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Chemoattractant cytokines or chemokines constitute a family of structurally related pro-
teins found in vertebrates, bacteria, or viruses. So far, 48 chemokine genes have been
identified in humans, which bind to around 20 chemokine receptors.These receptors belong
to the seven transmembrane G-protein-coupled receptor family. Chemokines and their
receptors were originally studied for their role in cellular trafficking of leukocytes during
inflammation and immune surveillance. It is now known that they exert different func-
tions under physiological conditions such as homeostasis, development, tissue repair, and
angiogenesis but also under pathological disorders including tumorigenesis, cancer metas-
tasis, inflammatory, and autoimmune diseases. Physicochemical properties of chemokines
and chemokine receptors confer the ability to homo- and hetero-oligomerize. Many efforts
are currently performed in establishing new therapeutically compounds able to target the
chemokine/chemokine receptor system. In this review, we are interested in the role of
chemokines in inflammatory disease and leukocyte trafficking with a focus on vascular
inflammatory diseases, the operating synergism, and the emerging therapeutic approaches
of chemokines.

Keywords: chemokine, chemokine receptor, arrest, oligomerization, vascular inflammatory diseases, leukocyte
trafficking, therapeutics

INTRODUCTION
With the exceptions of CX3CL1/fractalkine and CXCL16/SR-
PSOX, chemoattractant cytokines or chemokines constitute a fam-
ily of small soluble signaling molecules of approximately 70 amino
acid residues with a molecular weight of 7–12 kDa. In addition
to their monomeric form, these proteins are able to associate,
forming dimers, tetramers, or multimers (i.e., to oligomerize).
Chemokines have crucial roles in both homeostasis and dis-
ease. Their homeostatic roles include leukocyte maturation and
trafficking, development, tissue repair, and angiogenesis (Ranso-
hoff, 2009). As disease modulators, chemokines have roles in a
wide variety of inflammatory and immune responses through the
chemoattraction of innate and adaptive immune cells. To date,
around 50 chemokines have been identified in humans, which
have been grouped into one of four families, CXC, CC, CX3C, and
XC, based on the arrangement of cysteine residues involved in the
formation of disulfide bonds (Table 1). In the CXC and CX3C
chemokine family, one or three amino acid residues are inserted
between the first two of four cysteine residues, respectively. The
first and third cysteine residues are absent in the XC subfamily
that possesses only one disulfide bond. In the CC subfamily, the
first two cysteines are juxtaposed. Another family has been recently
described in the zebrafish genome, namely the CX family, which
lacks one of the four cysteine residues highly conserved amongst
chemokines (Nomiyama et al., 2008). All chemokines arose from a
single ancestral gene, originating approximately 650 million years
ago (Nomiyama et al., 2010). Amongst vertebrates, the zebrafish
genome has the highest number of chemokine genes with more

than 100 genes while both pufferfish Tetraodon and Fugu genomes
contain less than 20 chemokine genes each. The human genome
encompasses more than 50 different chemokine genes and pseudo-
genes. These genes have undergone a rapid evolution in both their
sequences and their family gene size. The conventional name is
still often used, which may lead to some confusion while the
International Union of Immunological Societies/World Health
Organization Subcommittee on Chemokine Nomenclature has
assigned a name to each chemokine and chemokine receptor
(Bacon et al., 2001). A large number of human chemokine genes
are known to be clustered on specific chromosomal regions. There
are two major gene clusters comprising exclusively either CXC
or CC genes on chromosome 4q13.3-q21.1 and 17q12, respec-
tively (Table 1). These major clusters can be subdivided into two
regions. For the CXC gene cluster, the regions are named GRO
and IP10 while the regions of the CC gene cluster are called
MCP and MIP (Nomiyama et al., 2010). The GRO region con-
tains the CXCL1–CXCL8 genes and the IP10 region the CXCL9–
CXCL13 genes, respectively. In the CC major cluster, the MCP
and MIP regions comprise 6 and 12 genes, respectively (CCL2,
CCL7, CCL11, CCL8, CCL13, CCL1 versus CCL5, CCL16, CCL14,
CCL15, CCL23, CCL18, CCL3, CCL4, CCL3L3, CCL4L1, CCL3L1,
CCL4L2). In addition to the two major clusters, a CC “mini”-
cluster is found on chromosome 7 (comprising the CCL26 and
CCL24 genes), on chromosome 9 (CCL27, CCL19, CCL21), and
on chromosome 16 (CCL22, CX3CL1, and CCL17), respectively.
Both XCL1 and XCL2 are also found in a “mini”-cluster on
chromosome 1.
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Besides their structural classification, another organization of
chemokines has been proposed based on their expression and
their functional activity. This classification groups chemokines
into three “families”: pro-inflammatory, homeostatic, and mixed
function (Mantovani et al., 2006). Pro-inflammatory chemokines
are up-regulated under inflammatory conditions and are involved
in the leukocyte recruitment to inflamed sites. Homeostatic
chemokines are expressed constitutively at non-inflamed sites
and are involved in homeostatic migration and homing of
cells in physiological conditions such as lymphocyte homing.
Some chemokines have both properties, and are thus called
mixed-function chemokines.

Chemokines act by binding specialized receptors on the target
cell surface. These chemokine receptors are also grouped into four
families, CXCR, CCR, XCR, and CX3R, based on the chemokine
family they bind (Nomiyama et al., 2011). The entire group of
chemokine receptors belongs to the seven transmembrane domain
G-protein-coupled receptors that usually combine the receptor to
the Gαi subunit of heterotrimeric G proteins. So far, around 25
human chemokine receptor genes have been identified (Table 2).
Interestingly, 12 of these receptors are found on human chromo-
some 13 and stretched around 13.5 megabases. In addition, several
decoy receptors have been reported to bind chemokine ligands
without eliciting signal transduction. These comprise CXCR7,
CCBP2, Duffy antigen receptor for chemokines (DARC), CCRL1,
and CCRL2. The first chemokine receptor genes appeared in the
most primitive vertebrate, agnathan lamprey (hagfish), around
480 million years ago (Nomiyama et al., 2011).

The chemokine/chemokine receptor system can be considered
as a “puzzle” since many receptors have different chemokines as
ligands and vice versa. However, thanks to the multiple combina-
tions allowed, this system offers robustness. Indeed, even if one
chemokine or receptor does not function, another one can replace
it.

CHEMOKINES IN LEUKOCYTE TRAFFICKING AND
INFLAMMATORY DISEASES
Leukocyte recruitment represents a fundamental episode during
infection, in inflammatory disorders, such as atherosclerosis, as
well as in autoimmune diseases, such as in psoriasis, rheumatoid
arthritis, and chronic lung disease (Luster et al., 2005). Initially,
leukocyte extravasation was described as a three-step process
namely rolling, activation, and arrest. Recently, new insights have
allowed defining a more complex process by adding several steps
to the three original, including tethering (or capture), slow rolling,
adhesion strengthening, spreading, intravascular crawling, and
finally paracellular and transcellular transmigration.

