
Robust Optimal Design of Experiments for Model
Discrimination Using an Interactive Software Tool
Johannes Stegmaier1,2, Dominik Skanda1, Dirk Lebiedz3*

1 Center for Analysis of Biological Systems (ZBSA), University of Freiburg, Freiburg, Germany, 2 Institute for Applied Computer Science (IAI), Karlsruhe Institute of

Technology, Karlsruhe, Germany, 3 Institute for Numerical Mathematics and Ulm Center for Scientific Computing (UZWR), University of Ulm, Ulm, Germany

Abstract

Mathematical modeling of biochemical processes significantly contributes to a better understanding of biological
functionality and underlying dynamic mechanisms. To support time consuming and costly lab experiments, kinetic reaction
equations can be formulated as a set of ordinary differential equations, which in turn allows to simulate and compare
hypothetical models in silico. To identify new experimental designs that are able to discriminate between investigated
models, the approach used in this work solves a semi-infinite constrained nonlinear optimization problem using derivative
based numerical algorithms. The method takes into account parameter variabilities such that new experimental designs are
robust against parameter changes while maintaining the optimal potential to discriminate between hypothetical models. In
this contribution we present a newly developed software tool that offers a convenient graphical user interface for model
discrimination. We demonstrate the beneficial operation of the discrimination approach and the usefulness of the software
tool by analyzing a realistic benchmark experiment from literature. New robust optimal designs that allow to discriminate
between the investigated model hypotheses of the benchmark experiment are successfully calculated and yield promising
results. The involved robustification approach provides maximally discriminating experiments for the worst parameter
configurations, which can be used to estimate the meaningfulness of upcoming experiments. A major benefit of the
graphical user interface is the ability to interactively investigate the model behavior and the clear arrangement of numerous
variables. In addition to a brief theoretical overview of the discrimination method and the functionality of the software tool,
the importance of robustness of experimental designs against parameter variability is demonstrated on a biochemical
benchmark problem. The software is licensed under the GNU General Public License and freely available at http://
sourceforge.net/projects/mdtgui/.
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Introduction

The investigation of biochemical processes inherent to any

biological systems such as bacteria, plants, animals or even

humans is an important component of current systems biology

approaches. To simulate such dynamic processes in silico,

mathematical modelling based on ordinary differential equations

(ODEs) represents a powerful and broadly used tool [1]. Although

these models mostly do not represent the exact biochemical

mechanisms of the investigated phenomena, they are useful to get

deeper insights into the underlying processes or allow to make

proposals for future experiments [2,3]. The identification of

suitable hypothetical models that simultaneously perform well on

acquired measurements of different experiments is a challenging

task. Of course, if a model is over-parametrized, it is possible to

perfectly reproduce observed measurement data while concur-

rently loosing the generalization capabilities of the model [4]. On

the other hand, if the number of model parameters is not

sufficient, the model might be unable to fit the data at all. This

means that a good model should be a trade-off between being as

simple as possible while maintaining a good approximation of

observed measurement data [5].

Frequently, several models perform equally well on an initial

measurement data set. Instead of performing a huge number of

different experiments to determine the appropriate hypothesis,

simulating and re-designing experiments in silico before moving

back to real experiments is a reasonable approach. It is therefore

desirable that newly designed experiments allow to evaluate the

appropriateness of the investigated models and possibly discard

incorrect models. This process is also referred to as optimal

experimental design for model discrimination or model selection.

Current methods for model discrimination range from exhaus-

tive search methods [6] over probabilistic approaches [7] to

optimization based approaches [6,8,9]. The approach considered

in this work is based on reformulating the calculation of new

experimental designs as a constrained nonlinear optimization

problem. Therefore, an optimality criterion is maximized with

respect to the involved experimental design variables such as the

arrangement of measurement time points, the initial species
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concentrations, the experimental duration and external perturba-

tions to the system. The concentration time courses of the

participating species are attained by efficiently solving an initial

value problem for the ODE based formulation of the biochemical

reaction equations using numerical integration. Derivatives are

generated using algorithmic differentiation which in turn allows to

make use of efficient derivative based optimization algorithms

[10]. The interior point optimization algorithm Ipopt is used to

solve the constrained nonlinear optimization problem [11,12].

Another aspect that arises upon incomplete a priori knowledge of

certain involved parameters is the calculation of robust optimal

designs. The intention of robust optimal designs for model

discrimination is to maintain the power to select between several

hypothetical models, even for the most inappropriate parameters

that can be observed in a given setup. This is achieved by re-

estimating parameter values in addition to calculating the

discriminating designs.

In this article we present a comprehensive extension to the

previously presented command line tool ModelDiscrimination-

Toolkit by Skanda and Lebiedz [13]. The extension comprises a

convenient graphical user interface for the interactive analysis of

biochemical models as well as an implementation of the

robustification approach described in [10]. Initially, we provide

the reader with a brief introduction to the discrimination approach

presented in [10,13], introduce the basic concepts of the

robustification method and discuss its realization in the Mod-

elDiscriminationToolkitGUI. The results section emphasizes the

importance of robust experimental design and demonstrates the

capabilities of the ModelDiscriminationToolkitGUI on two

examples, including a realistic benchmark problem on a

biochemical network in an artificial organism [6]. Finally, the

work is summarized and an outlook on further work is given in the

last section.

Methods

Model representation
A widely used approach to model biochemical reaction

networks is their formulation as a set of coupled ordinary

differential equations (ODE). The temporal concentration change
dy
dt

of a certain species y is defined as a function of the

concentrations of the involved species with respect to the

corresponding rate constants according to the law of mass action

[14]. A comprehensive treatment of the modeling of biochemical

processes using ordinary differential equations can e.g. be found in

[14,15].

As the models specified this way usually do not have an

analytical solution, the equation system has to be solved

numerically [16]. If the kinetic parameters of the reactions are

not known in advance, they have to be estimated on given

measurement data. By specifying the initial concentrations yI for

all participating species, the ODEs can be solved using numerical

procedures for solving initial value problems as described later. All

models considered in this work are formulated as such a set of

ordinary differential equations. The next sections show how to

calculate new experimental designs for the discrimination of

several plausible hypotheses formulated as ODE models.

