materials and Methods,
we first describe the estimation of T1 relaxation times as an optimization problem and
describe the chosen algorithm. Later, we focus on the description of the experimental
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and simulated data. In the Results section, we present the outcomes of the optimization
algorithm for various levels of noise and types of simulated data. The Discussion compares
the results with results of similar research endeavors in estimating T1 relaxation and
concludes the paper.

2. Materials and Methods
2.1. Fitting Problem

Assuming that the time of repetition� T1 and the first RF pulse is equal to 180◦, the
equation for GE inversion recovery and SE inversion recovery sequences, which models a
single voxel signal, can be formulated as:

S(TIi) = c
(

1− 2e−
TIi
T1

)
, (1)

where S(TIi) is complex-valued and represents single-voxel image information after the
Fourier transform, TIi is the time of inversion for the i-th inversion recovery time, and
c is complex-valued. The voxel intensity is dominantly weighted by the relaxation time
T1 but is also influenced by other relaxation mechanisms. A more generalized form of
Equation (1) can be used to estimate the T1 relaxation times of a single signal source. This
is usually a single voxel of an MR image, commonly used for T1 mapping, as evidenced by
the state-of-the-art method [21].

The imaging protocol proposed in [18] produces only magnitude images after the
inverse discreet Fourier transform. Hence, we have to limit the model to the magnitude
data. Assuming only signal magnitude is available, Equation (1) takes the form of:

|S(TIi)| = M0

∣∣∣∣(1− 2e−
TIi
T1

)∣∣∣∣, (2)

where |S(TIi)| is voxel intensity, |c| = M0, and the parameter M0 denoting magnetization
corresponding to the center of the k-space for the given voxel at TI = 0 ms. This model can
be generalized to include multiple components per voxel [18]. In that case, Equation (2)
takes the form of:

M(TIi) =
n

∑
j=1

M0j

∣∣∣∣∣(1− 2e
− TIi

T1j )

∣∣∣∣∣, (3)

where the magnetization of the voxel for the i-th inversion recovery time M(TIi) is equal
to the sum of individual magnetizations of the assumed components, M0j is the magne-
tization at TI = 0 ms for the j-th component and T1j is the T1 relaxation time for the j-th
component, and n denotes the number of components per voxel. While the parameter T1
uniquely identifies the cortical component, the parameter M0 is proportional to the relative
representation of the cortical component within the voxel.

The modeling problem encountered here could be classified under the domain of
the multiexponential analysis [22]. It is often encountered in material science as a part
of nuclear magnetic resonance (NMR) relaxometry [23]. The NMR signal is decomposed
based on the properties (relaxation times) of the individual structural elements within the
measured sample, revealing their relative composition [24]. This is achieved via the inverse
Laplace transform [25], although this term is also used to describe mathematically distant
methods [26]. The result is a distribution of relaxation times for each voxel. In our work, we
follow a different path of multiexponential analysis but with a similar goal of identifying
the underlining components that modulate the obtained signal.

To estimate the coefficients, M0j and T1j, model (3) is fitted to measured data (see
Figure 1) using the non-linear least-squares method.
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Figure 1. Illustration of the data acquisition approach proposed by Lifshits et al. [18]. The experi-
mental data consist of a series of EPI images with different times of inversion. A one-dimensional 
signal is constructed for every image voxel, dependent on the TI time. The signal is then decom-
posed into several curves, each representing a voxel component with specific values of M0 and T1. 
In this way, a cortical composition of a single voxel series can be decomposed into multiple signals 
in the T1 relaxation domain. 

The data in this context represent magnitudes of a single voxel at the same position 
within all of the images acquired with different inversion recovery times. The objective 
function takes the following form: 
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where 𝑇𝐼  represents the duration of inversion recovery in ms for 𝑖 = 1,2, … , 𝑛 for n im-
ages. The final step is the minimization of the objective function using a suitable optimi-
zation algorithm. For this purpose, we chose the Trust Region algorithm with a modifica-
tion in its initialization. The algorithm, including the modification, is described in the fol-
lowing sections. 