Whereas capture and slow rolling are mediated by reversible
and transient interactions between E-, L-, or P-selectin and lig-
ands such as P-selectin glycoprotein-1 (PSGL-1), the adhesion
of leukocytes to endothelial cells is mediated by the interaction
of VCAM1 and ICAM-1, receptor for advanced glycation end-
products (RAGE), or mucosal vascular cell-adhesion molecule
1 (MADCAM1) with leukocyte integrins. The common struc-
ture of integrins is a non-covalently associated α and β subunit.
So far, 16 α subunits and 8 β subunits have been identified,
and various combinations form at least 22 heterodimers. The

principal neutrophil β2-integrins are CD11a/CD18 (LFA-1) and
CD11b/CD18 (Mac-1, CR3; Luo et al., 2007) although neutrophils
can express p150,95/αxβ2 (CD11c/CD18) and at low level very late
antigen (VLA) 4/α4β1 (CD49d/CD18; Zarbock et al., 2012). LFA-
1 and Mac-1 have been shown to mediate neutrophil adhesion by
interacting with ICAM-1 while αxβ2 is able to bind the N-terminal
part of the alpha chain of fibrinogen (Loike et al., 1991; Diamond
and Springer, 1993; Lum et al., 2002). During neutrophil adhesion,
LFA-1 and Mac-1 appear to have sequential roles binding ICAM-1
under shear conditions (Neelamegham et al., 1998; Hentzen et al.,
2000). In a two-step process neutrophils adhere first to ICAM-1
by interacting with LFA-1 and then Mac-1 acts as a stabilizer of
the LFA-1/ICAM-1 bond.

The transition of rolling to leukocyte arrest and activation is
triggered by chemokines such as CXCL1/GRO-α while others like
CCL2/MCP-1 per se are rather promoting transmigration. Arrest
of rolling leukocytes is triggered by an increase in the affinity of
integrins by chemokines (Ley et al., 2007; Chavakis et al., 2009).

Different cell types, such as mesenchymal stem cells, endothelial
cells, and circulating blood cells including leukocytes or platelets
produce and release a broad range of chemokines and other
chemoattractants that facilitate and enhance the recruitment of
leukocytes. Some of these pro-inflammatory mediators circulate
in the plasma, others are only found in the inflamed tissue, and yet
others are presented on endothelial cells. Furthermore, additional
to direct endothelial deposition from the luminal side, chemokines
are transported via caveolae through the endothelium and pre-
sented to the apical side of the cell instead of diffusing through
endothelial cell junctions (Pruenster et al., 2009). This transcyto-
sis requires the DARC (Middleton et al., 1997). Recently, a new
mechanism has been highlighted introducing the concept of lym-
phocyte transendothelial migration by intraendothelial vesicle-
stored chemokines beneath the apical membrane (Shulman et al.,
2011).

Chemokines bind chemokine receptors expressed on leuko-
cytes to induce activation. In addition, most chemokines are
also able to bind extracellular matrix components, including gly-
cosaminoglycans (GAGs), to get immobilized and be presented to
leukocytes. This is essential in order to avoid to be swept away
under flow conditions from the cell surface. This coimmobiliza-
tion with adhesion molecules will promote leukocyte activation,
adhesion, and migration.

The following section will give several examples of chemokine
contribution in leukocyte trafficking and in inflammatory diseases
with a particular focus on vascular inflammatory diseases.

CHEMOKINES IN PLATELETS
As outlined above, activated platelets are able to release
chemokines as well as a battery of different mediators to modulate
inflammation. Thus, platelets have been found to be involved in
different diseases with an inflammatory component such as obe-
sity, acute lung injury, or coronary artery disease where they inter-
act with both endothelial cells and leukocytes leading to a diversity
of effects (van Gils et al., 2009; von Hundelshausen et al., 2009).
Platelets release chemotactic cytokines stored in α-granules upon
activation. Inter alia, CXCL4/PF4, CCL5/RANTES, CXCL7/NAP-
2, CXCL12/SDF-1, CXCL1/GRO-α, or CXCL5/ENA-78 are able
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Table 2 | Human chemokine receptor genes.

Name Conventional name Chromosome Gene

size

(kb)

Number

of exons

Number of

amino acids

Ligands

CXCR

CXCR1 IL8R1; IL8RA; CMKAR1 2q35 4.15 2 350 CXCL6, CXCL8,

CXCR2 IL8R2; IL8RB; CMKAR2 2q35 11.96 4 360 CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7,

CXCL8, MIF

CXCR2P1 CXCR2P; IL8RBP – 1

CXCR3A IP10-R; MigR; CMKAR3; Xq13.1 2.60 2 368 CXCL4, CXCL4L1, CXCL9, CXCL10, CXCL11,

CXCR3B IP10-R; MigR; CMKAR3; – – 2 415

CXCR3-alt – – 2 267

CXCR4 LAP3; LCR1 2q21 2.60 2 352, 356 CXCL12, MIF

CXCR5 BLR1; MDR15 11q23.3 12.43 2 372, 327 CXCL13

CXCR6 BONZO; CD186 3p21.26 4.87 2 342 CXCL16

CCR

CCR1 CKR1; CMKBR1; MIP1aR 3p21 6.63 2 355 CCL3, CCL3L1, CCL3L3, CCL5, CCL7, CCL14,

CCL15, CCL16; CCL23,

CCR2A CMKAR2; CD182; CKR2B 3p21.31 7.18 2 374 CCL2, CCL7, CCL8, CCL13,

CCR2B CKR2B – – 3 360

CCR3 CKR3; CMKBR3 3p21.3 24.32 3 355 CCL2, CCL5, CCL7, CCL8, CCL11, CCL13,

CCL15, CCL24, CCL26, CCL28,

CCR4 CKR4; CMKBR4; ChemR13 3p24 3.33 2 360 CCL17; CCL22

CCR5 CMKBR5; CKR5 3p21.23 6.06 3 352 CCL3, CCL3L1, CCL3L1, CCL4, CCL4L1,

CCL4L2, CCL5, CCL7, CCL11, CCL13

CCR6 BN-1; DCR2; CKR-L3 6q27 27.33 3 374 CCL20

CCR7 BLR2; CMKBR7; EBI1 17q12-q21.2 11.71 3 378 CCL19, CCL21

CCR8 CKRL1; CMKBR8; CMKBTER1 3p22 3.97 2 355 CCL1

CCR9A GPR-9-6; GPR28 3p21.3 16.67 4 359 CCL25

CCR9B GPR-9-6; GPR28 – – – 357 CCL25

CCR10 GPR2 17q21.1-q21.3 2.42 2 362 CCL27, CCL28

XCR

XCR1 CCXCR1; GPR5 3p21.3 7.68 2 333 XCL1, XCL2

CX3CR

CX3CR1 CMKDR1; GPR13; CCRL1 3p21.3 18.24 4 355, 387, 362 CX3CL1

DECOYRECEPTORS

CXCR7 RDC1; GPR159 2q37.3 12.61 2 362 CXCL11, CXCL12, MIF

CCRL1 CCR11; CCBP2; VSHK1; CCX-

CKR; PPR1

3q22 5.29 2 350 CCL19, CCL21, CCL25

CCRL1P1 dJ509I19.4 6q23.3 1

CCRL2 CKRX; CRAM-A; CRAM-B; HCR 3p21 2.29 3 344, 256 CCL5, CCL19

CCBP2 D6 3p21.3 57.81 3 384 CCL2, CCL3, CCL4, CCL4L1, CCL4L2, CCL5,

CCL7, CCL11, CCL13; CCL17, CCL22,

DARC Duffy; FY 1q21-q22 2.48 2 336, 338 CCL2, CCL5, CCL7, CCL11, CCL13, CCL15,

CCL17, CCL18, CCL22, CXCL1, CXCL2, CXCL3,

CXCL5, CXCL6, CXCL7, CXCL8, CXCL11

FORMYL PEPTIDE RECEPTOR

FPR2 FPRL1; LXA4R; FMLP-R-II;

FMLPX; FPR2A; FPRH1

19q13.3-q13.4 9.33 3 351 CCL23, Lipoxin A4, serum amyloid A, β amyloid

peptide Aβ42, SAA, MMK, Hp-(2-20)

Human gene and protein data were taken from the web sitesEntrezGene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene and http://www.uniprot.org/,

respectively.

to mediate the endothelial adhesion of different cells including
monocytes, neutrophils, and progenitor cells (Lievens and von
Hundelshausen, 2011).