Model discrimination
The central goal of model discrimination is to calculate new

experimental designs in such a way that the time courses of the

rival model responses are maximally separated. Hence, an

objective function is needed that evaluates the distance between

the trajectories of the model hypotheses in a suitable way. In our

case the objective function is derived by the Kullback-Leibler (KL)

divergence, which is a non-symmetric measure for the distance of

two probability density functions, as described in [17]. A detailed

derivation of the adjusted optimization criterion as well as the

statistical background can be found in [10,13]. The general

objective function for a discrete set of measurement points and

possibly unequal variance functions s1
j (ti,j,h1),s2

j (ti,j,h2) of the

two models reads as follows:

J(2 : 1,j,h1,h2)~
Xn

i~1

H(Dti) ~HH(ci):

Xm

j~1

 
(s2

j )2z y1
j (ti,j,h1){y2

j (ti,j,h2)
� �2

(s1
j )2

{

264 ð1Þ

2 log
s2

j

s1
j

 !#
{m

!
:

In Eq. (1), the sum of squared differences is scaled by the

corresponding variance functions of the models. For the homo-

scedastic case, Eq. (1) reduces to the sum of squared differences

between the responses of the two models. In Eq. (1), m is the

number of species, n is the number of measurement time points

and yk
j (ti,j,hk) with k[f1,2g is the value of the time course

trajectory of species yj with j~1,:::,m of the model k. The

variables ti with i~1,:::,n represent the measurement time points,

j[J(Rd is a d-dimensional experimental design vector from the

design space J and hk[Hk are the model parameters contained in

the respective parameter spaces Hk. Note, the objective function

in Eq. (1) is non-symmetric and therefore depends on the ordering

of the models. In the following the ordering of the models in the

objective function is not regarded for convenience.

An optimal experimental design ĵj maximizes the objective

function J(j,h1,h2) with respect to constant parameter vectors h1

and h2. On the other hand, the objective function J(j,h1,h2) can

also be used to determine worst-case parameters for a given design j
corresponding to most similar model responses. In this case, the

experimental design is considered constant and the desired

parameter vectors are subject to optimization. Of course, the

criterion has to be minimized if worst-case parameters, which

produce the most similar model responses, should be identified.

The functions H(Dti), ~HH(ci) are weighting the model differences at

a single measurement point depending on the time interval

Dti~ti{ti{1 and the current species quantity perturbations ci to

the system. H(Dti) is used to avoid that time intervals fall below a

predefined minimum measurement interval Dtmin, which models

restrictions of the measurement method. In turn, the function
~HH(ci) prevents simultaneously performed measurements and

perturbations, which is demanded in some of the considered

experiments. Mathematically this can be modeled by so called

Heaviside functions that map from the real numbers to the set

f0,1g.

H(Dti)~
1 if DtiwDtmin

0 else

�
ð2Þ
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~HH(ci)~
0 if ci=0

1 else:

�
ð3Þ

The definition of the Heaviside functions can be found in Eq. (2)

and Eq. (3). These Heaviside functions are not differentiable and

therefore continuous differentiable approximations of these

functions are needed in order to apply derivative based

optimization algorithms. An approximation of these Heaviside

functions based on parametrized hyperbolic tangent functions is

given in [10,13].

Robust optimal designs
The parameters of the investigated models are usually estimated

on available measurement data. Due to measurement inaccura-

cies, there is uncertainty about those parameters up to a

confidence region representing a level of significance. Additionally,

biological systems might involve intrinsically distributed parame-

ters leading to the effect of distributed determinism as pointed out

in [18,19]. Hence, it is desirable to have new experimental designs

with both great discrimination power as well as keeping the ability

to distinguish between the models even for inappropriate

parameter settings within some confidence region. These demands

naturally lead to the problem of finding a worst-case optimal

experimental design ĵj with respect to appropriate parameter

spaces H1,2 and thus ĵj is referred to as robust optimal design.

Mathematically, the problem of finding a robust optimal design ĵj
can be formulated as a max-min optimization problem in the

following way:

ĵj~argmaxj[J min
h1,2[H1,2

J j,h1,h2ð Þ
 !

: ð4Þ

Here, the experimental design vector j~(yI ,t,c)[J(Rd consists

of the initial species concentrations yI , perturbations c and an

optimal arrangement of measurement time points t. The set J
represents the space of feasible experimental designs and h1,2[H1,2

are the feasible model parameters for the current design j.

We solve the problem stated in Eq. (4) iteratively by an outer

approximation algorithm, see e.g. [20]. Each iteration N of the

outer approximation algorithm consists of two phases. In the first

phase worst-case parameters ~hhN
1,2[H1,2 for the current optimal

experimental design ĵjN[J are re-estimated. (For the first iteration

with N~0, ĵj0 corresponds to the user supplied initial experimen-

tal design.) These worst-case parameters ~hhN
1,2 are used to augment

a list of parameters eHHN
1;2 by eHHNz1

1;2 ~(~hhN
1 ,~hhN

2 )|eHHN
1;2. (For the first

iteration with N~0, we set eHH0
1;2 : ~1.) In the second phase a

new optimal experimental design ĵjNz1 is calculated with the

constraint that the design has to be optimal with respect to all

parameter pairs in eHHNz1
1;2 simultaneously, i.e.

ĵjNz1~argmaxj[J min
(h1,h2)[eHHNz1

1;2

J j,h1,h2ð Þ

0B@
1CA:

It can be shown [20,21] under reasonable assumptions that ĵjN

converges to a critical point ĵj of the problem stated in Eq. (4), i.e.

ĵjN?ĵj as N??. Thus, the values obtained for the objective

functions J of the discrimination run in phase two and the

parameter re-estimation in phase one of the outer approximation

algorithm are converging to the same value. The absolute value of

the difference of the objective functions, which we call the

robustification gap DRG , can be used as a stopping criterion of the

max-min optimization problem:

DRG~D min
(h1,h2)[eHHN

1;2

J ĵjN ,h1,h2

� �h i
{

min
h1,2[H1,2

J ĵjN ,h1,h2

� �h i
Dƒd:

ð5Þ

Eq. (5) shows the definition of the robustification gap as well as the

stopping condition. The value for d is usually chosen to be a small

positive number, e.g. 10{6, depending on the demanded accuracy

and the problem under consideration. As soon as the robustifica-

tion gap falls below a desired value, the discrimination algorithm

can be stopped. To lower the chance of receiving only local worst-

case parameters, several random initializations of the parameter

estimation within a feasible range can be performed.

The optimization problem
The full robust optimal design problem which is considered in

this paper can be formulated in the following way:

max
j~(yI ,t,c)[Rd

min
h1,2[H1,2

J j,h1,h2ð Þ
 !

ð6Þ

subject to

ymin
I ƒyIƒymax

I , ð7Þ

Dtmin
i ƒDtiƒDtmax

i ,i~1,:::,n, ð8Þ

cmin
i ƒciƒcmax

i ,i~0,:::,n{1, ð9Þ

Xn

i~1

Dti~Tend : ð10Þ

The constraints for the initial species vector yI are necessary to

avoid infeasible species concentrations, e.g. preventing negative

concentration values. Since we demand that an experiment has to

be performed in a fixed time span, the time intervals

Dti~ti{ti{1,i~1,:::,n, have to sum up to the fixed experimental

duration Tend and have to lie in the range ½tmin
i ,tmax

i �. Finally, the

constraints for the perturbations ci ensure that these values also lie

in a reasonable range. The numerical realization and a more

thorough mathematical formulation of this semi-infinite inequality

and equality constrained optimization problem (SIECP, [20]) for

the purpose of robust optimal design of experiments is given in

[10,21].