2.2. Experimental MRI Data 
The measured datasets resulted from 16 experiments using a 3T Siemens Magneton 

Prisma MRI scanner (Siemens Healthcare, Erlangen, Germany). Each experiment con-
sisted of two different imaging protocols:  
1. Low-resolution modified echo-planar sequence with the following parameters:  

TR/TE = 1200/39 ms, 105 inversion times from the interval of 50–3000 ms, with the 
resolution of 3 × 3 × 3 mm3. The size of the image obtained from this sequence was 64 
× 64 × 42 voxels. 

2. High-resolution MPRAGE sequence with the following parameters: TR/TE = 2150/2.5 
ms, TI = 1100 ms, with the resolution of 1 × 1 × 1 mm3. The size of the image obtained 
from this sequence was 160 × 256 × 256 voxels. 

  

Figure 1. Illustration of the data acquisition approach proposed by Lifshits et al. [18]. The experi-
mental data consist of a series of EPI images with different times of inversion. A one-dimensional
signal is constructed for every image voxel, dependent on the TI time. The signal is then decomposed
into several curves, each representing a voxel component with specific values of M0 and T1. In this
way, a cortical composition of a single voxel series can be decomposed into multiple signals in the T1

relaxation domain.

The data in this context represent magnitudes of a single voxel at the same position
within all of the images acquired with different inversion recovery times. The objective
function takes the following form:

F(M01, M02, . . . , M07, T11, T12, . . . , T17) =
n

∑
i=1

(
M(TIi)−

7

∑
j=1

M0j

∣∣∣∣∣(1− 2e
− TIi

T1j )

∣∣∣∣∣
)2

, (4)

where TIi represents the duration of inversion recovery in ms for i = 1, 2, . . . , n for n
images. The final step is the minimization of the objective function using a suitable
optimization algorithm. For this purpose, we chose the Trust Region algorithm with a
modification in its initialization. The algorithm, including the modification, is described in
the following sections.

2.2. Experimental MRI Data

The measured datasets resulted from 16 experiments using a 3T Siemens Magneton
Prisma MRI scanner (Siemens Healthcare, Erlangen, Germany). Each experiment consisted
of two different imaging protocols:

1. Low-resolution modified echo-planar sequence with the following parameters:
TR/TE = 1200/39 ms, 105 inversion times from the interval of 50–3000 ms, with
the resolution of 3 × 3 × 3 mm3. The size of the image obtained from this sequence
was 64 × 64 × 42 voxels.

2. High-resolution MPRAGE sequence with the following parameters: TR/TE = 2150/
2.5 ms, TI = 1100 ms, with the resolution of 1 × 1 × 1 mm3. The size of the image
obtained from this sequence was 160 × 256 × 256 voxels.
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2.3. Simulated Data

Additional imaging data were also generated to provide ground truth information to
enable assessment of the ability of our optimization algorithm to arrive at the best solution.
Ten different imaging datasets were simulated in total (using Matlab (v2019a, Mathworks,
Natick, MA, USA)), each with an increasing level of complexity.

The first nine simulated datasets consisted of a series of intensity magnitudes of a
single voxel, proportional to the magnetization M(TIi). These values were computed
using Equation (3). Parameters M0j and T1j were selected for all cortical components, and
the values of M(TIi) for the inversion times from 50–3000 ms were computed, based on
this selection.

Values for the parameter T1 were chosen based on the whole-brain estimates, using
the method presented in [21]. A single T1 value was obtained for each voxel of the whole
image. The histogram of the relaxation times is presented in Figure 2.
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As shown in Figure 2, the data show two distinct peaks corresponding to the T1 times
of 700 ms and 1000 ms. These represent the T1 relaxation times of white (700 ms) and gray
(1000 ms) matter at 3 T, similar to the values found in the literature [27,28].