Platelets secrete CXCL4 which is the first and most abun-
dant chemokine identified in releasates from activated platelets
and which is involved in a wide range of physiological processes
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such as proliferation and angiogenesis. This chemokine is also
involved in numerous pathological processes. High levels of
CXCL4 are positively correlated with Crohn’s disease activity index
(Simi et al., 1987). In Heparin-induced thrombocytopenia (HIT),
autoantibodies developed against high molecular complexes of
CXCL4/heparin or CXCL4/GAG side chains. The presence of HIT
antibodies can lead to platelet activation and depletion through
platelet consumption in venous thrombosis (Greinacher, 2009).
CXCL4 exerts chemotactic activities on different cells includ-
ing neutrophils, monocytes (Deuel et al., 1981), and activated
T-lymphocytes in a pertussis toxin-sensitive manner (Mueller
et al., 2008). Recently, CXCL4 has also been shown to be able
to induce a specific macrophage type with specific phenotypic
and functional characteristics (Gleissner, 2012). Moreover, it pro-
motes adhesion of neutrophils on endothelial cells (Petersen et al.,
1999). Although CXCL4 has been reported to bind to and stimu-
late CXCR3 and a splice variant thereof (CXCR3B), the functional
importance of these two receptors for the biological activity of
CXCL4 is not clear. For instance, a recent report found CXCL4
to be involved in ligand driven monocyte down-regulation of
chemokine receptors CCR1, CCR2, and CCR5 by releasing the
respective ligands (CCL2-4) from CXCL4-activated monocytes in
absence of CXCR3 highlighting the connection between platelets
and monocytes (Schwartzkopff et al., 2012). CXCL4 can induce
exocytosis and firm neutrophil adhesion to endothelium when
incubated with the appropriate co-stimuli. A contribution of
CXCL4 in cardiovascular diseases has been described in both
human and mouse where CXCL4 has been found in the endothe-
lium, neovasculature, macrophages, and calcified regions of ath-
erosclerotic carotid arteries (Pitsilos et al., 2003). Moreover, a
strong positive correlation between both luminal and neovas-
cular CXCL4 staining and coronary artery disease and between
CXCL4 in macrophages and the presence of symptomatic ath-
erosclerotic disease has been found. In a murine model of ath-
erosclerosis, the knock-out of CXCL4 has been shown to exert
an atheroprotective effect reducing atherosclerotic lesion forma-
tion (Sachais et al., 2007). Activation of platelets results in a
release of stored-P-selectin -CXCL4 and CCL5 from granules.
CCL5 has been detected on the luminal surface of atheroscle-
rotic murine and human carotid arteries or neointimal lesions
after arterial injury and can be deposited on inflamed or ather-
osclerotic endothelium by activated platelets, thereby triggering
monocyte recruitment under flow (von Hundelshausen et al.,
2001; Schober et al., 2002). The deposition of platelet chemokines
can be facilitated by platelet-derived microparticles (Mause et al.,
2005). Injection of activated platelets into the tail vein of athero-
sclerosis prone mice results in exacerbated atherosclerotic lesions
and increased endothelial deposition of CXCL4 and CCL5 depen-
dent on the presence of P-selectin (Huo et al., 2003). Therefore,
platelet adhesion molecules such as P-selectin are mediating tran-
sient interactions with endothelial cells enabling a local delivery of
soluble chemokines. We have discovered that heterophilic inter-
actions between CXCL4 and CCL5 (see below) are responsible
for enhanced monocyte recruitment into the arterial wall which
explains to a certain extent why activated platelets are strong
promoters of atherosclerosis. Peptides inhibiting the association
of CXCL4 and CCL5 decrease atherosclerosis and macrophage

content of lesions (von Hundelshausen et al., 2005; Koenen et al.,
2009).

A non-allelic variant form of CXCL4, called CXCL4L1 or
PF4ALT which differs only in three amino acids in the C-terminal
α-helix of the protein has been identified in different kind of
cells including leukocytes, endothelial, or smooth muscle cells
(Lasagni et al., 2007). CXCL4L1 is capable of inducing endothelial
cell chemokinesis and has been characterized as a potent anti-
angiogenic regulator similar to CXCL4. Important differences of
CXCL4L1 and CXCL4 are a lower affinity for CCL5 (Sarabi et al.,
2011) and GAGs, e.g., heparin (Dubrac et al., 2010). Substanti-
ating the role of CCL5–CXCL4 heterodimers CXCL4L1 failed to
increase CCL5-triggered monocyte adhesion (Sarabi et al., 2011).
The decreased affinity of CXCL4L1 compared to CXCL4 may have
critical implications for cell adhesion since CXCL4L1 will not be
retained at its site of expression. The existence of heparan sulfate in
the subendothelial extracellular matrix has been found to regulate
the arrest function of CCL5 and CCL4/MIP-1β (Gilat et al., 1994).
On the endothelial surface under flow conditions, both platelet-
derived and recombinant CCL5 are able to bind to activated
endothelium and to trigger the firm arrest and transmigration
of monocytes (von Hundelshausen et al., 2001).

Moreover, the oligomerization of CCL5 is crucial for CCR1-
mediated leukocyte arrest on inflamed endothelium but not for
their transmigration via CCR5 (Baltus et al., 2003). In bronchial
mucosa of patients with chronic obstructive pulmonary disease
(COPD), CCL5, and to a lesser extent CXCL7, have been found
to be the most abundant chemokine expressed in the bronchial
epithelium and are associated with an increase of neutrophil
activation (Di Stefano et al., 2009).

CXCL12 or SDF-1α, which is the ligand for CXCR4 and CXCR7,
has both proatherogenic and antiatherosclerotic properties (Weber
et al., 2011). Blocking the CXCR4–CXCL12 axis leads to a release
of different leukocyte subsets into the circulation. In this context,
monocytosis and neutrophilia are conditions positively correlated
with the development and severity of atherosclerosis. On the other
hand has CXCL12 been demonstrated to be crucial for the healing
of arterial lesions by the regenerative capacity of progenitor cells
which are attracted to adhere be CXCL12 (Massberg et al., 2006). In
addition to its production by platelets, CXCL12 is expressed in the
bone marrow and in cells directly relevant to atherogenesis, includ-
ing endothelial cells, smooth muscle cells, and leukocytes, which
enables it to regulate the trafficking and localization of imma-
ture and maturing leukocytes, including bone marrow stem cells,
neutrophils, T cells, and monocytic cells (Abi-Younes et al., 2000;
Zeiffer et al., 2004; Stellos et al., 2009). Furthermore, CXCL12 has
been thought to play a pro-inflammatory role in various autoim-
mune diseases, especially in rheumatoid arthritis and nephritis, in
murine lupus erythematosus as well as in ongoing experimental
autoimmune encephalomyelitis (Meiron et al., 2008; Karin, 2010).
Recently, changes in CXCL12 signaling patterns have been found
to be necessary for bone marrow neutrophil mobilization and are
involved in polymicrobial sepsis, where its inhibition resulted in
peritoneal cavity neutropenia (Delano et al., 2011). While both
CCL5 and CCL7/MCP-3 are able to activate and to induce the
chemotaxis of eosinophil and basophil granulocytes in allergy
(Baggiolini and Dahinden, 1994), CCL11/Eotaxin has been found
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to be a powerful attractant for eosinophils and has also been iden-
tified in atherosclerotic lesions (Baggiolini et al., 1997; Haley et al.,
2000).