Numerical tools
To solve the initial value problems for the ODE models, a

backward differentiation formula (BDF) integrator is used and

implemented in a multiple shooting setup [21,22]. Derivatives

needed by the optimization algorithm are calculated using the

automatic differentiation software CppAD and the optimization
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problem is solved using an interior point approach implemented in

the Ipopt package [11,23]. Additionally, a so called homotopy

method, which introduces new constraints on the parameter values

slowly to subsequent optimization steps, is used to improve the

convergence of the outer approximation algorithm [10,21].

The graphical user interface
To make the functionality of the ModelDiscriminationToolkit

available to non-programmers, a convenient graphical user

interface, namely the ModelDiscriminationToolkitGUI, has been

developed, delivering easy and interactive access to the above-

mentioned model discrimination techniques. An exemplary

screenshot of the ModelDiscriminationToolkitGUI is given in

Fig. 1. The application is separated into the three labeled areas.

The plot window (1) displays all time courses and derivatives of the

currently enabled species. It provides direct feedback of the

optimization steps that are performed during the discrimination

and can also be used to get a better understanding of the model

behavior. Experimental conditions like initial species, measure-

ment intervals and perturbations can directly be altered within the

plotting window. The models are immediately simulated again and

therefore different possible discrimination scenarios can be tested

before starting the actual optimization routine. The console

window (2) displays the output generated by the ModelDiscrimi-

nationToolkit and the optimization package Ipopt. Additionally,

the intermediate experimental designs, worst-case parameters as

well as the final results are printed there. The output format of the

experimental design components such as time intervals and

perturbations are given in MATLAB matrix notation and stored

on disk in order to facilitate further processing of data. The settings

window (3) can be used to adapt e.g. the experimental conditions,

robustification properties, Ipopt parameters and integrator

settings. A threaded implementation ensures that the GUI remains

responsive to the user, e.g. allowing live update of the new

experiment during optimization and a pause functionality for

further investigations.

Implementation details
The ModelDiscriminationToolkitGUI is developed in the C++

programming language using the Xcode IDE on Mac OS X for

development. For the creation of the graphical user interface, the

Qt API (4.7) by Nokia, which is freely available for non-

commercial projects, is used [24]. The ModelDiscrimination-

Toolkit requires the interior point optimization package Ipopt

[11,12] with the linear solver MA27 [25]. Throughout the

presented implementation, the Ipopt version 3.9.2 is used. To

fully exploit the parallel processing capabilities of modern

hardware, the numerical integration is parallelized using POSIX

threads. In addition to detailed installation instructions, getting

started tutorials, Xcode project files and a Unix makefile, a

template model file is provided to built and test the ModelDis-

criminationToolkitGUI on different Unix based platforms. The

application has successfully been compiled and executed on both

Mac OS X 10.8 and Ubuntu 12.04.

Figure 1. Screenshot of the graphical user interface. The main working areas of the GUI are labeled. The application comprises a plot window
(1), a console output window (2) and an extensive settings dialog (3).
doi:10.1371/journal.pone.0055723.g001
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Results and Discussion

In this section we present the results of two exemplary

discrimination problems that demonstrate the importance of the

robustification approach as well as the capabilities of the

ModelDiscriminationToolkitGUI. The first example deals with

two models for enzyme catalyzed reactions. In the second

example, the tool is applied to a realistic benchmark problem

for model discrimination published earlier by Kremling et al. [6].

All calculations are performed using the current version of our

software tool. The complete software package, all discussed models

as well as the project files and result logs are offered for download

on the project website http://sourceforge.net/projects/mdtgui.

Hysteretic enzyme vs. simple enzyme
The enzyme catalyzed product molecule formation from certain

substrate molecules is an ubiquitous process in living organisms. In

this discrimination example we identify the appropriate enzyme

model for a given set of measurement data. The most simple

enzymatic reaction where a steady-state is reached directly after a

short initial phase according to the reaction equations

Ez3S '
k1

k{1

ES3

k2
EzP

can be modeled by the following set of ODEs:

½ _SS�~3:({k1
:½S�½E�zk{1

:½ES�) ð11Þ

½ _EE�~{k1
:½S�½E�z(k{1zk2):½ES� ð12Þ

½ _EES�~k1
:½S�½E�{(k{1zk2):½ES� ð13Þ

½ _PP�~k2
:½ES�: ð14Þ

This model considers four species, namely substrate S, enzyme

E, enzyme-substrate-complex ES and the product P. The

substrate binds to the enzyme with a certain affinity, forming an

enzyme-substrate-complex denoted by ES with a rate constant k1.

The rate constant k{1 describes the dissociation of the enzyme-

substrate-complex back into the single components and the rate

constant k2 describes the decay of the enzyme-substrate-complex

into free enzyme and the product. After a short phase of building

the enzyme-substrate-complex, the concentration of the free

enzyme approaches zero and the reaction enters a steady-state

with constant turnover rate. After the substrate is depleted, the

turnover rate reduces and the free enzyme concentration increases

again [26].

Contrary to this, reactions catalyzed by so called hysteretic

enzymes are characterized by a distinct lag phase before a steady-

state is entered [27]. The RNAse and wheat germ hexokinase, for

instance, are monomeric enzymes showing hysteretic behavior

[26,28]. This phenomenon, also known as kinetic cooperativity,

Figure 2. Substrate and product time courses of the simple model and the hysteretic model with estimated parameters. The values of
one out of five measurements are shown as dots. A lack-of-fit test, which is performed on both models with the generated experimental data,
ensures that none of these models can be discarded in advance. The depicted experiment is used as initial design of the discrimination approach.
doi:10.1371/journal.pone.0055723.g002
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can be explained by the slow transition model [26]. In contrast to

cooperativity that can be observed when several subunits of a

multimeric enzyme are interacting upon substrate binding, this

model gives a plausible explanation for sigmoidal behavior of

monomeric enzymes due to slow conformational changes. The

enzyme exists in two conformational states E and E’, termed

inactive and active, respectively, as they heavily differ in their

catalytic activity. In absence of substrate the enzyme primarily

exists in the inactive conformation. Binding of substrate molecules

to the inactive enzyme initiates the conformational change and the

enzyme is then able to work at a much higher efficiency until the

substrate is depleted. The slow transition into the active

conformation and a higher turnover rate of the active conforma-

tion, are the reasons for the sigmoidal shape of the substrate and

product concentration curves plotted against the time. According

to [27], these two enzymatic states can be modelled by the

following reaction equations:

Ez3S '
k1

k{1

ES3 '
k2

k{2

ES
0
3 '

k3

k{3

E’z3S

;k5
;k6

EzP '
k4

k{4

E’zP:

Again, these equations have to be reformulated as a set of ODEs

for further numerical analyses:

½ _SS�~3:({k1
:½S�½E�zk{1

:½ES�zk3
:½ES’�{k{3

:½E’�½S�) ð15Þ

Figure 3. The residual vs. run time plots of the simple and the hysteretic model for the initial design. The images in the upper and lower
part show the residuals of the substrate and the product curves, respectively. None of the plots shows a noticeable trend, which indicates a good fit
of both considered models.
doi:10.1371/journal.pone.0055723.g003

Table 1. The correct parameters of the hysteretic enzyme model used for data generation.