While the cerebral cortex is commonly delineated into six layers, our model (3) assumes
seven individual components. Given the resolution of our data, it is reasonable to assume
the presence of additional bordering structures (cerebrospinal fluid (CSF) and white matter
(WM)) within the cortical voxels. Therefore, up to seven unique components per voxel
were assumed, each representing a unique formation within the cerebral cortex (CSF, WM,
the sixth cortical layer, and the five remaining cortical layers).

For the first simulated dataset, the values of parameter M0 were randomly gener-
ated while the values of parameters T1 (700, 800, 1100, 1200, 1500, 1700, and 2000 ms)
remained constant. Parameters M0 were generated from a uniform distribution to ensure a
minimum representation of 5% of each component in the voxel. To make the simulated
data more closely resemble the outcome of the MRI experiments, a noise component with
the Gaussian distribution with the expected value equal to zero and increasing variance
(σ2 = {0, 0.1, 1, 5, 10, 25, 50, 100}) was added. This process resulted in eight datasets
with varying levels of noise. An illustration describing the generation of the simulated data
is presented in Figure 3.
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Figure 3. Generating simulated data. (A) Data simulating the signal of a single-voxel series. Indi-
vidual signals with chosen parameters M0 and T1 are linearly combined, and a noise component of
varying power is added. The result is a signal resembling a magnitude series of a single voxel from
the experimental data. (B) Simulation of a 2D image. A numerical phantom with two components
per voxel is constructed. It is then subject to the experimental EPI sequence, resulting in a series
of images.

The final simulated dataset was created using the MRiLab [29] simulator (v1.3, Fang
Liu, Madison, WI, USA). The software allows for the Bloch equation-based simulation of
the MRI process. Modeling of the tissue microstructure at the sub-voxel level is achieved
by using the generalized tissue model with multiple proton exchange pools.

A virtual object with the predefined properties and an MRI sequence (multi-shot EPI
with TR = 10 s, TE = 30 ms), similar to the sequence used for the measurement of the
real-life data, was created. The virtual object was 100 × 100 × 32 voxels and consisted of
two components (T11 = 700 ms, T21 = 80 ms, ρ1 = 0.4 T12 = 800 ms, T22 = 90 ms, ρ2 = 0.6).
Given the limitations of the simulator, only two components per voxel could be simulated.
The size of the virtual object was chosen based on the properties of the virtual objects
supplied with the simulator. Using the defined virtual object and imaging protocol, a series
of MRI experiments with different inversion recovery times from 50 ms to 960 ms were
simulated. The result was a dataset consisting of 70 images (64 × 64 pixels).

2.4. Modified Trust Region Algorithm

Trust Region algorithms represent a set of optimization algorithms based on the
approximation of the objective function within a selected region of the optimization search
space [30]. The approximating function should be able to reasonably represent the objective
function within the selected region and be easier to optimize. The algorithm itself iteratively
finds a local solution to a problem:

minx∈Rn f (x), (5)

where f (x) is a twice-differentiable vector-valued objective function. For the k-th iteration
of a general Trust Region algorithm, the first step is the approximation of the objective
function. A model mk(x) is established to approximate the objective function within a
neighborhood of xk. A commonly used approximation is the Taylor series expansion of
f (x) around the point xk:

mk(xk + s) = f (xk) + gk
Ts +

1
2

sT Hks, (6)
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where gk denotes the gradient of the objective function and Hk is the Hessian. The trust-
region Bk for the k-th iteration can be then defined as:

Bk = {x ∈ Rn|||x− xk||k ≤ ∆k}, (7)

where ∆k is the trust-region radius and || · ||k is an iteration-dependent norm, often the l2
norm. Using the model mk(x), a trial step sk is estimated to satisfy the condition ||sk||k ≤ ∆k.
This is known as the trust-region sub-problem, and its successful solution results in the
computation of the trial point xk + sk. The ability of the model mk(x) to predict the change
in the objective function is then assessed by comparing the relative change of f (x) and
mk(x). If the result is within a predefined threshold, the trial point is accepted and the
trust-region remains the same or increases. Otherwise, the trust-region is decreased and
the trial point is computed again.