The expression of CXCL7 is restricted to the platelet-lineage.
Proteolytic cleavage of the carboxy-terminal part of pro-platelet
basic protein (PPBP) and the proteolytic removal of the N-
terminal part of PPBP produces two other chemokines namely
connective tissue-activating peptide III (CTAP-III) and beta-
thromboglobulin (beta-TG; Walz and Baggiolini, 1990; von Hun-
delshausen et al., 2007). Dependent on CXCR2, CTAP-III, and
CXCL7 promote neutrophil and monocyte adhesion to human
endothelial cells under flow conditions, respectively (Schenk et al.,
2002; Baltus et al., 2005). The chemotactic potential of CXCL7 is
also enhanced in COPD patients (Traves et al., 2004).

CXCL5/ENA-78 has been shown to act as a potent chemoat-
tractant and activator of neutrophil function via CXCR2 (Ahuja
and Murphy, 1996). CXCL5 has also been found to be strongly
correlated with the number of neutrophils in patients with acute
respiratory distress syndrome (Goodman et al., 1996).

During early atherosclerosis, CXCL1/GRO-α immobilized on
the surface of endothelial cells via heparin proteoglycans induces
the firm adhesion of rolling monocytes expressing CXCR2
(Schwartz et al., 1994; Huo et al., 2001; Boisvert et al., 2006). More-
over, a recent study has shown that in vivo, lysophosphatidic acid
increased the progression of atherosclerosis and recruited leuko-
cytes to the vessel wall during early atherogenesis via lysophospha-
tidic acid receptor-mediated release of endothelial CXCL1 (Zhou
et al., 2011). A study conducted on elderly COPD patients has also
indicated that CXCL1 might be a relevant candidate biomarker for
this disease (Tsai et al., 2010).

CHEMOKINES IN MAST CELLS
In addition to their role as sentinels in the recognition of
pathogens, mast cells (like platelets) are able to communicate
with immune cells facilitating the recruitment of leukocytes to
sites of infection. Indeed, mast cells are able to produce different
chemokines including CCL4, CXCL8, or CCL11 assisting in the
recruitment of CD8+ T cells, eosinophils, and natural killer cells,
respectively (Abraham and St John, 2010).

CCL3/MIP-1α and CCL4/MIP-1β can initiate diverse cellu-
lar responses that regulate both acute and chronic inflamma-
tion via their interaction with CCR1 and CCR5. In addition,
proteoglycan-bound CCL4 is used to effectively activate and
induce the adhesion of circulating lymphocytes for their extrava-
sation through lymph node endothelium (Tanaka et al., 1993).
The quaternary structures of CCL3 and CCL4 are decisive for
their biological activity. Aggregation of CCL3 and CCL4 can be
considered as polymerization processes of MIP-1 dimers, which
constitute the basic unit of MIP-1 proteins. MIP-1 monomers
form dimers of the CC-type by creating an anti-parallel β-sheet
of the N-termini (Lodi et al., 1994; Czaplewski et al., 1999;
Ren et al., 2010). MIP-1 dimers associate to polymers consist-
ing up to 50 units forming a double helixed rod like structure.
Polymerization of MIP-1 protects MIP-1 from proteolytic degra-
dation while the positively charged region of MIP-1, which is
crucial for the receptor binding, is buried. The continuous and
slow release of monomers from the polymer leads to a shallow

gradient with a long gradient and effective range for leukocyte
recruitment.

CXCL8/interleukin-8/IL8 has been found in intracellular gran-
ules from skin mast cells and mast cell lines (Möller et al., 1993).
Recently, Kim et al. (2010) have shown that CXCL8 synthesis is
induced via the leukotriene B4/leukotriene B4 Receptor 2 path-
way in response to IL-1β in human primary mast cells and mast
cell line HMC-1. CXCL8 released by mast cells is implicated in
the selective chemotaxis of CXCR1-expressing natural killer cells
(Burke et al., 2008). CXCL8 also induces neutrophil migration
and activation by binding to G-protein-coupled receptors on their
surface, namely human CXCR1 and CXCR2 (Wuyts et al., 1998).
During inflammation, CXCL8 is produced and presented to the
endothelial surface in association with GAGs. In a recent study,
using obligate monomeric and dimeric IL8 mutants, the oligomer-
ization state of CXCL8 was shown to have an influence on the
kinetics of the neutrophil extravasation. The dimeric form ini-
tiated a fast robust but short lived vascular efflux whereas the
monomeric form resulted in a weaker but longer-lasting response
(Das et al., 2010). Also, this chemokine is among the most impor-
tant in the recruitment of inflammatory cells, mostly neutrophils,
in COPD (Barnes, 2004).

CHEMOKINES IN DENDRITIC CELLS: CCL17 AS EXAMPLE
CCL17/TARC (thymus and activation regulated chemokine)
together with CCL22/MDC (macrophage-derived chemokine) are
expressed in relevant amounts by mature dendritic cells but occur
as well in other cell types such as fibroblasts. CCL17 is constitu-
tively expressed in the thymus (Saeki and Tamaki, 2006). CCL17
is a ligand for CCR4, which is predominantly expressed on Th2
lymphocytes, basophils, and natural killer cells. Recently, dendritic
cell-derived CCL17 has been found to be critical in atherosclero-
sis (Weber et al., 2011). Indeed, deficiency of CCL17 in Apoe−/−

mice results in a reduction of the plaque formation in aortic root
since CCL17 inhibits the expansion of atheroprotective Tregs and
attracts CD4+ and CD3+ T cells.

MEMBRANE-BOUND CHEMOKINES
In addition to different types of cells such as T cells, macrophages,
cytokine-induced smooth muscle cells, and endothelial cells,
CXCL16/SR-PSOX has been recently identified for the first time in
platelets (Seizer et al., 2011). This protein constitutes an atypical
chemokine because it is expressed as a cell surface bound molecule
but is also found in a soluble form after shedding. CXCL16 has also
been involved in different diseases. Thus, a low plasma concentra-
tion of CXCL16 has been associated with coronary artery disease
and has been found in atherosclerotic lesions in human and mice
(Wuttge et al., 2004; Sheikine and Hansson, 2006). In vivo and
in vitro, homocysteine, a homolog of cysteine that can promote
atherosclerosis (Harker et al., 1976), has been found to stimulate
CXCL16 production and deposition on the surface of endothelial
cells via both production of ROS and a PPARγ-dependant path-
way, thereby increasing adhesion of lymphocytes to endothelial
cells (Postea et al., 2008).