Parameter: k1 k{1 k2 k{2 k3 k{3 k4 k{4 k5 k6

Value: 0.05 0.001 0.06 0.001 0.001 6.0 0.001 0.001 0.01 4.0

The correct parameters of the hysteretic model used for data generation. Parameters are manually selected using the GUI, such that a hysteretic shape is observable.
Measurement data is produced by simulating the hysteretic model using the correct parameters at 30 equally spaced sampling points. Sampled points are individually
disturbed by use of additive Gaussian noise with standard deviation s~0:1 and mean m~0:0.
doi:10.1371/journal.pone.0055723.t001
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½ _EE�~{k1
:½S�½E�z(k{1zk5):½ES�zk{4

:½E’�{k4
:½E� ð16Þ

½ _EES�~k1
:½S�½E�{(k2zk5zk{1):½ES�zk{2

:½ES’� ð17Þ

½ _EE’�~(k3zk6):½ES’�{k{3
:½E’�½S�{k{4

:½E’�zk4
:½E� ð18Þ

½ _EES’�~k2
:½ES�{(k{2zk6zk3):½ES’�zk{3

:½E’�½S� ð19Þ

½ _PP�~k5
:½ES�zk6

:½ES’�: ð20Þ

As soon as the rate constant k6 is significantly larger than k5 and

the transition rate between ES and ES’ is sufficiently small, this

model shows a clear sigmoidal shape for both the substrate and the

product concentration over time. In this example three substrate

molecules are used to form one product molecule, which is the

reason for the factor 3 present in Eq. (11) and Eq. (15).

Data generation. Due to the unavailability of real experi-

mental data, artificial measurements are generated using the

hysteretic model. The correct parameters listed in Tab. 1 are

chosen such that a nice sigmoidal shape for both the substrate and

the product concentrations over time is received. The hysteretic

model is simulated over 300 time units and measurements are

performed every 10 time units. Initial concentrations for the

substrate and the enzyme are set to 1:0 and 0:001, respectively,

and the remaining species values are set to zero. No perturbations

are performed during the initial experiment. Five independent

random data sets are simulated using the hysteretic model with an

additive normally distributed error term ei at measurement time

point ti with standard deviation s~0:1 and mean m~0:0. Each

model-generated value yi is altered to ~yyi~yizei for all n time

steps in order to simulate measurement inaccuracies. As the

standard deviation is equal for all measurements, the homosce-

dastic version of the objective function shown in Eq. (1) is used.

For the further discrimination process the parameters of both

models are assumed to be unknown and are simultaneously

estimated on the generated measurement data. All parameters are

initialized to one and subsequently fitted to the observed data in a

least squares sense. Fig. 2 shows the substrate and product time

courses of both models with estimated parameters, which serves as

initialization of the discrimination method. To verify that none of

the models can be discarded on the initial experimental data, a

lack-of-fit test based on the decomposition of the regression curve

residual variance is performed [29–31]. The test fails to reject the

null hypothesis of an appropriate fit for both models (data not

shown), i.e. it is not clear which hypothesis underlies the given set

of measurements. Due to the absence of a noticeable trend of the

residuals, a similar conclusion can be drawn based on the residual

vs. run time plot shown in Fig. 3. Estimated parameters for the

simple model and the hysteretic model are listed in Tab. 2 and

Tab. 3, respectively.

The goal for the subsequent analysis is to determine an optimal

experimental design that allows to reliably identify the correct

hypothesis out of the two candidates. Additionally, it is demanded

that the optimal design is robust to parameter variations of the

simple model, i.e. even if the parameters of the simple model are

re-estimated, a clear distinction of the models should be

guaranteed.

Results and discussion. For this discrimination example the

parameters of the simple model k1,k{1,k2 are subject to

robustification. The box constraints for the parameters listed in

Tab. 4 are estimated using the graphical user interface with

random measurements generated by the correct model. Parameter

values, where one of the curves of the simple model clearly exceeds

the generated random measurement data are used as boundaries

for the robustification. The parameters for the hysteretic model are

fixed for the discrimination and are listed in Tab. 3. The initial

substrate concentration is set to 1:0 and constrained to the range

½0:5,3:0�. The initial enzyme concentration is set to 0:001 and

restricted to the interval ½0:0005,0:003�. All other participating

species are initialized to 0 and the initial concentrations of these

variables are not subject to optimization. The multiple shooting

bounds are not restricted, i.e. the bounds are set to +1e19. The

Table 2. The estimated parameters for the simple enzyme
reaction model.

Parameter: k1 k{1 k2

Value: 6.4086 0.0 2.0749

The estimated parameters for the simple enzyme reaction model. Based on
measurements generated by a hidden hysteretic model with known
parameters, the unknown parameters of the simple candidate model were
fitted to five independently generated data sets in a least squares sense.
doi:10.1371/journal.pone.0055723.t002

Table 3. The estimated parameters for the hysteretic enzyme reaction model.

Parameter: k1 k{1 k2 k{2 k3 k{3 k4 k{4 k5 k6

Value: 0.0708 0.0 0.0548 0.0 0.0 5.5020 0.0076 0.0 0.0 3.5715

The estimated parameters for the hysteretic enzyme reaction model. Based on measurements generated by a hidden hysteretic model with known parameters, the
unknown parameters of the hysteretic candidate model were fitted to five independently generated data sets in a least squares sense.
doi:10.1371/journal.pone.0055723.t003

Table 4. Initial parameter values and ranges for the simple
model.

Parameter Initial Value Range

k1 6.40861 [0.5,100.0]

k21 0.0 [0.0,100.0]

k2 2.07486 [0.5,30.0]

Initial parameter values and robustification ranges for the simple model. The
box constraints are manually determined using the graphical user interface by
comparing the model trajectories to measurement data generated with the
hidden correct model.
doi:10.1371/journal.pone.0055723.t004

A Tool for Interactive Robust Model Discrimination

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e55723



experimental duration is set to 300 time units and divided into 30
equally spaced time intervals. At ten equally spaced measurement

points, perturbations of either substrate within a range of ½0:0,0:5�
and/or enzyme within a range of ½0:0,0:001� are allowed and

subject to design. For a minimum time span between two

measurement points the corresponding step function H0(Dt) is

set to a width a1~10 with the centre located at b1~5. These step

function settings ensure that measurement points below 5 time

units are disabled. In order to avoid simultaneous measurements

and perturbations, the step functions ~HH0(c) are set to the width

a2~0:0005 with centre at b2~0:00025. These parameters values

ensure that the step function switches its value to zero as soon as a

perturbation to the system occurs. The number of homotopy steps

is set to 40 and the homotopy is started as soon as the

robustification gap DRG drops below 0:01.