Apart from the choice of the approximating model, a way of solving Equation (6)
must also be specified. In the case of large bound-constrained problems, an effective
approach for solving the model equation is the restriction of the trust-region into a two-
dimensional subspace [31,32]. The two-dimensional subspace is assumed to be spanned
by two vectors. These vectors correspond to the direction of the negative gradient and
either the Newton direction (vector v solving the equation H.v = −g) or to a direction of
the negative curvature (vector v solving the equation vT H.v < 0).

For our work, the algorithm mentioned above is modified by adding multiple starting
points. The optimization algorithm is repeatedly initialized from several randomly chosen
starting points. This modification prevents incorrect termination of the optimization
procedure in local nonoptimality traps.

3. Results

The method’s performance described in the previous section was evaluated on the
simulated imaging datasets (see Figure 3). Initialization of the optimization procedure
was assessed using the first dataset. The whole process of simulating and fitting data was
repeated 10 times. The results are presented in Table 1.

Table 1. Relative error of estimated coefficients—comparison of multiple starting points.

Nstarting points = 1 Nstarting points = 100

Min. Error
[%]

Mean Error
[%]

Max. Error
[%]

Min. Error
[%]

Mean Error
[%]

Max. Error
[%]

M0 0.00 44.60 604.00 0.00 0.00 0.00

T1 0.00 6.11 36.00 0.00 0.00 0.00

Min.—minimum, Max.—maximum.

The mean value of mean squared error across 10 repetitions was 0.193 (4.43e−27 for
100 starting points) with a standard deviation of 0.288 (1.46e−27 for 100 starting points).
This contrasts with the values from Table 1, which show an error for individual coefficients
up to several hundred percent. Table 1 also shows the difference between the numbers of
starting points used to initiate the optimization and the relative error of coefficients. In
the case of a single starting point, the maximum relative error for M0 was 604% (ground
truth = 61.8, estimated = 435.1), while the optimization with 100 starting points resulted in
0% relative error.

In the next step, the model was fitted to the datasets with an added noise component.
No prior knowledge of parameters was assumed, only the minimum representation of 5%
for each component per voxel. The values of coefficients to be estimated were bounded
using the maximum values in data for M0 and the estimates of T1 relaxation times in the
literature [28] (fat T1 = 250 ms, CSF T1 = 4000 ms). The results are presented in Table 2.
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Table 2. Relative error of estimated coefficients—data with added noise.

Noise
Variance

SNR
[dB]

Min. M0 Error
[%]

Mean M0 Error
[%]

Max. M0 Error
[%]

Min. T1 Error
[%]

Mean T1 Error
[%]

Max. T1 Error
[%]

0 Inf 0 0 0 0 0 0

0.1 61 0 2 4 0 0 0

1 51 2 5 14 0 0 1

5 45 2 28 109 0 2 4

10 41 3 18 48 0 1 3

25 38 3 28 86 0 2 5

50 34 7 80 268 1 10 25

100 31 18 60 131 2 11 26

Table 2 demonstrates that the value of relative errors in estimated coefficients increases
with the decrease in SNR. This is even more visible in the case of the coefficients M0. The
mean relative error for the coefficients M0 at the SNR level of 45 dB is 28%, while the
maximum relative error of a single coefficient is 109%. The relative error of the coefficients
T1 is lower than the relative error of the coefficients M0. At the SNR level of 31 dB, the
mean relative error of coefficients T1 is 11%, while the maximum relative error of a single
coefficient is 26%.