Like CXCL16, CX3CL1 is an atypical multimodular chemokine
that exists both in a membrane-tethered or soluble form. The
immobilized form consists of a chemokine domain anchored to
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the plasma membrane through an extended mucin-like stalk,
a transmembrane helix, and an intracellular domain. Besides,
CX3CL1 has an anti-apoptotic and a proliferative effect on smooth
muscle cells (White et al., 2010). Previous data have shown that
CX3CL1 could serve as an adhesion molecule (Fong et al., 1998;
Goda et al., 2000). However, more recent data indicated that,
although CX3CL1 might mediate leukocyte adhesion, this phe-
nomenon occurred only under low shear force and not under
physiological conditions (Kerfoot et al., 2003). Regarding endothe-
lial cells, CX3CL1 is expressed on the surface of IFN-γ/TNF-α-
activated HUVEC and promotes leukocyte adhesion to athero-
sclerotic mouse arteries in vivo and under arterial flow in vitro.
More precisely, CX3CL1 expressed by inflamed endothelial cells is
recognized by CX3CR1 on activated platelets. Ligation of platelet
CX3CR1 results in platelet activation and subsequent exposure
of P-selectin on the surface of adherent platelets (Schulz et al.,
2007). The inflamed CX3CL1-expressing endothelial cells can also
recruit the non-classical subset of monocytes which highly express
CXC3CR1 (Geissmann et al., 2010). Under homeostatic condi-
tions, the disruption of the CX3CL1–CX3CR1 axis leads to a
specific reduction of circulating non-classical monocytes in mice
(Landsman et al., 2009). Addition of full-length recombinant sol-
uble CX3CL1 to human monocytes has also shown to decrease
apoptosis triggered by serum deprivation or treatment with 7-β-
hydroxycholesterol. This reduction of apoptosis occurred in both
CX3CR1-expressing CD14++CD16− and CD14+CD16+ mono-
cyte subsets. However, the precise mechanism is still unclear. A
recent study shows that platelets over-expressing CX3CR1 on their
surface are recruited alone or in association with monocytes to the
site of inflammation. This phenomenon might contribute to an
acceleration of atherosclerotic lesions (Postea et al., 2012).

CHEMOREPULSION
Another aspect to take into consideration in the involvement of
chemokines in leukocyte trafficking is the fact that chemokines
could favor a “flight” of leukocytes from a tissue to reach the blood
circulation or another tissue. In this case, leukocytes might run
away from a chemokine gradient. This reverse migration from a
peak concentration of chemokine is named chemorepulsion or
fugetaxis. However, chemorepulsion refers more to a mediator
that, depending on its concentration, can either repel or recruit
cells using the same receptor. This phenomenon has been com-
prehensively studied in the context of T-cell trafficking during the
process of thymic emigration and for which an extensive review
has been recently published (Bunting et al., 2011). It has been
suggested that chemorepulsion could participate in the thymic
egress of human thymocytes. Thus, high concentration of CXCL12
has been shown to repulse human single positive thymocytes
in vitro and this “run away” could be abolished using a neutral-
izing CXCL12 antibody (Poznansky et al., 2000). Moreover, this
chemokine has also been shown to be a chemorepulsive agent of
firm adhesion to activated pancreatic islet microvascular endothe-
lium for both diabetogenic CD4 and CD8 T cells from NOD/LtJ
mice. This repulsion results in a decrease of T-cell integrin acti-
vation in a CXCR4-independent manner (Sharp et al., 2008).
Using a modified flow chamber containing a transwell insert on
which HUVECs are cultured, Lee et al. (2009) have shown that T

cells that have extravasated in response to subendothelial CCL5
may intravasate after exposure to subendothelial CXCL12 under
flow conditions. High concentration of a chemokine, as already
observable in the typically bell shaped response upon increasing
chemokine concentration, is an important factor. However the
exact molecular mechanisms of chemokine-induced chemorepul-
sion are still ill defined. Using a CXCL12 model, Zlatopolskiy and
Laurence (2001) postulated that chemokine-mediated repulsion
would be triggered by an excess of free ligand in the vicinity of
the cell that would lead to a dimerization of the receptor, followed
by an internalization of the ligand/receptor complexes. Internal-
ization, digestion of the ligand, and recycling of the receptors
would be realized under the same way than during the chemoat-
traction process. The difference would take place through the
localization of the recycled receptors. The reappearance of the
internalized receptors may occur not on the apical side of the cell
but on the basal side resulting in a reverse movement. Summa-
rizing, the gradient dependent direction of a chemokine triggered
movement is concentration dependent. Thus, at least two differ-
ent signaling pathways have to exist at the beginning, converging
later again to reorganize the cytoskeleton for cell polarization and
movement. Possible explanations for the chemorepulsion at high
concentrations and chemoattraction at low concentrations are
the chemokine dimerization at high concentrations, high- and
low-affinity binding sites for chemokines on their cognate recep-
tor, rapid recycling of GPCRs, apical rearrangements of recycled
GPCRs, the oligomerization or homodimerization of GPCR with
receptor and non-receptor proteins, and allosteric mechanisms.

GENETIC VARIATIONS IN CHEMOKINE GENES
Different studies have been carried out in order to evaluate
the relationship between chemokine/chemokine receptor genes
and inflammatory diseases including cardiovascular diseases.
Table 3 provides several examples illustrating the association of
chemokine/chemokine receptor polymorphisms with cardiovas-
cular diseases.

In order to identify genes involved in cardiovascular diseases
and before the emergence of genome-wide association studies
(GWAS), many efforts have been undertaken with gene candidate
studies. In these studies several chemokine or chemokine receptor
gene candidates have been found to be associated with cardio-
vascular diseases. For instance, a polymorphism in the promoter
region of the CCL5 gene called rs2107538 has been found associ-
ated with coronary artery disease (Simeoni et al., 2004). However,
an extensive analysis based on the MONICA/KORA Augsburg
Case-Cohort, Athero-Express, and CARDIoGRAM Studies has
been recently carried out. Though an association between high
CCL5 levels and an unstable plaque phenotype has been found, no
associations of either CCL5 serum levels or its content in carotid
plaques or its different genotypes with CAD or other coronary
events has been established (Herder et al., 2011). The result of this
study suggests that CCL5 protein levels and its gene variants might
not be considered as biomarkers for the risk of coronary events in
humans. As discussed by Altshuler et al. (2008), studies of can-
didate genes are performed on specific variants that have a small
a priori probability of being disease-causing. Those studies are also
able to generate false positives due to the lack of knowledge of the
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Table 3 | Examples of chemokine/chemokine receptor single nucleotide polymorphisms (SNP) associated with cardiovascular diseases.

Gene SNP Associated with p-Value References

CCL2 rs1024611 Myocardial infarction 0.005 and 0.009a McDermott et al. (2005)

<0.001 and 0.001b

Coronary artery disease <0.005 Szalai et al. (2001)

CCL5 rs2107538 Acute coronary syndrome 0.0073 Simeoni et al. (2004)

Coronary artery disease 0.0038

CCL11 rs1129844 Myocardial infarction 0.012 and 0.008c Zee et al. (2004)

CXCL5 rs352046 Acute coronary syndrome 0.005 Zineh et al. (2008)

CXCL8 rs4073 Acute coronary syndrome 0.004 Zhang et al. (2011)

CXCL12 rs1746048 Myocardial infarction (early onset) 1×10−8 Kathiresan et al. (2009)

Atherosclerosis severity and progression 0.009 Kiechl et al. (2010)

Coronary artery disease 3×10−10 Schunkert et al. (2011)

rs1801157 Myocardial infarction 0.007 Luan et al. (2010)

rs501120 Coronary heart disease 1.4×10−6 Franceschini et al. (2011)

Myocardial infarction 0.002 Qi et al. (2011)