For this setup the calculation requires approximately 24 hours

on one core of an Intel Xeon X5460 CPU with 3.16 GHz. The

robust optimal design is found after 25 iterations of the relaxation

algorithm with a robustification gap DRG below the stopping

criterion of d~10{6. The robustification gaps versus the iterations

are shown in part A of Fig. 4. In the beginning of the optimization,

several jumps of the robustification gap value can be observed.

Figure 4. Robustification gaps and objective values.The robustification gap DRG is displayed in the left part of the figure. The right part shows
the corresponding objective values of the respective new designs (solid line) and the objective values of this design with re-estimated worst case
parameters (dashed line). All values are plotted versus the corresponding iteration number.
doi:10.1371/journal.pone.0055723.g004

Figure 5. Time courses after discrimination. The time courses for substrate and product of the two models after discrimination compared to the
experimental data. The worst case discrimination is shown. Other parameters in the feasible range lead to larger model distances.
doi:10.1371/journal.pone.0055723.g005

A Tool for Interactive Robust Model Discrimination

PLOS ONE | www.plosone.org 8 February 2013 | Volume 8 | Issue 2 | e55723



Figure 6. Time courses after discrimination with re-estimated parameters. The time courses for substrate and product of the two models
after discrimination compared to the simulated experimental data. The parameters have been re-estimated using measurement data of the new
design and the initial design. For a correct model it should be possible to determine parameter values that sufficiently fit all available measurements.
doi:10.1371/journal.pone.0055723.g006

Figure 7. Residual plots after discrimination with re-estimated parameters for both models. The residuals of the simple model show a
clear trend, which indicates the bad fit of the model even with re-estimated parameters (B, D). Contrary, the good fit of the hysteretic model is
proofed by residuals being normally distributed around zero (A, C).
doi:10.1371/journal.pone.0055723.g007
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These jumps clearly vanish the closer the algorithm converges to

an optimum. Once the homotopy is started, here at iteration 20,

no further jumps occur. This demonstrates the usefulness of the

homotopy strategy, which stabilizes the convergence of the

algorithm. Forcing the algorithm to reach such a small

robustification gap is mostly not needed for practical applications,

though. Since the accuracy of the used measurement method is the

limiting factor, d can be chosen relative to the measurement

variance. Part B of Fig. 4 shows the values of the objective

functions. The solid line represents the objective value of the new

optimal design with respect to the parameter sets of the simple

model found so far. The dashed line in turn represents the KL-

divergence of the new design with re-estimated worst case

parameters. It can be observed that even for designs that lead to

huge KL-divergence values, e.g. after the second iteration, new

parameters can be found that significantly decrease the model

distances. After multiple iterations the objective values are

approaching a constant value and the robustification gap finally

drops below the stopping criterion. The optimum design proposed

after the first few iterations of the algorithm uses the lowest

possible initial species concentrations and nearly all perturbations

are set to the maximum value. This clearly differs from the final

result and causes the large jump of the objective values that can be

observed after the second iteration.

In Fig. 5 the resulting robust optimal design is shown. The

optimal measurement points of the new design are mainly moved

to the beginning of the time horizon where the largest difference in

the time courses of the species is observed. Four of the

measurement points are omitted. Both free initial values are set

to the maximum values of 3:0 for the substrate and 0:003 for the

enzyme concentration. The substrate perturbations are set to 0:5
at each feasible point and the enzyme perturbations are only

applied on the first two and the last possible perturbation point.

Additional experiments (data not shown) yielded similar results for

the discrimination with varied boundary conditions for the initial

species concentration. The initial concentrations are raised to the

upper bound and perturbations are applied in the beginning of the

experiment.

After the identification of the optimally discriminating design,

none of the models is able to perfectly describe the data using the

initially identified parameters. The parameters are re-estimated on

measurements of both, the initial design and the new design. The

re-estimated parameters for the two models are listed in Tab. 5

and Tab. 6, respectively. Simulating the models again with the re-

estimated parameters, as shown in Fig. 6, the hysteretic model

nicely fits the data of the initial experiment and the optimized

experiment. In contrast to this, the simple model either lies below

or above the measured data points. Since the residuals of the

simple model shown in Fig. 7 follow a distinct pattern, the simple

model can be assumed to be inappropriate for the observed

measurements. Hence, the preconditions for the lack-of-fit test,

which are independent normally distributed residuals with equal

variances, are not fulfilled for the simple model. The time series of

the simple model as well as the corresponding residual plot clearly

show its poor fit. The residuals of the hysteretic model are

randomly distributed around zero without showing any noticeable

pattern. Also note that the residuals for the substrate curve of the

simple model vary in a range of ½{0:5,1�, which is by far larger

than the corresponding residuals of the hysteretic model. The F-

values of the lack-of-fit test for the hysteretic model are 0:8066 for

the substrate curve and 0:5494 for the product curve. The critical

value is given by F(df1~15,df2~104,a~0:05)~1:7636 for five indepen-

dent measurements, each of which consists of 26 measurement

points. As the calculated values clearly lie below the critical F-

value, the model cannot be rejected. Of course, the values of the

lack-of-fit test heavily depend on the measurement data that are

being used. So the values presented here should just be considered

as exemplary result values of such a test. Multiple repetitions with

different randomly disturbed data sets failed to reject the

hypothesis, though. Considering the described goodness of fit

methods, the hysteretic model is appropriate for the given

experimental data.

To verify that the KL-divergence of 1:6416 found for the

optimal design is the smallest distance that can be observed, a

histogram plot is used. 1000 random initializations of parameters

of the simple model are performed with respect to the box

constraints mentioned above and the KL-divergence values are

summarized into 100 equally spaced histogram bins. Some outliers

that occurred rarely in the KL-divergence range of ½100,300� are

not shown in Fig. 8. All measured distances are greater or equal to

the red bar which indicates the KL-divergence for the worst case

parameters. Therefore, the calculated design is able to distinguish

between the models at least by this given worst case KL-

divergence. Similarly, Fig. 9 shows a histogram plot of the KL-

divergences for two experiments that have been optimized without

robustification of parameters. Both histograms contain bins with

KL-divergences smaller than the proposed KL-divergence of the

optimal design indicated by the red bar. Therefore, no conclusions

about the actual performance of the calculated experiments can be

drawn. This shows the benefit and necessity of the robustification

approach, as for robust optimal designs, no parameters can cause a

lower discrimination power between the two models than the one

observed for the proposed design.