The final fit of the model was conducted using the multiple voxel-simulated images
generated by the MRiLab simulator. The data in this context are represented by the
magnitudes of each pixel across the 70 images with different TI times. The coefficients to
be estimated were bounded using the maximal value of magnitude in data for parameter
M0 and estimates of T1 relaxation times in the literature for parameter T1. The histogram
of the estimated coefficients T1 for all voxels representing the virtual object is presented in
Figure 4.
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Figure 4 illustrates that the majority of the estimates were between 700 and 800 ms.
Several notable peaks were present, mostly around values of 750 ms and 770 ms. A
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noticeable gap is present at 760 ms, indicating two separate distributions for the parameter
estimates (for 700 ms and 800 ms, respectively). The distributions are skewed towards the
estimation average. Table 3 shows the relative error of the estimated coefficients.

Table 3. Relative error of estimated relaxation times.

T1
Min. Error

[%]
Mean Error

[%]
Max. Error

[%]

700 0.05 4.86 8.65

800 0.12 2.98 8.59

The mean error of the first component (4.86%) is higher than the mean error of the
second component (2.98%) by 1.88%. The minimum relative error of the second component
(0.12%) is more than two times larger than the first component’s error (0.05%). It can be
concluded that the estimation of coefficient T1 for the first component is less precise than
the estimation for the second component.

4. Discussion

Current MR imaging of cortical layers mostly focuses on increasing the spatial resolu-
tion of the images [14–16]. Alternatives arise when attempting to capture the patterns of
cortical lamination in the domain of spin-lattice relaxation [18,19]. This approach forgoes
the requirements for high spatial resolution, demanding a higher number of images instead.
The high volume of images, and, therefore, data points, is needed for subsequent signal
processing and analysis. The crucial point of the imaging method lies in mathematical
modeling—estimating the underlying composition of every voxel. The visualization ap-
proaches following the processing [18] rely on the precise estimation of the T1 values of
each cortical component/layer.

The low-resolution modeling approach commonly employed stems from fMRI T1
mapping. It relies on the Levenberg–Marquardt algorithm to solve the underlying opti-
mization problem and estimate the relaxation times [21]. The method has a simplified form
used when only magnitude data are available, a procedure named polarity restoration.
This process stands for the inversion of select data, circumventing the restrictions posed
by the magnitude-only data on the objective function. The function itself has only two
parameters per voxel, which leads to a 2D search for the optimal solution. This is further
eased by restricting the possible values of T1 times to whole numbers between 1 and 5000
ms. As a direct result, a grid search coupled with a 1D search of the L–M algorithm can be
used, increasing the precision of the resulting estimate.

However, using this methodology for multiple sub-voxel components is not a straight-
forward extrapolation of the original modeling framework. Assuming up to 14 parameters
per voxel makes a derivation of a model similar to the one previously used [21] much more
complex. The lack of such a model would also require a different approach for the polar-
ity estimation. The simplification of bounding the T1 times within a predefined interval
would also cause a substantial increase in the estimation time. The size of the search grid
would expand to 50007 points, and a 7D search would still need to be performed from all
the points.

Our approach to low-resolution modeling differs by using only the magnitude data
with no polarity restoration. We explore whether the Trust Region algorithm can solve the
proposed optimization problem with fewer computational demands. The optimization
results on the first dataset show that the use of the unmodified Trust Region algorithm
proved insufficient for the model in question. The estimation of the non-linear parameters
(coefficients of relaxation time T1) increased the complexity of the model and likely intro-
duced nonoptimality traps. To circumvent this limitation, we modified the algorithm in
question. The search space for each variable was bounded, and the optimization procedure
was initiated from multiple starting points, which resulted in the ideal fit of the model.
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While the mean squared error (MSE) value was comparatively low, the estimated
values of the model coefficients differed more substantially. Therefore, it can be concluded
that the sole use of MSE is insufficient for exhaustive measures of the model performance.
It is more suitable to evaluate the error rates of the individual coefficient estimates.