Coronary artery disease 9.46×10-8 Samani et al. (2007)

CCR2 rs1799864 Heart failure 0.015 Ortlepp et al. (2003)

Myocardial infarction 0.007 Ortlepp et al. (2003)

0.054d Petrkova et al. (2003)

rs34948438 Myocardial infarction 0.0013e Karaali et al. (2010)

0.0016f

CCR5 rs333 Myocardial infarction 0.001 Kallel et al. (2012)

0.0013 Karaali et al. (2010)

Severe calcific aortic stenosis 0.037g Ortlepp et al. (2004)

Myocardial infarction 0.003h Singh et al. (2012)

CX3CR1 rs3732379 Coronary artery disease 0.03 McDermott et al. (2001)

Acute coronary syndrome 0.001 Moatti et al. (2001)

Single in-stent restenosis 0.006 Niessner et al. (2005)

Recurrent in-stent restenosis 0.011

Myocardial infarction 0.006i Singh et al. (2012)

aIn multivariable adjustment and multivariable adjustment of pooled-sex cohort, respectively.
bIn multivariable adjustment and multivariable adjustment of male cohort, respectively.
cIn an age and smoking and body mass index, hypertension, diabetes, and randomized treatment assignment adjusted recessive model of inherence, respectively.
dIn female cohort.
eIn patients carrying CCR5 rs34948438 wildtype (wt)/deletion (∆) genotype.
fIndividuals carrying the CCR5 rs34948438 heterozygote or homozygous variant genotype (∆/∆+wt/∆).
gIn patients carrying the CCR5 rs333 SNP or CTGF -447C allele.
hIn individuals carrying both CCR5 rs1799987 and rs333 SNPs.
iIn individuals carrying both CX3CR1 rs3732378 and rs3732379SNPs.

genetic background of cases and controls. This could explain the
low reproducibility in candidate gene studies and lack of recovery
between GWAS and candidate gene studies.

Amongst the different GWAS for cardiovascular disease per-
formed during the last years, chemokine CXCL12 gene polymor-
phisms have been associated with CAD (e.g., Samani et al., 2007;
Kathiresan et al., 2009; Franceschini et al., 2011; Schunkert et al.,
2011). In addition, the study conducted by Mehta et al. (2011)
found the CAD risk locus 10q11 to regulate the level of CXCL12
transcripts.

CHEMOKINE SYNERGISM BY HETEROMERIZATION
The regulation of chemokine activity during initiation and devel-
opment of inflammatory diseases is crucial to reach a fast

and directed response. There is evidence that the activity of
chemokines can be modulated by posttranslational processing
(reviewed by Proost et al., 2003) and synergistic cytokines, e.g.,
IFN-γ (Mortier et al., 2011). Especially at the early phase of inflam-
mation the concentration of a specific chemokine might not be
high enough for a sufficient cell response. Hence synergism would
aid to speed up the chemokine-induced response of leukocyte
migration and to increase combinatorial specificity (Gouwy et al.,
2005; Paoletti et al., 2005). A mixture of low concentrated indi-
vidual synergizing chemokines behaves like the receptor agonist
at an adequate concentration. Although the synergism of some
single chemokines has been explored, so far a complete overview
how many chemokines are involved is still elusive. It was previ-
ously shown that chemokine receptor induced chemotaxis may be
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enhanced by addition of chemokines which have per se no effect
are not cognate ligands of the respective receptor and are called
synergy-induced chemokines (Paoletti et al., 2005). Currently it
is still unclear how this effect may be mediated in detail. Several
underlying mechanisms are conceivable and can depend mainly on
the respective chemokine partners and their receptors. It is possible
that homeostatic and inflammatory chemokines that exhibit a dif-
ferent functional activity can form heteromers and act together in a
synergistic way. Furthermore the signaling of GPCR-agonists can
be enhanced by non-ligand CXC- and/or CC-type chemokines.
Additionally, the GPCR-agonist mono and dimer equilibrium may
regulate the signaling of the specific GPCR, which results in a dif-
ferent recruitment pattern of the target cells (Drury et al., 2011).
It is of strong interest how the chemokine–chemokine interac-
tions occur in vivo but it is difficult to find feasible approaches
for a direct observation of the processes in living organisms. Some
examples for a chemokine–chemokine synergism are given in the
next parts.

CHEMOKINE HETEROMERIZATION
Interaction between receptor agonist and non-ligand chemokines
influences the activity of the chemokine receptor. All chemokines
exhibit a typical tertiary structure homology which consists of a
disordered N-terminus followed by three anti-parallel β-strands
and the C-terminal α-helix. The quaternary structures of CC
and CXC chemokines are different. Whereas the CXC-type forms
dimers with a central β-sheet, the CC-type dimerizes through the
interaction of both N-termini. In case of CC- and- CXC-type
heteromers it is difficult to predict the proper structure. Our work-
group previously showed the synergistic interaction of CXCL4 and
CCL5 to accelerate atherosclerosis by triggering monocyte arrest
on endothelium (von Hundelshausen et al., 2005; Koenen et al.,
2009). The synergistic effect is based on the heteromerization of
these two chemokines, since peptides disrupting the heteromers
abolish this synergism. Interestingly, the quaternary structure of
the CCL5–CXCL4 complex features a CC-type heteromer, which
exhibits paired N-termini, yet results in better receptor activation.

The response to CCR4 in skin-homing T-lymphocytes is
enhanced by co-expressed chemokines in the inflamed skin. For
example the CXCR3-agonist CXCL10 enhances the chemotaxis of
CCR4-transfected preB-cells and T cells due to interaction with the
CCR4-agonist CCL22 (Sebastiani et al., 2005). Further enhance-
ment of the CCR4 activity evolves from the direct interaction of
CCL22 with the CCR7-agonist CCL19. In addition, CCL22 was
also shown to interact with the CCR3-agonist CCL7. In this last
case, it was shown that a sequence of five amino acids of the first β-
strand from CCL7, which contains two positively charged arginine
residues, is needed to synergize with CCL22 and hence increases
the CCR4 activation. In the same study a CCL4–CCL7 chimera
lost the synergetic activity, being generated by substituting the
first β-strand of CCL7 with that of the non-synergizing CCL4,
lacking the positively charged amino acids. Thus the first β-strand
of a chemokine, containing positive and hydrophilic amino acids,
seems to have a crucial role in synergism and heteromer formation.

Furthermore monocyte recruitment is enhanced by the home-
ostatic chemokines CCL19 and CCL21 which are both CCR7-
agonists. They synergize with CCL7 and CCL2 that result in an

augmented CCR2 response to recruit monocytes (Kuscher et al.,
2009). Interestingly the induced monocyte recruitment by CCL7 is
enhanced 100 times by CCL19 and CCL21 whereas CCL2 showed
less synergistic activity. By comparing a specific motif, compris-
ing five amino acids in the first β-strand of all four chemokines,
it has further been shown that CCL7 and CCL21 exhibit more
positively charged amino acids which correlates with a higher
synergistic effect confirming the importance of the first β-strand.
Synergism of chemokines by heteromerization was also shown for
other chemokines (Paoletti et al., 2005; Allen et al., 2007; Koenen
et al., 2009). The authors suggest that heteromers of synergisti-
cally acting chemokines lead to a high affinity conformation of
the respective receptor. Another study (Venetz et al., 2010) showed
that heteromerization of CXCL12 with the inflammatory CXCR3-
agonist CXCL9 results in a higher response of CXCR4-expressing
T cells and malignant B cells on tumor vasculature.