Table 5. The re-estimated parameters for the simple model.

Parameter: k1 k{1 k2

Value: 6.5194 0.0 2.8908

The re-estimated parameters for the simple model on the initial measurement
data and measurement data for the identified optimal design. For correct
hypotheses it should be possible to determine a parameter set that fits to all
available measurements.
doi:10.1371/journal.pone.0055723.t005

Table 6. The re-estimated parameters for the hysteretic model.

Parameter: k1 k{1 k2 k{2 k3 k{3 k4 k{4 k5 k6

Value: 0.0266 0.0 0.04484 0.0 0.0 5.1121 0.0247 0.0 0.0 4.2822

The re-estimated parameters for the hysteretic model on the initial measurement data and measurement data for the identified optimal design. For correct hypotheses
it should be possible to determine a parameter set that fits to all available measurements.
doi:10.1371/journal.pone.0055723.t006
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Benchmark for model discrimination
In this section we apply our tool on a benchmark for model

discrimination as presented in [6]. For convenience, the model is

briefly summarized. The example models a biochemical reaction

network of a fictitious organism with several participating

metabolites. The experiment takes place in a tank reactor which

is characterized by the inflow qin and the outflow qout of a

substrate with concentration cin.

This reaction network is defined by the following ODEs:

_VV~qin{qout ð21Þ

Figure 8. Histogram plot the KL-divergence distribution for 1000 random parameters of the simple model. Only values larger than the
red bar are observed. This indicates that no lower distances than the proposed minimal distance of the robust optimal design have to be expected.
doi:10.1371/journal.pone.0055723.g008

Figure 9. Histogram plot of the KL-divergence distribution of model distances for 1000 random parameters of the simple model.
The experimental designs are optimized but lack of robustification of any parameters (A) and additionally lack of perturbations (B). KL-divergence
values below the value of the red bar indicate that there are parameter combinations for which the discrimination is worse than the one of the
proposed optimal design and decisions might become ambiguous.
doi:10.1371/journal.pone.0055723.g009
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_BB~ m{
qin

V

� �
:B ð22Þ

_SS~qin
:(cin{S){r1

:Mw:B: ð23Þ

In Eq. (21), V is the volume of the tank reactor. As the flow rates

qin and qout are assumed to be equal throughout the experiment,

the volume change of the reactor _VV is left out in the following. In

Eq. (22) and (23), B represents the biomass concentration and S

models the substrate concentration, respectively.

_MM1~r1{r2{m:M1 ð24Þ

_MM2~r2{r3{m:M2 ð25Þ

_EE~rsyn{m:E: ð26Þ

Directly after the uptake of substrate into the organism, M1 is

synthesized and the enzyme E catalyzes the irreversible conversion

of M1 to M2. The corresponding ODEs are given in Eq. (24)–(26).

The reaction rates r1, r2 and r3 involve Michaelis-Menten kinetics

with the parameters given in Tab. 7. For reaction rates rsyn and r2

a formal kinetic law is used to model the inhibition of the enzyme

activity by the concentration of M2. The parameters for these

terms are listed in Tab. 7. The different involved kinetic laws

suggest that the concentration of M2 influences both the synthesis

and the activity of the enzyme. Eq. (31) models the partial

substrate uptake by the organism, which is converted into biomass

[6].

r1~r1max
: S

KSzS
ð27Þ

r2~k2
:E:

M1

KM1
zM1

: KIA

KIAzM2
ð28Þ

r3~r3max
: M2

KM2
zM2

ð29Þ

rsyn~ksynmax
: KIB

KIBzM2
ð30Þ

m~YX=S
:r1: ð31Þ

The model described above is the correct model, and is used for the

generation of in silico data as described in the next section. The two

different hypothetical models are constructed by differently

changing some reaction rate equations. For model A the velocity

of the enzyme synthesis is altered to be constant, i.e.

rsynA~ksynmax. In model B the last fraction of r2 is omitted,

which leads to r2B~k2
:E:

M1

KM1
zM1

. The conversion of metab-

olite M1 to M2 in model A is therefore only regulated by a non-

competitive inhibition of the enzyme by M2. For model B the

enzyme synthesis is controlled depending on the concentration of

M2. The non-competitive inhibition of the enzyme activity by M2

does not play a role for model B anymore, as the corresponding

term is left out [6]. Note that in this case both of the considered

models are somewhat different from the model used for data

generation. Accordingly, the task of the discrimination approach is

to figure out which of these models is best suited to approximate

the correct model. In the following discrimination example, the

initial and intermediate values of the flow rates qin,qout and the

substrate concentration cin, as well as the measurement time points

are subject to design. The calculated design is robustified against

the parameter KIA of model A.

Table 7. The parameters of the correct model.

Mw=
g

mmol
KS=

mmol

gDW
KM1

=
mmol

gDW
KM2

=
mmol

gDW
r1max=

mmol

gDWh
r3max=

mmol

gDWh

342.3e-6 0.4437 12.2 10.0 2.4e4 3.0e6

YX=S=
g

mmol
KIA=

mmol

gDW
KIB=

mmol

gDW
k2=

L

h
ksynmax=

mmol

gDWh -

0.7e-4 10.0 0.01 6.0e6 0.0168 -

The parameters of the correct model as given in [6]. Note that the values of KIA and KIB mentioned as correct parameters in [6] are erroneously interchanged.
doi:10.1371/journal.pone.0055723.t007

Table 8. Re-estimated parameters for both models on the initial benchmark experiment.

YX=S=
g

mmol
KIA=

mmol

gDW
KIB=

mol

gDW
k2=

L

h
ksynmax=

mmol

gDWh

Model A 6.968e-5 0.104 - 5.988e6 7.2e-3

Model B 7.031e-5 - 0.166 5.559e6 8.2e-3

Re-estimated parameters for both models on the initial experiment.
doi:10.1371/journal.pone.0055723.t008
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Data generation. As described by Kremling et al., measure-

ments are generated using the correct model with an additional

random noise applied to each simulated concentration value using

a relative error model [6]. An independent normally distributed

random variable e with standard deviation s~0:1 and m~0:0 is

applied multiplicatively, i.e. each value y predicted by the correct

model is altered to ~yy~y:(1ze). The presented examples use the

symmetrized version of Eq. (1) as the objective function, i.e.