The inclusion of noise with the Gaussian distribution allowed further assessment
of the model robustness. The noise distribution was chosen based on the distributions
used in MRI simulation experiments [29]. It should be noted that the inclusion of the
Gaussian noise is usually incorporated after the formation of the image k-space during
the simulation procedure. The final image usually contains noise with Rician or Rayleigh
distribution [33,34]. As stated previously, the most suitable method for assessing the model
performance is to evaluate the individual coefficient estimates. As expected, the error rate
for individual coefficients increases with the noise level. This increase seems to be higher
for the coefficients M0 than the coefficients T1. It could be concluded that the method used
is more efficient in the distinction of individual exponential curves (parameter T1) than in
estimating their relative representation (proportional to M0) within the voxels.

With the final simulated dataset, the performance of the chosen modeling approach
on data more closely resembling real images could be examined. The model of choice had
to be reduced to incorporate two components due to the limitations of the utilized existing
MRI data simulator. The limits of the simulator also affected the choice of TI time points,
the number of which had to be reduced. The modeling outcomes on the simulated datasets
showed a successful application of the method with the mean error of T1 coefficients
estimates under 5%. Estimates of the M0 coefficients could not be fully examined as there
is no precise relationship to the proton density ρ used to create the virtual object.

The outcomes acquired from the last dataset more closely illustrate the various trade-
offs accompanying the proposed method. To increase the precision of the estimation, a
sufficient number of images acquired with different TI times is required. However, it
also causes longer scan time, which increases the risk of subject movement. This can be
possibly remedied by image registration before the modeling itself. Another limitation of
the proposed approach is the requirement of high SNR needed for a sufficiently precise
estimation of the T1 values.

Direct imaging of all cortical layers is not yet feasible even with ultra-high field MRI
(7 T and higher), although some of the layers can be distinguished [16,18]. This paper
follows the ideas presented in [18], i.e., the delineation of the cortical layers is based on the
ability to quantify the intravoxel concentration of compounds with different T1 relaxation
properties. With this approach, it is possible to acquire a proportional representation of
the cortical layers in the domain of T1 relaxation, not the spatial domain. However, at
this stage, the method is still highly experimental. Its introduction into preclinical studies
will not be feasible without first assessing the ability of the method to reliably estimate
the proportional representation of the layers. Further steps prior to clinical studies of a
diagnostic application may include (i) evaluation of correlations between the identified MR
imaging parameters of the cortical layers and selected variables resulting from histology
of animal models, (ii) comparison with other, established methods such as voxel-based
morphometry, deformation-based morphometry, or diffusion kurtosis imaging. Given the
possible clinical application in diagnostics, it is difficult to imagine this modality being
used in isolation. Rather, it will be part of a multimodal approach to cortical pathology
imaging, as it has the potential to provide complementary information on the internal cortex
arrangement in pathologies that have a complex morphological correlate involving changes
in elemental complexity, such as neuronal atrophy, dendritic tree reductions with increased
density of neuronal bodies, migration of activated microglia, etc. We currently employ an
onsite modified pulse sequence to ensure full control of the sequence parameters, over all
TIs, to ensure reliable intra-voxel multiple T1 fitting. We are aware of several limitations
related to the parameters of a real non-ideal pulse sequence, such as nonzero TE and
finite TR. At this stage, we aim for replicable imaging with sufficient sensitivity to identify
laminar cortical layer composition, not a quantitative measurement.
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We consider the aforementioned estimations, i.e., the results of mathematical modeling,
to be a critical part of this new low-resolution approach to imaging the laminar structure of
the cerebral cortex. We believe that using the modified Trust Region algorithm dramatically
improves the overall method. The decreased computational time and less severe require-
ments on the objective function could reduce entry barriers for wider acceptance of the
low-resolution imaging framework. This could aid its adoption by potential researchers
and further development for use in clinical diagnostics.
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