ANTAGONISM BY CHEMOKINE DIMERS
Even if the neutrophil migration toward CXCL8 is enhanced by
different CXC- and also CC-chemokines, i.e., CCL2 and CXCL12,
the dimerization of CXCL8 decreases its binding to CXCR1 (Fer-
nando et al., 2004; Weber and Koenen, 2006). This effect might not
be due to structural change but rather to a loss of conformational
flexibility which leads to a low-affinity configuration. Thus the
dimer is not competent enough to bind the receptor N-domain.
Moreover, heteromerization of CXCL8 with CXCL4 reduces the
chemotactic propensity of CXCL8 (Dudek et al., 2003). These
heterodimers enhance the anti-proliferative effect of CXCL4 on
endothelial cells in culture, and the CXCL8-induced migration
of CXCR2 transfected Baf3 cells as well (Nesmelova et al., 2005;
Weber and Koenen, 2006). Inhibition of CXCL8-induced mono-
cyte arrest is evoked by CXCL4. This effect might also be due to
a less flexible CXCL8 molecule that has a lower affinity for its
receptor. However, the availability of the monomer-dimer equi-
librium of CXCL8 is crucial to regulate tissue-specific neutrophil
recruitment given that the recruitment profile differs due to altered
GAG-binding interaction (Gangavarapu et al., 2012).

Recently, it could be shown that a monomeric or dimeric state
of CXCL12 plays a crucial role for the CXCR4 activation and its
mode of signaling (Ray et al., 2012). The dimeric CXCL12 activates
recruitment of β-arrestin 2 to CXCR4 and chemotaxis of CXCR4-
expressing breast cancer cells, whereas the monomeric CXCL12
promotes the CXCR4 signaling through Gαi and Akt. Further-
more, another recent study (Drury et al., 2011) demonstrated that
monomeric CXCL12 compared with the dimeric variant exhibits
more contact sites for CXCR4 and thus results in different receptor
signaling. To our knowledge it has not been tested, but supposedly
a different or even inverse activity, e.g., the chemorepellent activ-
ity of higher concentrated CXCL12, may well be dependent on the
preponderance of CXCL12 dimers.

Not only chemokine heteromerization may influence receptor
driven signal transduction but as well the homooligomeric state
changes the biological activity by either buried receptor bind-
ing sites, e.g., in polymeric MIP-1 or the different kinetics of
monomeric versus dimeric CXCL8. These insights will be helpful
to develop specific drugs interfering with oligomerization motifs
thereby suppressing or enhancing desired chemokine effects.
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BINDING TO GPCRs
In order that chemokine–chemokine partners unfold synergism
it is suggested that first chemokine heteromers form and sub-
sequently receptor binding follows. Besides the formation of a
heteromeric chemokine complex, the binding to a receptor is
required to mediate the synergistic effects. GAGs, as co-receptors
of GPCRs, can also induce heteromerization of chemokines
(Crown et al., 2006). In addition, it is speculated that instead of
heteromerization, as mentioned above, different receptor binding
sites for CCL2 and CCL7 are responsible for the synergistic activ-
ity as it was previously shown for CXCR3-agonists (Colvin et al.,
2004).

Homeostatic chemokines like CCL21, CCL19, CXCL12, and
CXCL13 are synergizing to promote a regulated lymphocyte traf-
ficking across the lumen or basal lamina of high endothelial
venules (HEVs) in lymph nodes. For example, CXCL12 augments
through its receptor CXCR4 the CCR7-induced chemotaxis of
T cells and therefore helps to transfer them across the HEVs
without direct interactions with the CCR7-ligands CCL19 and
CCL21 (Bai et al., 2009). Here the signaling through CXCR4
has a major impact because in T cells, deficient in CXCR4,
no cooperative effect was observed. The synergistic effect is
merely evident at suboptimal concentrations of the CCR7-ligands
CCL19 and CCL21. In summary, CXCL12–CXCR4 signaling has
the ability to cause a maximal T-cell response by a subopti-
mal CCR7-ligand concentration. A similar observation was also
previously shown for CXCL13 (Paoletti et al., 2005; Bai et al.,
2009). However, it is remarkable that the heteromerization of
CXCL13 with CCR7-ligands is thought to be the responsible mech-
anistic reason for synergism, whereas synergy of CXCL12 with
CCR7-ligands is independent of direct chemokine–chemokine
interaction. In fact, it is assumed that CXCL12 increases the
CCR7-signaling by ERK phosphorylation and actin polymer-
ization in T cells (Bai et al., 2009). A similar conclusion was
provided by van Damme’s group who showed that the syner-
gism of CXCL8 or CXCL12 with CCL2 is mediated through
CXCR1/2 (CXCL8) and CXCR4 (CXCL12; Gouwy et al., 2008,
2009). When the concentration of CCL2 is low CXCL8 helps
to chemoattract monocytes. This requires binding of CXCL8
to CXCR1 and CXCR2. A further example is the synergism
of CXCL12 with CCL2 where correct binding and signaling to
CXCR4 and CCR2 is essential for synergistic interactions. Addi-
tionally a recent study has shown that CCR1-agonists like CCL5
and CCL3 are enhancing CXCR4-induced ERK phosphoryla-
tion and chemotaxis of mononuclear cells and it was further
observed that this cooperative effect is inhibited by blocking
CCR1 with specific antibodies and AMD3100 (Gouwy et al.,
2011).

In summary, synergism of chemokines crucially depends on
increased activation of the GPCR by heteromerization of lig-
and and non-ligand chemokines or cooperative interactions after
chemokine activation of distinct GPCRs. Heteromerization of
receptors has been observed. However the mechanistic role of these
complexes in respect of ligand binding is still unclear, it might be
that chemokine heteromers can stabilize and change the functional
activity of receptor heteromers (Thelen et al., 2010; Kramp et al.,
2011).

THERAPEUTICS
GPCRs as therapeutic targets have been reviewed extensively (Rek
et al., 2009; Koenen and Weber, 2010b, 2011; Bennett et al., 2011;
Schall and Proudfoot, 2011; Kanzler et al., 2012). A lot has already
been done and it is still in progress to find appropriate therapeutic
drugs, particularly for the prevention and treatment of HIV. Since
chemokines and the subsequent receptor signaling are involved in
many diseases, there is hope that good antagonists will increase
the means to treat them.

The different interactions between chemokines, which result
in a changed biological activity, can be used to find new targets
against inflammatory diseases. There are several possibilities for
therapeutically targeting chemokines involved in inflammation. In
the next part, several examples are illustrating how to alter inflam-
matory properties by blocking heterophilic interactions, multiple
chemokine axes, direct blocking of chemokine receptors as well as
blocking of GAG-binding sites.