J(j,h1,h2)~
J(2 : 1,j,h1,h2)zJ(1 : 2,j,h1,h2)

2
: ð32Þ

The parameters of the correct model can be found in Tab. 7. In

order to keep the presented results comparable to the results of

Kremling et al. the model parameters as well as the initial species

concentrations are taken from the appendix of [6]. Note that the

values of KIA and KIB mentioned as correct parameters in [6] are

erroneously interchanged. Throughout this section, the values for

Figure 10. Initial time courses for biomass, substrate, M1, M2 and the enzyme. The initial time series for biomass and substrate
concentration (A), species M1 (B), species M2 (C) and the enzyme (D) are shown. In image (A) both models lead to the same response. The remaining
time courses show only small differences. None of the models clearly fits the data worse. The vertical bars indicate perturbation time points.
doi:10.1371/journal.pone.0055723.g010

Figure 11. Robustification gaps and objective values for the second experiment. The robustification gap DRG is displayed in (A), whereas
(B) shows the corresponding objective values of the respective new designs (solid line) and the objective values of this design with re-estimated
worst case parameters (dashed line). All values are plotted versus the corresponding iteration number.
doi:10.1371/journal.pone.0055723.g011
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Mw, KS , KM1, KM2, r1max and r3max are used for both considered

models and are assumed to be known. The remaining parameters

YX=S , k2, ksmax, KIA and KIB are estimated according to the

simulated measuremental data using the method described in [6].

The value of the parameter KIA given in Tab. 7 is used as an initial

guess for the parameter robustification performed in the inner-

loop of the model discrimination algorithm. The final worst-case

value for KIA is given separately for each of the presented

experimental designs. In Tab. 8 the parameters estimated on the

initial experiment are summarized [6].

For the simulated experiment by Kremling et al. the initial

substrate concentration is set to 2:0 g=L and the initial flow rates

are set to qin~qout~0:25 L=h. Measurements are taken every two

hours which results in thirty measurement points for the

experimental duration of 60 hours. After 20 hours both flow rates

are raised to 0:35 L=h and after 30 hours the substrate

concentration is reduced to cin~0:5 g=L. Fig. 10 shows the initial

time courses of the two models and illustrates that the models react

sensitively on such inflow changes [6]. Additionally, Fig. 10 clearly

indicates that both models fit the data equally well. By only taking

this experiment into account, a reasonable distinction between the

two models would not be possible. Hence, a different experimental

design, which is able to directly discard one of the hypothetical

models, is desirable. The next sections show the resulting model

responses achieved by calculating different input and perturbation

profiles for the experiments. In the presented results, usually only

the plots for species M1 and the enzyme are shown, because all

curves of the other species are largely the same for the performed

experiments. The design variables are the tank reactor flow rates

qin and qout, the substrate concentration cin, the measurement time

points and two perturbations.

As described in [6], an F-test is used to statistically verify the

rejection of inappropriate hypotheses. Therefore, the standard

deviation of the residuals is calculated for both investigated

models. The ratio of the larger value divided by the smaller value

follows an F-distribution and can be compared to the critical value

of an F-distribution with corresponding degrees of freedom. Here,

the degrees of freedom are the amount of measurements or rather

the amount of residuals. Considering for example the standard

deviations of the absolute values of the enzyme residuals for the

initial experiment sA~4:463e{3 and sB~3:989e{3. The

critical value for e.g. thirty measurements and a significance level

of a~0:05 is given by:

F(df1~30,df2~30,a~0:05)~1:84w

sA

sB

~1:1188: ð33Þ

In this case the test fails to reject the null hypothesis that the two

standard deviations are not significantly different and none of the

models can be discarded for the initial experiment. If this ratio

would be larger than the critical value the null hypothesis is

rejected and the residual standard deviation of model B would be

significantly smaller. Note that in this case the residuals are also

calculated at perturbation positions, which is the reason they are

also plotted in the presented figures.

Results and discussion. The calculation of a robust optimal

design presented in this section differs from the approaches carried

out by Kremling et al. by additionally allowing an optimization of

the measurement and perturbation time points. The substrate

Table 9. Re-estimated parameters for both models on the benchmark experiment.

YX=S=
g

mmol
KIA=

mmol

gDW
KIB=

mmol

gDW
k2=

L

h
ksynmax=

mmol

gDWh

Model A 7.3093e-05 0.01965 - 9.4370e6 0.006924

Model B 7.3094e-5 - 0.0081 6.7968e6 0.0184

Re-estimated parameters for both models on the benchmark experiment.
doi:10.1371/journal.pone.0055723.t009

Figure 12. Time courses of the enzyme for the initial and the new design for the second experiment. Trajectories of the enzyme for the
benchmark experiment (left) and the new experiment (right) with re-estimated parameters are shown. Model A clearly fits the data worse in both
cases. The vertical bars indicate perturbation time points.
doi:10.1371/journal.pone.0055723.g012
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concentration cin is set to cin~2:0 g=L and the initial flow rate is

set to qin~qout~0:25 L=h. At the 10th time point the flow rates

are increased to qin~qout~0:35 L=h and at the 15th time point

the substrate concentration is decreased to cin~0:5 g=L. As the

measurements are initially performed every two hours, this initial

design equals the one described by Kremling et al. in Tab. 1 of [6].

The initial flow rates are restricted to qin,qout[½0:1,0:4� and the

initial substrate concentration is restricted to cin[½0:5,3:0�. The

intermediate flow rate changes are restricted to qin,qout[½{0:3,0:3�
and the intermediate substrate concentration change is restricted

to cin[½{1:5,1:5�. The parameter KIA is subject to robustification

and constrained to the interval ½0:1,10:0�. The parameters for the

step function for prevention of multiple measurements are set to a

width of 1:5 with the center located at 1:0. For the second step

function the parameters are set to a width of 0:05 with the center

at 0:025. The integration tolerances and sensitivities are set to

absTol~10{11 and relTol~10{11.

As shown in Fig. 11, the optimal design is found after three

iterations of the discrimination algorithm. The homotopy [10] is

started after the robustification gap drops below 0.1 in the second

iteration and it is performed once until the stopping criterion of

10{4 is reached. The final KL-divergence value is 13:16 for the

calculated design with KIA~0:2586mmol=gDW . Calculating the

robust optimal design including five parameter fits after each

discrimination run took approximately 7.5 hours on one core of

an Intel Xeon X5460 CPU with 3.16 GHz.

As in the previous example, the initially estimated parameters

do not fit multiple measurements of different experimental designs.

Therefore, the parameters are fitted simultaneously to measure-

ments of the initial design and the new design. In Tab. 9 the re-

estimated parameters for both models are shown. For model A the

parameters are re-estimated 50 times with random initializations

to avoid locally optimal parameters. The best parameter set is

listed in the table. The necessity for parameter re-estimation was

also mentioned by Kremling et al. where new model parameters

had to be determined after each calculation of new designs.

Obviously, if a model is correct, it should be possible to find a

parameter set that is suited to fit several distinct measurements

produced by the underlying biochemical process. If no parameters

can be found to simultaneously fit the observed data, the model

might be inappropriate.