MODIFIED CHEMOKINES
Modifying the target chemokine is one option to create antago-
nists since changing the molecular structure leads to a different
binding pattern and receptor response. Especially the N-terminal
part is crucial for receptor signaling and thus a change in this
domain can lead to alteration or loss of receptor activation. Vari-
ants of chemokines with an extended or modified N-terminal part
are for example N-methylated CCL5 (Met-RANTES) or amino-
oxypentane-RANTES which block the CCL5 receptors CCR1,
CCR3, and CCR5 (Proudfoot et al., 1996; Elsner et al., 1997;
Proudfoot et al., 1999; Veillard et al., 2004). In liver fibrosis
and atherosclerosis it was shown that inhibiting CCL5 receptors
through Met-RANTES was sufficient to reduce inflammation in
mice (Veillard et al., 2004; Berres et al., 2010). This phenomenon
was observed in vivo and in vitro. Another example is R6H-CXCL8,
a variant of CXCL8 with substitutions on the conserved ELR-triad
and CXC-motif which exclusively activates CXCR1 without effect-
ing CXCR2. This is based on a distinct CXCL8 binding mechanism:
the CXCR2 activation is mediated by the N-terminal ELR- and
CXC-motif whereas the N-loop of CXCL8 is essential for CXCR1
activation (Sarmiento et al., 2011). Furthermore, the above men-
tioned CXCL8 variant displays anti-inflammatory properties since
it activates CXCR1 by desensitization of the CXCR2 response
in human neutrophils. In fact, this agonist could help to clarify
the biological and physiological function, especially of CXCR1, in
inflammatory diseases. Thus R6H-CXCL8 is a potential candidate
as a therapeutic molecule.

GLYCOSAMINOGLYCAN BINDING AFFINITY
Most chemokines have the ability to bind GAGs located on
the cell surface. The enhancement or reduction of this prop-
erty can diminish the GPCR signaling by an indirect blockade
of chemokine binding to its receptor, since GAGs are co-factors
for GPCR activation. It is assumed that chemokines first bind the
GAG co-receptor followed by GPCR activation.

A variety of chemokines was previously designed with altered
GAG-binding affinities resulting in a loss of GPCR activation
(Proudfoot et al., 2008; Shahrara et al., 2008; Rek et al., 2009).
The activity of the pro-inflammatory chemokine CCL5 depends
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on the binding to GAGs. The substitution of positively charged
residues into alanine in the 40s loop ([44AANA47]-CCL5mutant)
results in defective heparin binding and loss of the ability to recruit
monocytes. The heteromerization of both CCL5 variants leads to
non-functional heteromers with a lack of GAG-binding efficiency
(Johnson et al., 2004; Koenen and Weber, 2010b). Another study
(Braunersreuther et al., 2008) additionally confirms [44AANA47]-
CCL5 as a potential therapeutic agent against atherosclerosis. But
in contrast to Met-RANTES, [44AANA47]-CCL5 does not directly
abolish GPCR activation. Thus variations of CCL5 mutants act-
ing in different ways can lead to anti-inflammatory properties by
a direct blockade of the GPCR or by indirect inhibition through
prevention of chemokine binding to GAGs on the cell surface.
Another way to block chemokine activity using the affinity for
GAGs is to design dominant-negative mutants with a higher GAG-
binding affinity compared to the wild type chemokine (Brandner
et al., 2009). H23K-RANTES showed attenuation of autoimmune
uveitis in rats based on displacement of wild type CCL5 from its
proteoglycan-co-receptor. Mutants with increased GAG-binding
potential were designed for CCL2, as well. The PA508 mutant
of CCL2 exhibits no ability for CCR2 activation but a fourfold
higher GAG affinity compared to the wild type CCL2 (Piccinini
et al., 2010). In a recent study in mice, PA508-CCL2 showed pre-
vention of neointima formation and reduction of tissue damage
after myocardial infarction without notable side effects. Therefore,
it could be a candidate as a therapeutic agent in reducing restenosis
in stents (Liehn et al., 2010). Additionally, a mutant of CXCL12
with a deficiency in heparan sulfate binding can still transduce sig-
nals through CXCR4 but is not able to promote transendothelial
migration in vitro. In vivo experiments could further show that
this mutant efficiently down-regulates the CXCR4 expression and
desensitizes the chemotactic response toward CXCL12. Hence, this
modified chemokine might work in anti-inflammatory therapies
(O’Boyle et al., 2009).

SMALL MOLECULES AND ANTIBODIES
The development of small molecules blocking GPCR activation
is a powerful tool for the treatment of inflammatory diseases.
Major efforts have been done to find drugs for blocking HIV infec-
tion. Maraviroc (Celsentri/Selzentry; Pfizer) was established as a
functional anti-HIV drug by blocking CCR5 as important entry
receptor. In inflammatory diseases, like atherosclerosis, TAK779
and nbI-74330 antagonists for CCR5 and CXCR9, respectively,
represent suitable therapeutic agents (Koenen and Weber, 2010b).
Antagonizing CXCR4 by TAK779 additionally blocks leukocyte
trafficking induced by CXCL12 (Sohy et al., 2009). Recently,
DF 2156A was introduced as a novel dual inhibitor of CXCL8
receptors CXCR1 and CXCR2 (Bertini et al., 2012). This dual
function is based on a non-competitive inhibition resulting in
a stabilized binding between DF 2156A and the two CXCL8 recep-
tors due to formation of specific ionic bonds in the allosteric

binding site (Bertini et al., 2012). Some CXCR2- and CCR2-
specific antagonists (i.e., reparixin and MLN1202) have already
been tested as therapeutic drugs in clinical trials, like MLN1202,
which is a CCR2-blocking monoclonal antibody shown to reduce
high-sensitivity CRP as surrogate parameter for atherosclerosis
(Allegretti et al., 2008; Gilbert et al., 2011).

CHEMOKINE HETEROMERIZATION
As mentioned before some chemokines inherently exhibit syner-
gistic function toward other chemokines which mostly depends
on heteromerization. Disruption or changing these critical het-
erophilic interactions might entail a decrease in the physiological
response which has an impact on the degree of inflammation. A
prominent example is the heterophilic interaction between CXCL4
and CCL5 which results in a synergistic enhancement of CCL5
induced signaling accompanied by increased monocyte recruit-
ment to the inflamed endothelium (Koenen et al., 2009; Koenen
and Weber, 2010a). Interruption of the chemokine heteromeriza-
tion by cyclic peptides was shown to eliminate synergistic effect
in vitro and in vivo. Recently it was shown (Grommes et al.,
2012)that small peptide antagonists, disrupting CXCL4–CCL5
heteromer formation in mouse models of acute lung injury, result
in improved lung edema, less neutrophil infiltration, and reduced
tissue damage. Thus targeting heterophilic chemokine interac-
tions can act as therapeutic approach by attenuating inflammatory
disease in a mild way.

CONCLUSION
It is still elusive which consequences the blockade of one
chemokine has when entering clinical trials. For example, the den-
dritic cell-derived CCL17 could be identified as a catalyzer for
atherosclerosis due to interference of Treg homeostasis in mice
(Weber et al., 2011). Blocking CCL17 with an antibody abolished
this pro-inflammatory effect. Nevertheless the blocking mecha-
nism is unclear and which consequences the blocking has for
other physiological signal cascades. For example the CXCL12–
CXCR4 axis is crucial for the CXCL12-dependent recruitment of
progenitor cells. Consequently a reduction of the CXCR4 level
diminishes this important process in regeneration but inversely a
decreased expression of CXCR4 was efficient to limit myocardial
infarct size in mice (Liehn et al., 2011). Detailed knowledge and
clarity of how a specific chemokine oligomerizes, binds to GAG
and its GPCR as well as its interaction with other chemokines, with
regard of the resulting signal cascade and immune response, are
required.

Targeting GAG-binding sites of specific chemokines is a
promising approach for developing drugs against chemokine dri-
ven diseases, given that the GPCR binding is not directly affected.
Also the disruption of chemokine–chemokine interactions seems
to become attractive, since synergistic effects can be prevented
without reducing the function of the respective chemokine per se.
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