Fig. 12 shows the time courses of both models for the enzyme

with the re-estimated parameters. In both cases, model A fits the

measurement data worse. The initial flow rate of the new design is

raised to 0:4 L=h and the initial substrate concentration is lowered

to 0:5639 g=L. The flow rate change remains at 20 hours and it is

raised from 0:1 L=h to 0:3 L=h. The substrate concentration

change is raised from {1:5 g=L to 1:5 g=L and applied after 34
hours. Two measurement points are removed and the measure-

ments are moved into regions where the largest model distances

are observed. The stimulation time points of the new experiment

are quite similar to the initial time points. This indicates that the

Figure 13. Residual plots after discrimination with re-estimated parameters for the second experiment. The results for model A (A) and
for model B (B) are shown. The residuals of model A show a clear trend, which indicates a bad fit of the model.
doi:10.1371/journal.pone.0055723.g013

Figure 14. Histogram plot of the KL-divergence distribution for the second experiment. Distribution of the KL-divergence for different
values of KIA, randomly distributed in the interval [0.005; 10.0]. The red line represents the KL-divergence achieved by the worst-case parameter for
this design.
doi:10.1371/journal.pone.0055723.g014
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initial perturbation points are already a good choice. Consequent-

ly, the optimization of the stimulation time points could not be

exploited for an enlarged model distances in this case. Instead, the

discrimination power is raised by rearranging measurement points

and increasing the stimulations. The residual plots of the enzyme

time courses for measurements of the new experiment are shown

in Fig. 13 and clearly support the inappropriateness of model A.

The standard deviation of the enzyme residuals for measure-

ments of the new experiment are 2:0519e{3 and 9:8074e{4 for

model A and model B, respectively. As two measurement time

points are omitted in the new design and two are used for

perturbations, only 26 degrees of freedom are used for the

following F-distribution:

F(df1~26,df2~26,a~0:05)~1:93v

sA

sB

~2:0922: ð34Þ

The null hypothesis is rejected, which indicates that the residuals

of model B have a significantly smaller standard deviation

compared to the residuals of model A. Similar to the example

presented before, the histogram plot shown in Fig. 14 is based on

1000 random values of the parameter KIA and confirms the

robustness of the design with respect to this parameter set. Some

rarely occurring outliers above 100 are removed to improve the

depiction. The red bar indicates the lowest observable KL-

distance and the actually observed values might be significantly

larger in real experiments for the correct parameter values. To

exemplarily show the lack of robustification presented in section

Large steps on the inputs by Kremling et al., the parameter KIA is re-

estimated on simulated measurement data of the proposed optimal

design. Fig. 15 shows the result of this re-estimation. It is obviously

impossible to draw a reasonable conclusion which model fits the

data worse in this case.

An issue that frequently occurs during the calculation of robust

optimal designs is related to the constraints of the flow rates.

Kremling et al. used ½0:05,1:6� as constraints for the flow rates,

which does not work well in the presented discrimination attempt.

It is also doubtful if such large flow rates are practically

meaningful. In our example, the flow rates are constrained to

significantly smaller ranges. Using the graphical user interface, the

model behavior upon such value changes can easily be investigat-

ed. For example raising the flow rate from 0:25 L=h to a value of

0:5 L=h results in an increased M1 concentration by factor 300

(data not shown). Of course, the corresponding derivatives get

even larger and their calculation may cause numerical problems.

In trials with larger flow rate intervals, usually the parameter re-

estimation still works fine, but during the calculation of a

discriminating design, the objective function grows enormously.

Ipopt converges to a point of local infeasibility and is finally unable

to sufficiently reduce the dual infeasibility. This results in an

interrupted optimization after a failed restoration phase. To

partially get rid of these problems it helps to reduce the allowed

variation of the flow rates and to add the Ipopt settings listed in

Tab. 10. Particularly, if input profiles contain perturbations that

are already set to the maximum value of the feasible range, the

optimization starting point is close to the bounds. In this case Ipopt

relaxes the bounds which can result in an infeasible starting point.

The Ipopt settings listed in Tab. 10 avoid such a boundary

relaxation and make the initial point stay feasible. Additionally,

the Ipopt convergence tolerance tol is increased to 10{5 in order to

speed up the calculations and avoid the Solved to Acceptable Level

warning. Of course, a reduction of the integrator tolerances and

sensitivities might also be possible, but would in turn raise the

computation time.

Figure 15. Time courses of the optimal design proposed in Large Steps on the Inputs by Kremling et al. after re-estimation of
parameter KIA. The M1 (A) and enzyme concentration (B) time courses for the optimal design proposed by Kremling et al. are shown. Upon re-
estimation of the parameter KIA, the model responses become quite similar, which shows the necessity of the robustification approach. The vertical
bars indicate perturbation time points.
doi:10.1371/journal.pone.0055723.g015

Table 10. Ipopt settings for the benchmark experiment.

Parameter Name Type Value

tol double 1025

bound_push double 10299

bound_frac double 10299

slack_bound_push double 10299

slack_bound_frac double 10299

bound_relax_factor double 0.0

Additional Ipopt settings for the benchmark experiment.
doi:10.1371/journal.pone.0055723.t010
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Conclusions

In this contribution, the theoretical and practical concepts that

are used for the implementation and application of a convenient

software tool for the purpose of robust optimal design of

experiments for model discrimination, are presented. It is shown

how a modeling approach based on ordinary differential equations

can be combined with numerical optimization to calculate new

experimental designs that allow to select between several rival

models. We demonstrate the relevance of the robustification

approach as well as the functionality and usefulness of the

ModelDiscriminationToolkitGUI, by applying the software on two

artificial biochemical reaction networks. Our approach success-

fully identifies inappropriate hypotheses with respect to various

experimental design constraints. The goodness of fit of the models

is evaluated using residual plots and a lack-of-fit test. The

robustness of the given designs against parameter changes is

verified by use of a KL-divergence histogram of numerous random

initialized parameters. The major benefit of the graphical user

interface is the ability to interactively investigate the model

behavior and optimization strategies. Additionally, the GUI

facilitates data handling and keeps the numerous experimental

design variables clearly arranged. A general recipe for the

calculation of robust optimal experimental designs, however,

cannot be given on the basis of the presented examples. It usually

makes sense to evaluate different discrimination scenarios, e.g.

using the ModelDiscriminationToolkitGUI. The use of reasonable

ranges for the involved perturbations, to avoid time courses that

are unlikely for an observed biochemical phenomenon, combined

with a sophisticated arrangement of the measurement points seems

to be a good initial choice, though. The software is licensed under

the GNU General Public License and freely available for

download at http://sourceforge.net/projects/mdtgui/. In future

releases, the ModelDiscriminationToolkitGUI could be extended

by a formula parser, e.g. using the well known SMBL format, to

further facilitate the investigation of new models and allow to

access numerous reviewed biochemical models that are available

online [32].
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11. Wächter A (2002) An Interior Point Algorithm for Large-Scale Nonlinear

Optimization with Applications in Process Engineering. PhD thesis, Carnegie

Mellon University.
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